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Abstract

We study the sup-norm of Hecke-Maaß cusp forms on certain locally symmetric
spaces of SL𝑛(R). The latter correspond either to cocompact lattices defined by
orders in division algebras, or to the Hecke congruence subgroups of SL𝑛(Z),
yielding non-compact spaces. The main results are sub-baseline bounds
uniform in the volume of the space and, in the compact case, also in the
spectral parameter. These bounds are the first of their kind for 𝑛 > 2. The
methods involve a thorough study of level structures in higher rank, including
a new reduction theory with level in the non-compact case. This is used to
solve the core counting problem by soft, generalisable arguments, based on
rigidity principles.
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1. Introduction

The theory of automorphic forms describes the spectrum and cohomology of
locally symmetric spaces and lies at the confluence of analysis, representation
theory, and geometry. It plays a fundamental role in number theory, applying
to many classical questions about quadratic forms, sphere packings, elliptic
curves, and more.

In this thesis, we study automorphic forms from an analytic point of view.
In broad strokes, our goal is to understand the mass distribution of Laplace
eigenfunctions on certain arithmetic spaces. The focus here lies on the sup-
norm problem, which asks for strong upper bounds on these eigenfunctions
in terms of natural parameters, such as the Laplace eigenvalue or the volume
of the space.

There are many works dedicated to the sup-norm problem for locally
symmetric spaces attached to the group SL(2). The main contribution of this
thesis consists in solving many new instances of this problem for automorphic
forms in higher rank, i.e. for SL(𝑛) with 𝑛 > 2. These results and more are
contained in Chapter 2 and Chapter 3, each based on a scientific article.

This introduction should provide a guiding overview, a binding element
between both works. Its structure is as follows:

1. Section 1.1 presents the basics of the sup-norm problem and the main
results of this thesis.

2. Section 1.2 presents the analytic theory of automorphic forms through
examples.

3. Section 1.3 discusses the heuristics and motivation of the sup-norm
problem in more detail.

4. Section 1.4 gives an overview of the methods.

1.1 THE SUP-NORM PROBLEM

This thesis is concerned with the following families of locally symmetric spaces
with number theoretic significance. First, for 𝑛 ≥ 2 and 𝑁 ≥ 1, let

𝑋𝑛(𝑁) = Γ𝑛0 (𝑁)\ SL𝑛(R)/SO(𝑛),
where Γ𝑛0 (𝑁) is the Hecke congruence subgroup of SL𝑛(Z) defined by congru-
ence conditions modulo 𝑁 . Second, let

𝑋𝒪 = 𝒪1\ SL𝑛(R)/SO(𝑛),

1



CHAPTER 1. INTRODUCTION 2

where 𝒪 is an order in a central division algebra 𝐴 of degree 𝑛 over Q, split
over R, and 𝒪1 denotes its norm 1 units embedded in SL𝑛(R). We discuss their
interpretation as spaces of lattices in Section 1.2.4.

Note that 𝑋𝒪 is compact, while 𝑋𝑛(𝑁) is non-compact. We equip them with
measures invariant under the action of SL𝑛(R), inherited from a fixed Haar
measure. It is a fact that they have finite volume, given in terms of arithmetic
data, 𝑁 and the discriminant disc(𝒪), respectively.

These spaces also inherit an algebra 𝒟 of invariant differential operators.
Additionally, they posses a commutative algebra ℋ of normal operators, called
Hecke operators, that commute with elements of 𝒟.

Our main objects of study are Hecke-Maaß forms on the locally symmetric
space 𝑋, either 𝑋𝑛(𝑁) or 𝑋𝒪 . These are joint eigenfunctions of 𝒟 and ℋ . In
particular, a Hecke-Maaß form 𝜙 : 𝑋 → C satisfies

Δ𝜙 = 𝜆𝜙,

where 𝜆 ≥ 0 and Δ ∈ 𝒟 is the positive Laplace operator on 𝑋.
For non-compact 𝑋 = 𝑋𝑛(𝑁), we additionally require moderate growth

conditions, and we informally define a Hecke-Maaß cusp form by further
stipulating rapid decay at infinity. Thus, a cusp form can be shown to be
𝐿2-integrable.

The basic goal of this thesis is to compare the 𝐿∞-norm
𝜙

∞ and the
𝐿2-norm

𝜙
2 of Hecke-Maaß (cusp) forms 𝜙, as their parameters vary. This is

a natural and well-studied problem in harmonic analysis. It is also motivated
by ideas in physics, being a central question in the theory of quantum chaos.
Moreover, in our setting, it has applications in number theory, for instance in
the theory of 𝐿-functions. We review some of these aspects in Section 1.3.

More precisely, if 𝑋 is one of the locally symmetric spaces of SL𝑛(R) above,
we aim at improving the so-called baseline bound𝜙

∞𝜙
2
≤ 𝑐 · 𝜆𝑛(𝑛−1)/8 vol(𝑋)0. (1.1.1)

The constant 𝑐 > 0 might depend on 𝑛, but not on the eigenvalue 𝜆 or the
volume of 𝑋. This bound is expected to hold for more general compact locally
symmetric spaces, but certainly not trivial to prove. The source of this baseline
bound and the following refinement is discussed starting with Section 1.3.2.

In the non-compact case 𝑋 = 𝑋𝑛(𝑁), the statement needs to be refined to𝜙 |Ω𝑁


∞𝜙

2
≤ 𝑐 · 𝜆𝑛(𝑛−1)/8 vol(𝑋)0 ,

where we restrict 𝜙 to a compact subset Ω𝑁 ⊂ 𝑋, intuitively called the bulk
of the space. The constant 𝑐 might depend partially on the choice of Ω𝑁 , but
again not on 𝜆 or vol(𝑋).
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The general conjecture is that the baseline bound can be improved for
Hecke-Maaß forms – this is the sup-norm problem. A strong bound would have
the shape 𝜙

∞𝜙
2
≤ 𝑐 · 𝜆𝑛(𝑛−1)/8−𝛿1 vol(𝑋)−𝛿2 , (1.1.2)

for positive 𝛿1 , 𝛿2. We call this a sub-baseline bound, and denote its statement
by 𝐻(𝛿1 , 𝛿2). When restricting to a compact set Ω𝑁 ⊂ 𝑋 as in (1.1), we denote
the analogous statement by 𝐻Ω𝑁

(𝛿1 , 𝛿2).
The first to give a solution to the sup-norm problem were Iwaniec and

Sarnak in their breakthrough [IS95], still the most important and influential
paper in this field. They prove the bound 𝐻(𝛿1 , ∗) for 𝑋 = 𝑋2(1) and 𝑋𝒪 for
certain orders 𝒪, for any 𝛿1 < 1/24. The volume dependence is not made
explicit and we call this a result in the spectral aspect.

The next milestone was solving the sup-norm problem in the volume
aspect, also called the level aspect. This was done by Blomer and Holowinsky in
[BH10], where they proved a global sub-baseline bound 𝐻(𝛿1 , 𝛿2) for Hecke-
Maaß cusp forms on 𝑋 = 𝑋2(𝑁) with 𝑁 square-free, with any 𝛿1 < 1/4600 and
𝛿2 < 1/2300. More on the history of this aspect is provided in the introductions
of the papers in the next chapters.

The natural generalisation to higher rank, i.e. to SL𝑛(R)with 𝑛 > 2, followed
in the work of Blomer and Maga [BM16], and Marshall [Mar14]. Their results
are again only in the spectral aspect, of the form 𝐻Ω(𝛿1 , ∗) with some inexplicit
𝛿1 > 0 and no uniformity in the volume.

This thesis presents the first level aspect results in higher rank for the
spaces 𝑋𝑛(𝑁) and 𝑋𝒪 . We summarise our main theorems as follows. The first
one is discussed in Chapter 2.

Theorem 1.1. If 𝑛 and 𝑁 are prime, then 𝐻Ω𝑁
(0, 𝛿2) holds for Hecke-Maaß cusp

forms on 𝑋𝑛(𝑁) with any 𝛿2 < (2𝑛2)−1.

The second one is discussed in Chapter 3.

Theorem 1.2. If 𝑛 is an odd prime, then𝐻(𝛿1 , 𝛿2) holds for Hecke-Maaß forms on𝑋𝒪 ,
where 𝒪 is any corresponding locally norm-maximal order, with any 𝛿1 < (16𝑛3)−1

and 𝛿2 < (8𝑛4)−1.

Although both main theorems hold only for prime degree 𝑛 as stated, we
prove additional results that relax this hypothesis in different ways, assuming
other analytic or algebraic conditions. Other generalisations include the
extension of Theorem 1.2 to the group PGL(2) over number fields, also new in
this level of uniformity.

The methods we use are soft and should lend themselves well to general-
isation. We perform a thorough study of level structures in higher rank and
we gather a number of results along the way that we consider of independent
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interest. These include certain volume computations with discriminants in
Chapter 3 and a generalisation of classical reduction theory of lattices in
Chapter 2. The latter also involves group theoretic results, highlighted below,
which amount to a determination of the symmetries of the spaces 𝑋𝑛(𝑁).

Theorem 1.3. The normaliser of the Hecke congruence subgroup Γ𝑛0 (𝑁) inside
SL𝑛(R) is trivial for 𝑛 > 2 and any 𝑁 ∈ Z≥1.

1.2 AUTOMORPHIC FORMS

In this section we sketch out the definition of Hecke-Maaß forms and occa-
sionally focus in on features that become important in the sup-norm problem.

1.2.1 Fourier analysis

It is useful to organise the spectral theory of automorphic forms around
intuition from classical Fourier analysis.

We consider the real line Rwith addition as a Lie group and equip it with
the standard Lebesgue measure. The latter is a Haar measure, invariant under
the group operations. We have a natural algebra of differential operators,
consisting of polynomials in 𝑑/𝑑𝑥. The subalgebra of operators invariant under
the group operations is generated by Δ := 𝑑2/𝑑𝑥2, called the Laplace operator.

Inside the Lie group R we find the discrete subgroup Z. The quotient
space Z\R is a compact smooth manifold, namely the circle, which inherits
the invariant measure and differential operators from R.

The theory of Fourier series is now the study of the Laplacian Δ on the
space 𝐿2(Z\R). The upshot is that we can decompose this space into subspaces
spanned by eigenfunctions of Δ, which are the harmonics 𝑥 ↦→ exp(2𝜋𝑖𝑛𝑥) for
𝑛 ∈ Z. Notice that this is a discrete direct decomposition.

On the other hand, the Fourier transform is part of the spectral theory of Δ
operating on the space 𝐿2(R). We have the same kind of decomposition, given by
Fourier inversion, into subspaces generated by eigenfunctions 𝑥 ↦→ exp(2𝜋𝑖𝜉𝑥)
for 𝜉 ∈ R. However, this is now a continuous direct integral decomposition
and these eigenfunctions are no longer 𝐿2-integrable.

1.2.2 Locally symmetric spaces

We now replace R with a semisimple Lie group 𝐺, for example SL2(R). It
comes with a Haar measure and an algebra of invariant differential operators.
For 𝐺 = SL2(R), the latter is again generated by a single operator, called the
Casimir element Ω𝐶 .

The geometric spaces we consider in this thesis are called locally symmetric
spaces. Choosing a maximal compact subgroup 𝐾 and a discrete subgroup Γ

of 𝐺, these are double quotients of the form Γ\𝐺/𝐾. They form an important
and well-studied class of Riemannian manifolds.
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For example, if 𝐺 = SL2(R) we can take 𝐾 = SO(2) and the spaces we obtain
in this way, varying the lattice Γ, are finite volume hyperbolic surfaces. Taking
other examples, we obtain Euclidean spaces, the spheres, higher dimensional
hyperbolic spaces, and more.

The geometry and spectral theory of locally symmetric spaces is very rich
and many questions still remain about their spectrum, for instance Selberg’s
eigenvalue conjecture. However, we can describe the spectral decomposition
at a structural level.

In the simplest case of our example 𝐺 = SL2(R), if Γ\𝐺/𝐾 is compact, then
the spectral theory of Ω𝐶 on 𝐿2(Γ\𝐺/𝐾) resembles the case of the circle Z\R.
We again have a discrete direct sum decomposition into spaces generated
by eigenfunctions of Ω𝐶 . On the other hand, for Γ = SL2(Z), the quotient
is non-compact and the spectral decomposition is now a combination of a
discrete and a continuous part, the latter analogous to the direct integral
decomposition of 𝐿2(R). A brief overview of this is given in the next section.

1.2.3 Classical Maaß forms

0.5 0.0 0.5

i

2i

Figure 1.1: A fundamental
domain for SL2(Z) acting
on H

We study the case of 𝐺 = SL2(R), 𝐾 = SO(2),
and Γ = SL2(Z) in more detail. Letting 𝐺 act by
Möbius transformations on the imaginary unit 𝑖,
we obtain a bĳection between 𝐺/𝐾 and the upper
half plane

H = {𝑥 + 𝑖𝑦 ∈ C | 𝑦 > 0}.

Transporting the geometry of 𝐺, i.e. the invariant
Riemannian metric, turns H into the well-known
model of the hyperbolic plane.

The Casimir element Ω𝐶 for SL2(R) now des-
cends to H as the Laplace-Beltrami operator

Δ = −𝑦2
(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
.

The invariant measure is given, up to scaling, by

𝑑𝜇 =
𝑑𝑥 𝑑𝑦

𝑦2 .

The locally symmetric space 𝑋 = Γ\𝐺/𝐾 we
obtain has finite volume in the inherited measure.
It is often called the modular curve, since it is the
moduli space of rank 2 lattices up to some notion
of isomorphism. We discuss this interpretation
more in the next section.
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The space 𝑋 is non-compact, exhibiting a topological end called a cusp.
Observing Figure 1.1, the strip defines a fundamental domain for 𝑋 in the
upper half plane and we exit to infinity as the imaginary part grows. We note
that, in the hyperbolic geometry of H, the strip becomes thinner and thinner,
having width proportional to the inverse imaginary part. This explains the
term “cusp”.

A Maaß form 𝜙 is now a function 𝑋 → C which is an eigenfunction of Δ,
that is,

Δ𝜙 = 𝜆𝜙,

and satisfies certain moderate growth conditions. By positivity of the Laplace-
Beltrami operator, we have 𝜆 ≥ 0.

We are particularly interested in cuspidal Maaß forms, or simply cusp
forms. They are informally defined by additionally asking for vanishing at
the cusp, that is, tending to zero as we escape to infinity. As such, one can
show that they are 𝐿2-integrable and the space of cusp forms provides almost
all of the discrete spectrum of 𝑋. The only other component in the discrete
decomposition is the space of constant functions, and we write

𝐿2
disc = 𝐿2

cusp ⊕ C · 1.

We note that the set of eigenvalues of cusp forms is unbounded, which is a
non-trivial fact.

The rest of the spectrum is made up of non-cuspidal Maaß forms called
Eisenstein series. These are not 𝐿2-integrable, but they describe the continuous
spectrum of 𝑋, analogous to the harmonics exp(2𝜋𝑖𝜉𝑥) for 𝐿2(R). They do not
make a big appearance in this thesis, so we complete their discussion simply
by noting the spectral decomposition

𝐿2(𝑋) = 𝐿2
cusp ⊕ C · 1 ⊕ 𝐿2

cont = 𝐿2
cusp ⊕ 𝐿2

Eis.

Here we put the constant function into the so-called Eisenstein spectrum, since
it really arises as a residue of the meromorphic family of Eisenstein series.

1.2.4 Spaces of lattices

In this thesis we focus on the families 𝑋𝑛(𝑁) and 𝑋𝒪 of locally symmetric
spaces, some of the most prominent in the analytic theory of automorphic
forms. The motivation to study them is partly given by their interpretation as
parametrising spaces for basic geometric objects, namely lattices with various
structures.

Recall that a unimodular lattice of rank 𝑛 is Z-module isomorphic to Z𝑛

with determinant 1. It can be realised as a set

𝐿 = Z𝑛 · 𝑔 ⊂ R𝑛 ,



CHAPTER 1. INTRODUCTION 7

Figure 1.2: The absolute value of a Maaß cusp form on 𝑋, eigenvalue 𝜆 ≈
1/4 + 132. The fundamental domain in Figure 1.1 is tilted here, showing
ℜ𝑧 ∈ [−0.5, 0.5] and ℑ𝑧 ∈ [0.8, 3]. Notice the decay going into the cusp.

where Z𝑛 is the set of integral row vectors and 𝑔 is a matrix in SL𝑛(R) acting
on these vectors.

Generalising the modular curve, the locally symmetric space

𝑋𝑛(1) = SL𝑛(Z)\ SL𝑛(R)/SO(𝑛)

parametrises all rank 𝑛 unimodular lattices, up to isometry. It plays a central
role in the theory of automorphic forms.

Often in number theory, problems come with important additional inform-
ation in the form of a level structure. For example, questions about integers
might involve some congruence conditions modulo 𝑁 . More generally, we
consider lattices together with a distinguished sublattice, such as 𝑁Z⊂ Z, or
𝑁Z×Z⊂ Z2. To construct moduli spaces as in the latter example with level
structures, we proceed as follows.

For now, let 𝑁 = 𝑝 be a prime, and define

Γ0(𝑝) :=
{(
𝑎 𝑏

𝑐 𝑑

)
∈ SL2(Z) : 𝑝 | 𝑐

}
.

By the theory of elementary divisors, we can check that the space{
(𝐿, 𝐿′) | [𝐿 : 𝐿′] = 𝑝

}
=

{
(Z2𝑔,Z2 diag(𝑝, 1)𝑔) | 𝑔 ∈ SL2(R)

}
parametrising pairs of a unimodular lattice and a sublattice of index 𝑝 can be
interpreted as the quotient Γ0(𝑝)\ SL2(R) and we let

𝑋2(𝑝) = Γ0(𝑝)\ SL2(R)/SO(2).
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This is a locally symmetric space of finite volume.
The group Γ0(𝑁) can be defined for any 𝑁 ∈ Zanalogously and is called

the Hecke congruence subgroup. Automorphic forms on 𝑋2(𝑁) are said to have
level 𝑁 .

The same philosophy applies for higher rank lattices, where we define

Γ𝑛0 (𝑁) = {𝛾 ∈ SL𝑛(Z) | last row of 𝛾 is ≡ (0, . . . , 0, ∗) mod 𝑁}

to be the analogue of the Hecke congruence subgroup1 and the spaces 𝑋𝑛(𝑁)
analogously. Automorphic forms on 𝑋𝑛(𝑁) are the main focus of Chapter 2.
We remark that the groups Γ𝑛0 (𝑁) are the basis for the theory of newforms,
which is useful when discussing automorphic 𝐿-functions, generalisations of
the Riemann zeta function.

While the spaces 𝑋𝑛(𝑁) are non-compact, we also study compact locally
symmetric spaces in this thesis. These can also be interpreted as spaces of
lattices with additional algebraic structure, having symmetries with respect to
some number field or, more generally, a division algebra. These are the spaces
considered in Chapter 3.

Let 𝐴 be a central division algebra over Q of degree 𝑛 and assume that
𝐴⊗R= ℳ𝑛(R). Though these can be constructed concretely, we encourage the
reader to think of the matrix algebra ℳ𝑛(Q), except that all non-zero elements
are invertible.

An order 𝒪 ⊂ 𝐴 is a Z-module of full rank that is also a ring with unity and
it behaves very much like ℳ𝑛(Z) inside ℳ𝑛(Q). Another illustrative example
is that of the ring of integers inside a number field, also a division algebra,
though commutative.

These algebras come equipped with a generalisation of the norm and trace.
This allows us to define the multiplicative group 𝒪1 of norm 1 units of 𝒪. This
group can be embedded into SL𝑛(R) by the splitting condition on 𝐴 and it
then gives a discrete subgroup such that

𝑋𝒪 = 𝒪1\ SL𝑛(R)/SO(𝑛)

is compact – the division algebra condition is crucial here. We can also
generalise level structures by taking suborders 𝒪 inside some maximal order.
In the non-compact case of 𝑋𝑛(𝑁), the maximal order is ℳ𝑛(Z) and the
suborders are those defined by the congruence condition on the last row.

1.2.5 Hecke operators

The spaces considered are part of the special class of arithmetic locally
symmetric spaces. These posses additional symmetries called Hecke operators.

1We often drop the superscript 𝑛 if it is understood from context.
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We first give a simple interpretation as averaging operators on the space of
lattices. If 𝑓 is defined on 𝑋𝑛(1), then

𝑇𝑝 𝑓 (𝐿) =
∑

[𝐿:𝐿′]=𝑝
𝑓 (𝐿′),

defines a new function on lattices by averaging the value of 𝑓 over sublattices
of index 𝑝. This is a special version of a Hecke operator.

From a different, more general perspective, the idea is to average a left
Γ-invariant function 𝑓 over certain shifts 𝛼𝑥 of a given element 𝑥 ∈ 𝐺. To
restore left invariance under Γ, it becomes natural to consider double cosets
decomposing into a finite union of left cosets, such as

Γ𝑔Γ =

⋃
𝑖

Γ𝛼𝑖 .

We then have
𝑇𝑔 𝑓 (𝑥) =

∑
𝑖

𝑓 (𝛼𝑖 · 𝑥),

a well-defined averaging operator on the functions on Γ\𝐺/𝐾, thanks to our
finiteness condition.

We obtain Hecke operators 𝑇𝑔 for any 𝑔 in the commensurator of Γ inside
𝐺. An essential feature, which for our purposes could be the definition, of an
arithmetic subgroup Γ is that its commensurator is dense in 𝐺. The model for
this is Γ = G(Z), 𝐺 = G(R), and Comm𝐺(Γ) = G(Q), for an algebraic group G
like PGL(𝑛).

The Hecke operators are normal, commute with the invariant differential
operators and the algebra they generate is commutative. Thus, up to some
technicalities, we can now define Hecke-Maaß forms on an arithmetic locally
symmetric space 𝑋. These are joint eigenfunctions of the invariant differential
operators, with eigenvalues described by a tuple of numbers 𝜇 called the
spectral parameter, and the Hecke operators, satisfying moderate growth
conditions. If 𝑋 is non-compact, we can again informally ask for vanishing at
infinity to define Hecke-Maaß cusp forms.

1.3 ARITHMETIC QUANTUM CHAOS

Not only is understanding the spectrum of a space an essential question
in geometry and analysis, but it is also an integral part of physics. Indeed,
particles can be described in quantum mechanics through their wave function,
which is governed by Schrödinger’s equation. In its simplest form, the latter
reduces to the Laplace eigenfunction equation.
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Figure 1.3: Large
sup-norms: the
spherical
harmonic 𝑌25

0

In the so-called classical limit, one studies high energy
states that correspond to eigenfunctions with very large
Laplace eigenvalue, expecting them to approximate clas-
sical physics. For instance, when the underlying geometry
of the space is “chaotic”, then one expects high energy
waves to also behave chaotically. This is the idea behind
Berry’s random wave conjecture from the 1970’s. The hy-
perbolic surfaces commonly occurring in number theory,
like 𝑋2(1), satisfy such a condition. These considerations
then gave rise in the 90’s to the theory of arithmetic quantum
chaos.

Promoted by Peter Sarnak and his collaborators, new
conjectures about the asymptotic behaviour of automor-
phic forms appeared. In essence, we expect Hecke-Maaß
forms on groups such as SL2(R) to distribute randomly,
uniformly on the space, as their eigenvalues grow. For
more intuition, we note that an opposite effect would be
scarring, where the essential support of an eigenfunction
asymptotically describes some proper submanifold, such
as a geodesic.

The sup-norm problem is the following “point-wise”
approach to quantum chaos.

Problem. If Hecke-Maaß cusp forms become uniformly
distributed as their eigenvalues grow, then we expect them
not to have any large peaks. Therefore, prove that their
sup-norm is small when compared to their 𝐿2-norm.

In the following sections we consider some examples
and make the statement more precise, as in Section 1.1.

1.3.1 Harmonics of spheres

Take the example of the sphere 𝑆2 ⊂ R3, a locally symmetric space stemming
from the Lie group SO(3). The eigenvalues of the spherical Laplacian are of
the form 𝑙(𝑙 + 1) for 𝑙 ∈ Z≥0 and, crucially, they have a very high multiplicity.
The eigenspace for 𝑙(𝑙 + 1) has dimension 2𝑙 + 1 and is spanned by the classical
spherical harmonics 𝑌𝑚

𝑙
, in standard notation, of degree 𝑙 and order 𝑚, where

|𝑚| ≤ 𝑙.
As we prove below, the sup-norm of an eigenfunction on 𝑆2 with eigenvalue

𝑙(𝑙 + 1) can be as large as
√
𝑙. This is the case for the harmonic 𝑌 𝑙0 depicted in

Figure 1.32. This is the most extreme behaviour on two-dimensional spaces.
2The plot shows |𝑌25

0 (𝑥)| · 𝑥 for all 𝑥 ∈ 𝑆2. The large values occur thus at the north and
south pole.
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In fact, there can also be strong concentration of these eigenfunctions on
the geodesics of the sphere, the great circles. For instance, the harmonic 𝑌 𝑙

𝑙
is

concentrated around the equator. This is in sharp contrast with the heuristic
of quantum chaos, and the main reason is the stability of such geodesics: the
geodesic flow is very far from being chaotic on the sphere.

1.3.2 Heuristic upper and lower bounds

We now study in a little more detail the case of locally symmetric spaces for
compact groups, generalising the sphere. This is meant to give some intuition
and informed guesses for the spaces of non-compact type considered in this
thesis.

Let 𝐻 be a compact Lie group and 𝑋 a locally symmetric space of 𝐻.
Assume that 𝑋 has finite volume in the invariant measure.

Let 𝐸𝜆 be the eigenspace for the eigenvalue 𝜆 of the Laplacian of 𝑋. Thanks
to compactness, this space is a finite-dimensional representation of 𝐻, where
𝐻 acts as in the right-regular representation.

Since evaluation at a point 𝑥 ∈ 𝑋 is a continuous linear functional, by the
Riesz representation theorem there is 𝐹𝑥 ∈ 𝐸𝜆 such that

𝑓 (𝑥) = ⟨ 𝑓 , 𝐹𝑥⟩,

for any 𝑓 ∈ 𝐸𝜆. The action of 𝐻, denoted by 𝜌, is unitary and we have

𝑓 (𝑥ℎ) = ⟨𝜌ℎ 𝑓 , 𝐹𝑥⟩ = ⟨ 𝑓 , 𝜌ℎ−1𝐹𝑥⟩,

so that 𝐹𝑥ℎ = 𝜌ℎ−1𝐹𝑥 . Again by unitarity and also by the transitivity of the
action of 𝐻 on 𝑋, we find that ∥𝐹𝑥∥ is independent of 𝑥.

Note now that 𝐹𝑥(𝑥) = ∥𝐹𝑥∥2, by definition. Additionally, Cauchy-Schwarz
implies that

𝐹𝑥(𝑦) ≤ ∥𝐹𝑥∥ ·
𝐹𝑦 = ∥𝐹𝑥∥2 ,

so that 𝐹𝑥(𝑥) is also the sup-norm of 𝐹𝑥 .
Finally, we decompose 𝐹𝑥 into an orthonormal basis ( 𝑓𝑖), and by definition

we have
𝐹𝑥(𝑥) =

∑
𝑖

⟨𝐹𝑥 , 𝑓𝑖⟩ 𝑓𝑖(𝑥) =
∑
𝑖

| 𝑓𝑖(𝑥)|2.

We can now integrate this identity over 𝑋. Since
 𝑓𝑖 = 1 and 𝐹𝑥(𝑥) = ∥𝐹𝑥∥2 is

independent of 𝑥, we obtain

∥𝐹𝑥∥2 · vol(𝑋) = dim𝐸𝜆.

Since ∥𝐹𝑥∥2
= ∥𝐹𝑥∥∞, it follows that

∥𝐹𝑥∥∞
∥𝐹𝑥∥

=

√
dim𝐸𝜆

vol𝑋 ,
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which gives a lower bound for the sup-norm problem in this setting. Conversely,
if 𝑓 ∈ 𝐸𝜆, we use Cauchy-Schwarz to find that

𝑓 (𝑥) 𝑓  =
⟨ 𝑓 , 𝐹𝑥⟩ 𝑓  ≤ ∥𝐹𝑥∥ =

√
dim𝐸𝜆

vol𝑋

for all 𝑥. This is thus an upper bound for the sup-norms of all eigenfunctions.
For the sphere, where 𝐻 = SO(3), we observed that dim𝐸𝜆 is roughly

√
𝜆.

Thus the sup-norm of eigenfunctions is, up to the volume, at most 𝜆1/4 and
this is also achieved. Unfortunately, these arguments do not directly apply to
locally symmetric spaces of SL𝑛(R). However, they give some rough indication
of what one could expect.

1.3.3 Baseline bounds for Hecke-Maaß forms

We now consider non-compact Lie groups. For the following discussion it is
useful to introduce some common notation in analytic number theory.

Notation. We write 𝑓 (𝑥) ≪ 𝑔(𝑥) when 𝑓 (𝑥) ≤ 𝑐 · 𝑔(𝑥) for some constant 𝑐 > 0,
at least for 𝑥 large. If 𝑓 (𝑥) ≪ 𝑔(𝑥) ≪ 𝑓 (𝑥), then we use the notation 𝑓 (𝑥) ≍ 𝑔(𝑥).
This implicit constant 𝑐 can change from one sign ≪ to the next, and this is
what makes it practical. Moreover, when we wish to point out that 𝑐 depends
on some parameter 𝑃, we write 𝑓 (𝑥) ≪𝑃 𝑔(𝑥).

First of all, the fact that we can find an eigenfunction 𝑓 ∈ 𝐸𝜆 such that 𝑓 ∞ 𝑓  ≥
√

dim𝐸𝜆

vol𝑋

was already pointed out in [Sar04] for any compact Riemmanian manifold.
However, we could further restrict to joint eigenspaces of not just the Laplacian,
but also of the whole algebra of invariant differential operators and, for
arithmetic spaces, the algebra of Hecke operators. In that case, we can often
assume that dim𝐸𝜆 = 1.

The upper bound in the previous section then suggests that the most
optimistic bound we could hope for and, perhaps, should aim towards is 𝑓 ∞ ≪𝜀 𝜆

𝜀 · vol(𝑋)−1/2 ,

for joint eigenfunctions 𝑓 , for small 𝜀 > 0. The factor 𝜆𝜀 replacing the naïve 1
gives a more realistic guess. While pointing in the right direction, this overly
optimistic conjecture needs many refinements (see [Sar04]).

On the other hand, using relatively low-resolution information about the
spectrum generally suffices to obtain a weaker bound, which serves as a
baseline for our problem. This follows namely from a local Weyl law. The
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latter is an analytic way of estimating the dimension of 𝐸𝜆 by averaging over a
neighbourhood of 𝜆 or, more generally, of the spectral parameter. It has the
imprecise shape ∑

𝜆𝑖=𝜆+𝑂(1)
dim𝐸𝜆𝑖 ≍ 𝜆𝑛(𝑛−1)/4 vol(𝑋),

for locally symmetric spaces of 𝐺 = SL𝑛(R).
Thus, at least heuristically, we get the bound 𝑓 ∞ 𝑓  ≪

√
dim𝐸𝜆

vol𝑋 ≪𝑛 𝜆𝑛(𝑛−1)/8 vol(𝑋)0. (1.3.1)

This is called the baseline, or convexity, bound throughout the sup-norm
problem literature and this thesis. It provides the benchmark for results: any
significant improvements of it towards the optimistic bound generally require
new insights and have, until now, come as an application of not just analysis,
but also number theory. The shape of such an improvement, which we call a
sub-baseline bound, is  𝑓 ∞ 𝑓  ≪𝑛 vol(𝑋)−𝛿1 · 𝜆𝑛(𝑛−1)/8−𝛿2 , (1.3.2)

for positive 𝛿1 and 𝛿2. As in Section 1.1, denote the statement of (1.3.2) by
𝐻(𝛿1 , 𝛿2), for short.

1.3.4 Cutting off the cusps

To discuss results in higher rank, we introduce one last technical refinement of
the sup-norm problem. This is necessary since, for non-compact spaces, even
the baseline bound 𝐻(0, 0) does not hold as stated.

The issue is the following. As the argument goes to infinity through some
cusp, there is an analytic phenomenon that creates very large bumps before a
cusp form finally decays to zero. This is explained in more detail in [BT20].
Intuitively, the cusps are geometrically so small that they create a bottleneck
effect. The phenomenon is already noticeable, though weaker, for 𝑛 = 2, as we
depict in Figure 1.4.

More precisely, most Hecke-Maaß cusp forms satisfy 𝑓 ∞ 𝑓  ≫𝜀,𝑛 𝜆𝑛(𝑛−1)(𝑛−2)/24−𝜀.

The exponent here is cubic in 𝑛, compared to the quadratic polynomial in
the expected bound (1.3.1). A global sub-baseline bound is thus apparently
hopeless.

It is however still expected that Maaß forms are small on most of the
space. Since the cusp obscures this expectation in the global sup-norm, the
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Figure 1.4: A Maaß cusp form on 𝑋2(1), eigenvalue 𝜆 ≈ 1/4 + 502. The lower
axis is the imaginary axis. Notice the bumps on the right-hand side before the
decay in the cusp.

conjectures were refined by studying the restriction of forms to compact pieces
of the space. For a compact Ω ⊂ 𝑋, the bound 𝑓 |Ω

∞ 𝑓  ≪Ω vol(𝑋)0 · 𝜆𝑛(𝑛−1)/8

now holds (see [Sar04]), noting that the implied constant depends on Ω.
In this thesis, we think of Ω covering most of the space 𝑋. However, for

a sup-norm bound to be meaningful in the volume parameter, the implied
constant should not depend on vol(𝑋). Therefore, for the spaces 𝑋𝑛(𝑁) we
more carefully define a compact piece, the bulk of the space, as explained in
Chapter 2.

In short, consider the projection map 𝑋𝑛(𝑁) → 𝑋𝑛(1) and let Ω ⊂ 𝑋𝑛(1), a
fixed subset that does not depend on 𝑁 . We then define Ω𝑁 to be the preimage
of Ω.

A sensible conjecture, uniformly treating both the spectral and the level
aspect, is that  𝑓 |Ω𝑁


∞ 𝑓  ≪Ω vol(𝑋)−𝛿1 · 𝜆𝑛(𝑛−1)/8−𝛿2 , (1.3.3)

which we denote by 𝐻Ω𝑁
(𝛿1 , 𝛿2), for some 𝛿1 , 𝛿2 > 0. This is now the precise

formulation of the sup-norm problem considered in this thesis. We remark that,
if 𝑋 is compact, the corresponding conjecture applies to the global sup-norm,
as in 𝐻(𝛿1 , 𝛿2).



CHAPTER 1. INTRODUCTION 15

1.4 METHODS

In the remainder of this introduction, we discuss the general strategy for
proving the main results. The following structure of the proof is shared by
both papers.

1.4.1 A general approach

One of the most important ways to tackle the sup-norm problem is the
application of the amplified pretrace formula. This was first used by Iwaniec
and Sarnak [IS95] and it allows us to transform the analytic question of
bounding eigenfunctions into a counting problem that we can solve with
number theory and geometry. More generally, such pretrace formulae and
their refinements (traces, relative traces, amplified traces) are a cornerstone of
analytic number theory.

The first idea is to simply write down the spectral decomposition of a
well-chosen test function. We can examine this in the toy case of 𝐿2(Z\R). Take
a smooth and compactly supported function 𝑓 on R. The classical Poisson
summation formula now states that∑

𝑛∈Z
𝑓 (𝑛) =

∑
𝑚∈Z

𝑓 (𝑚),

a beautiful relation between a function and its Fourier transform. As we explain
below, the left-hand side contains geometric information, while the right-hand
side is of spectral nature.

First, from the aperiod function 𝑓 we define a new function 𝐾(𝑥, 𝑦), called
an automorphic kernel, by averaging over the lattice Z. More precisely, we
write

𝐾(𝑥, 𝑦) =
∑
𝑛∈Z

𝑓 (−𝑥 + 𝑛 + 𝑦),

for 𝑥, 𝑦 ∈ R. In both these variables, this is a compactly supported, smooth
function on Z\R. As such, we can spectrally decompose it with respect to
the Laplace eigenfunctions 𝑒𝑛(𝑡) = exp(2𝜋𝑖𝑛𝑡). Doing so in the variable 𝑦, we
obtain

𝐾(𝑥, 𝑦) =
∑
𝑚∈Z

⟨𝐾(𝑥, ·), 𝑒𝑚⟩ 𝑒𝑚(𝑦).

It is easy to see that, by a calculation of the shape
∑

Z

∫
Z\R =

∫
R, we have

𝐾(𝑥, 𝑦) =
∑
𝑚∈Z

𝑓 (𝑚)𝑒𝑚(𝑥)𝑒𝑚(𝑦).

The Poisson summation formula is obtained by setting 𝑥 = 𝑦. Observe that
the 𝑛-sum is a so-called geometric average over the lattice Z⊂ R, while the
𝑚-sum is an average over the spectrum of Z\R.
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The Poisson summation formula has the shape of the pretrace formula for
more general locally symmetric spaces 𝑋 = Γ\𝐺/𝐾. For a test function 𝑘 on
𝐾\𝐺/𝐾, we have ∑

𝛾∈Γ
𝑘(𝑥−1𝛾𝑥) =

∑
𝑖

𝑘(𝜆𝑖)|𝜙𝑖(𝑥)|2 + . . . ,

where 𝑘 is the spherical transform of 𝑘. The spectral side is meant formally
as the sum over the discrete spectrum plus an integral over the continuous
spectrum. The latter is denoted by an ellipsis to avoid technicalities. By
non-negativity as described below, we do not need to treat it explicitly.

The point of the formula above is that we get a handle on |𝜙𝑖(𝑥)|2 for
any 𝑥. Note also that any cuspidal joint eigenfunction 𝜙 can be embedded
in the spectral average as one of the basis elements, say, 𝜙 = 𝜙0. The choice
of test function is then made so that 𝑘 is 1 at the spectral parameter of the
eigenfunction 𝜙0 that we are studying. On the other parameters it should be
non-negative. This allows us to drop all terms but one and get∑

𝛾∈Γ
𝑘(𝑥−1𝛾𝑥) ≥ |𝜙𝑖(𝑥)|2.

However, it remains to control the function 𝑘 on the geometric side. As in
the Poisson summation formula, this involves a balancing act between 𝑘 and
its spherical transform. Ideally, both should be perfectly localised, and yet the
Heisenberg uncertainty principle prevents that.

The necessary analysis was worked out by Blomer and Maga [BM15]. The
upshot is that we have a bound for 𝑘 in terms of the spectral parameter of 𝜙0,
which actually gives the baseline bound in the eigenvalue. We can also arrange
that 𝑘 has compact support. Applying the triangle inequality now gives us a
counting problem

|𝜙𝑖(𝑥)|2 ≤ ∥𝑘∥∞ · |{𝛾 ∈ Γ | 𝑥−1𝛾𝑥 ∈ supp(𝑘)}|.

The latter is a finite set because Γ is a discrete subgroup.
Solving this counting problem is at the core of the method. The cardinality

in question depends heavily on the point 𝑥 and, of course, on Γ itself and its
covolume.

However, at this stage it turns out that even the best bounds for the counting
problem are not sufficient to give a sub-baseline bound. It is here that number
theory plays a crucial role by getting us out of this deadlock. Namely, we
can use Hecke operators to further amplify the contribution of 𝜙0 in the
spectral average. The technique is, appropriately, called amplification, and it
was invented by Iwaniec.

Being quite involved, we only sketch out the intuition behind amplification.
For this, let 𝑔 ∈ 𝐺 be in the commensurator of Γ, so that we can define the
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Hecke operator 𝑇𝑔 . All the eigenfunctions in the spectral decomposition can be
taken to be Hecke eigenfunctions as well, and we write 𝜆𝑖(𝑔) for the eigenvalue
of 𝜙𝑖 .

These eigenvalues are of utmost importance in number theory and many
conjectures have been made about them. For instance, normalising the operator
𝑇𝑔 correspondingly, the Generalised Ramanujan Conjecture predicts that
𝜆𝑖(𝑔) ≪ 1 in the cuspidal spectrum. For most forms 𝜙𝑖 , we should also have
the lower bound 𝜆𝑖(𝑔) ≫ 1, at least on average.

Furthermore, for different forms, the Hecke eigenvalues should be uncor-
related. For instance, in the case of 𝑋𝑛(1), we can rewrite 𝑇𝑝 as the operator
attached to 𝑔 = diag(𝑝, 1, . . . , 1), where 𝑝 is a prime. The corresponding eigen-
values are denoted by 𝜆𝑖(𝑝). We then expect that, for some large parameter
𝐿, ∑

1≤𝑝≤𝐿
𝜆𝑖(𝑝)𝜆 𝑗(𝑝)

is very small in terms of 𝐿 for 𝑖 ≠ 𝑗.
The strategy is now roughly the following. We apply the average of Hecke

operators ∑
𝑝≤𝐿

𝜆0(𝑝) · 𝑇𝑝

to the pretrace formula. Since all components are joint eigenfunctions, we
obtain a spectral average where the contribution of 𝜙0 is now

(
∑
𝑝≤𝐿

|𝜆0(𝑝)|2) · 𝑘(𝜆0) · |𝜙0(𝑥)|2 ≍ 𝐿 · 𝑘(𝜆0) · |𝜙0(𝑥)|2 ,

and that of the other forms much smaller. This is the leveraging mechanism
and it is obviously stronger for a larger parameter 𝐿.3 However, it comes at a
cost on the geometric side.

We compute by definition that the Hecke operator applied to the variable
𝑦 gives

𝑇𝑔𝐾(𝑥, 𝑦) =
∑

𝛼∈Γ\Γ𝑔Γ

∑
𝛾∈Γ

𝑘(𝑥−1𝛾𝛼𝑦) =
∑

𝛾∈Γ𝑔Γ
𝑘(𝑥−1𝛾𝑦).

This is now of the same shape as 𝐾(𝑥, 𝑦), yet we have enlarged the set over
which we average. The counting problem, as described above, therefore
becomes more difficult.

In essence, amplification is a tactical sacrifice. If the number theoretical or
geometric techniques are strong enough, it can eventually lead to success.

The naïve technique above is, however, not adequate for many reasons.
There are many technicalities involved in constructing a useful amplifier and

3To obtain an inequality for 𝜙0(𝑥), as we did before from the non-negativity of 𝑘, we must
tweak the definition of the amplifier. There are also issues of normalisation. We return to them
in the sections on amplification in the next chapters.
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they are in essence a combinatorial or 𝑝-adic analytic problem. For SL𝑛(R),
these were also dealt with in [BM15] and are partly explained, as needed, in
the corresponding sections of this thesis.

1.4.2 Rigidity principles

The crux of the matter now becomes the counting problem, which one needs
to solve uniformly in all parameters. Depending on the situation, we need to
count certain integral elements 𝛾 ∈ ℳ𝑛(R) with determinant 𝑚 (applying the
amplifier means we have to consider 1 ≪ 𝑚 ≪ 𝐿, not just 𝑚 = 1), such that

𝑥−1𝛾𝑥 = 𝑂(𝑚1/𝑛).

It essentially means that 𝛾 lies in some bounded set, a ball skewed by conjuga-
tion by 𝑥.

The principle behind our approach in this thesis is one of rigidity. Though
it does not allow extremely precise counting, this principle is soft enough to
be useful in great generality. While it applies in some sense to the proofs of
both main theorems, the relevant structures are very different. We thus give
here the contours of our strategy and leave the more specific details to the
corresponding chapters.

The most basic and surprisingly useful rigidity principle in analytic number
theory could be stated as follows: an integer of absolute value strictly less than
one must be zero. It is ubiquitous because, in this field, we often have closeness
conditions of integral structures and the flexibility of tweaking parameters to
have tighter conditions. In the case of the sup-norm problem in the level aspect,
these integral structures are the orders ℳ𝑛(Z) or 𝒪, the closeness condition is
given above, and the parameter we can tweak is the length 𝐿 of the amplifier.

A more sophisticated example of a rigidity principle deals with collinearity.
Suppose we have a line of length 𝐿 in the plane R2, and three integral points
that are 𝜀-close to the line. Suppose further that the area of the triangle defined
by these three points is bounded from below by some integer 𝐷 ≥ 1 (note that
𝐷 = 1 is always valid). By the closeness condition, this area is also bounded
from above roughly by 𝜀 · 𝐿. Therefore, if 𝜀𝐿 is much smaller than 𝐷, then the
points must actually be collinear.

In our work, the plane is replaced by the high-dimensional space of the
algebra ℳ𝑛(R). The line is replaced by some smaller subvariety, for example a
vector space of dimension 𝑛. Finally, the bound 𝐷 is given by the discriminant
of the order we are considering, which is directly related to the level or the
volume of the corresponding space. The parameters 𝐿 and 𝜀 are then given by
the choice of test function and the amplifier, where we have some degrees of
freedom.

For instance, we show in Chapter 2, Proposition 2.6.2, that a matrix of
Γ0(𝑁)-shape satisfying the counting conditions is determined by its last row, at
least under certain assumptions. Similarly, in Chapter 3, Lemma 3.4.2, we prove
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that the Q-algebra generated by the elements 𝛾 ∈ 𝒪 satisfying the counting
conditions is actually a proper subalgebra of the division algebra 𝐴. Assuming
the degree of 𝐴 is prime, this implies that the subalgebra must be a field. This
now introduces a great amount of structure that allows for stronger counting
techniques.

There is one crucial issue that can introduce difficulties in our counting
problem. This is the point 𝑥, which particularly in the non-compact case of
Chapter 2, has an enormous effect on the success prospects of the strategy
outlined above. In the volume aspect, where 𝑥 varies on larger and larger
spaces, this understanding this dependence is essential.

Solving such issues in higher rank is a new feature of our work. Much
of the originality of this thesis lies in the ideas required in this problem.
They are discussed in detail in the corresponding chapters. These include the
aforementioned generalisation of reduction theory and the study of Atkin-
Lehner operators in higher rank, which are personal favourites of the author.

1.5 OUTLINE

Chapter 2 deals with the sup-norm problem for 𝑋𝑛(𝑁) and Chapter 3 with
the sup-norm problem for 𝑋𝒪 . These are, respectively, the papers [Tom24] and
[Tom23].

The two chapters follow a similar structure of setting up the problem,
discussing necessary preliminaries and structures, applying the amplified
pretrace formula, and solving the counting problem. The papers are kept in
the same form as they were submitted for publication or already published.
As such, they can be read independently.



2. The sup-norm of newforms

This chapter reproduces the scientific article [Tom24]:
R. Toma. The sup-norm problem for newforms of large level on PGL(𝑛). 2024. arXiv:
2401.02741 [math.NT].

Abstract

Let 𝑁 be a prime and 𝜙 be a Hecke-Maaß cuspidal newform for
the Hecke congruence subgroup Γ0(𝑁) in SL𝑛(R). Let Ω be an adelic
compactum and let Ω𝑁 be its projection to Γ0(𝑁)\ SL𝑛(R)/SO(𝑛). For any
prime 𝑛, we prove sub-baseline bounds for the sup-norm of 𝜙 restricted
to Ω𝑁 . Conditionally on GRH, we generalise this result to all 𝑛 ≥ 2. The
methods involve a new reduction theory with level structure, based on
generalisations of Atkin-Lehner operators.

2.1 INTRODUCTION

Let 𝑛 ≥ 2 be an integer. This article is concerned with bounding the sup-norm
of Hecke-Maaß forms on the space

𝑋𝑛(𝑁) = Γ0(𝑁)\ SL𝑛(R)/SO(𝑛)

in terms of the parameter 𝑁 , called the level. Here, Γ0(𝑁) ≤ SL𝑛(Z) is the
subgroup of integral matrices with last row congruent to (0, . . . , 0, ∗) modulo
𝑁 , where ∗ stands for any non-zero residue class.

We normalise the invariant measure on 𝑋𝑛(𝑁) so that it has volume
asymptotically equal to 𝑁 (𝑛−1)+𝑜(1). Now let 𝜙 be a Hecke-Maaß form on
this space, that is, a square-integrable joint eigenfunction of the invariant
differential operators and the unramified Hecke algebra. Assuming that𝜙

2 = 1, the sup-norm problem asks for non-trivial bounds on
𝜙

∞. Several
parameters can be considered for this question, the most studied being the
spectral parameter and the level.

2.1.1 Some history

This problem has a rich history and the first breakthrough in the eigenvalue
aspect for 𝑛 = 2 was achieved by Iwaniec and Sarnak [IS95]. They prove that𝜙

∞ ≪𝑁,𝜀 𝜆5/24+𝜀 for any 𝜀 > 0. This is an improvement over the so-called
local bound

𝜙
∞ ≪𝑁 𝜆1/4. Their method of using an amplified pretrace

20
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formula remains one of the main tools for obtaining such non-trivial, sub-local
bounds.

In the level aspect, the baseline bound expected to hold is
𝜙

∞ ≪𝜆,𝜀 𝑁
𝜀

for 𝜙 a newform. The first improvement for 𝑛 = 2 is due to Blomer and
Holowinsky [BH10], with important refinements by Harcos and Templier
[HT12], [HT13], and the current record bound

𝜙
∞ ≪𝜆,𝜀 𝑁

1/4+𝜀 is due to
Khayutin, Nelson and Steiner [KNS22]. These papers deal with the case of
square-free level 𝑁 , and bounds for general 𝑁 were achieved in [Sah17]. The
fact that much of the work on this problem historically focused on square-free
levels is in large part a consequence of using Atkin-Lehner operators. This
aspect of the problem forms one of the main topics of this paper.

Though many other variations of the problem exist, we consider now its
development in higher rank, that is, for 𝑛 > 2. In the spectral aspect we only
mention here a selection, namely the work of Blomer and Pohl [BP16] (for Sp4),
Blomer and Maga [BM16] (for SL𝑛), and Marshall [Mar14] (for more general
Lie groups). They achieve power savings over the local bound for any 𝑛 ≥ 2,
though they only consider the sup-norm of automorphic forms restricted to
a fixed compact set. The implicit constants in their bounds thus depend on
this set. An investigation of the global sup-norm is the topic of Blomer, Harcos
and Maga’s paper [BHM20].

The present article deals with the sup-norm problem in higher rank, in
the level aspect. Despite the progress described above, there are very few
results in this setting. The first result, due to Hu [Hu18], considers the case
of prime-power levels 𝑁 = 𝑝𝑐 , where 𝑐 is large, with 𝜙 corresponding to a
so-called minimal vector, thus not applying to newforms. These forms are
more suitable for the 𝑝-adic methods employed by Hu. Similar to many results
in the spectral aspect, the bounds are given for the sup-norm of the restriction
to a fixed adelic compact set, which we explain below in a classical language
before stating the main theorem in this paper.

The second result [Tom23] is due to the author of this paper and con-
cerns automorphic forms on a different family of locally symmetric spaces
Γ\ SL𝑛(R)/SO(𝑛), where Γ is a subgroup coming from the units of an order
in a division algebra of degree 𝑛. These spaces are compact and the bounds
provided are global and in terms of their volume. The degree 𝑛 is restricted to
prime numbers and results can only be extended partially to odd degrees.

Moreover, the argument is based on the fact that proper subalgebras of
division algebras of prime degree are automatically fields, and that zero is the
only element of norm zero. The situation is decidedly different for the matrix
algebra, whose orders give rise to the groups Γ0(𝑁), and thus the methods of
[Tom23] seem to be insufficient in this case.

Not only throughout the history of the sup-norm problem, but also of the
subconvexity problem, the level aspect, particularly for prime or square-free
levels, is often the last one to be successfully tackled. Given its significance in
number theory, this suggests a serious, general difficulty and a need for new
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ideas.

2.1.2 Statement of results

In this paper, we consider Hecke-Maaß cuspidal newforms on 𝑋𝑛(𝑁) for 𝑛 ≥ 2
and 𝑁 prime. Let Ω ⊂ SL𝑛(R)/SO(𝑛) be a fixed compact set and define

Ω𝑁 ⊂ 𝑋𝑛(𝑁)
as the set of 𝑧 ∈ 𝑋𝑛(𝑁) such that there is 𝛾 ∈ SL𝑛(Z) with 𝛾𝑧 ∈ Ω. It is easy
to check that vol(Ω𝑁 ) ≍Ω vol(𝑋𝑛(𝑁)). We investigate the sup-norm of forms
restricted to Ω𝑁 . In adelic language, this corresponds to restricting to a fixed
compact domain in PGL𝑛(AQ), as in [Hu18].

We prove two new results, the first of which applying to all 𝑛 ≥ 2 prime.

Theorem 2.1. Let 𝑛 and 𝑁 be primes. Let 𝜙 be a Hecke-Maaß cuspidal newform on
𝑋𝑛(𝑁) with spectral parameter 𝜇 and define Ω𝑁 ⊂ 𝑋𝑛(𝑁) with respect to a fixed
compact set Ω ∈ SL𝑛(R)/SO(𝑛). For large 𝑁 , we have the bound𝜙|Ω𝑁


∞ ≪Ω,𝑛,𝜇,𝜀 𝑁

− 1
2𝑛2 +𝜀.

The proof involves understanding the geometric structure of the problem
as well as handling rather delicate diophantine conditions. It is the latter that
are not yet well enough understood in the case where 𝑛 is not prime. However,
the geometric ideas introduced in this paper are valid in full generality and
already capture a significant part of the problem. To support this claim, we
present below results for all 𝑛 ≥ 2, even improving those above numerically,
assuming the existence of an efficient amplifier.

For this, let 𝜆(𝑝) be the Hecke eigenvalue of 𝜙 for the Hecke operator 𝑇𝑝 ,
where 𝑝 is a prime not dividing 𝑁 , normalised so that 𝜆(𝑝) ≪ 𝑝(𝑛−1)/2 under
the Ramanujan-Petersson conjecture. See Section 2.3.1 for a precise definition.

Hypothesis. Let 𝛿 > 0 be any positive constant and 𝑁 ≫𝛿,𝜇 1 be large enough.
If 𝐿≫ 𝑁𝛿, then ∑

𝑝∈𝒫

|𝜆(𝑝)|
𝑝(𝑛−1)/2 ≫𝜀 𝐿

3/4−𝜀. (2.1.1)

We prove in Lemma 2.3.1 that condition (2.1.1) is true assuming the Grand
Riemann Hypothesis. It is similar to condition (1.24) in [IS95], which is checked
in [Hua19] for dihedral Maaß forms and in [You18] for Eisenstein series
and leads to an improved exponent in the bound of Iwaniec and Sarnak, as
explained in [IS95, Remark 1.6].

Theorem 2.2. Let 𝑛 ≥ 2 and 𝑁 be a prime. Let 𝜙 be a Hecke-Maaß cuspidal newform
on 𝑋𝑛(𝑁) with spectral parameter 𝜇 and define Ω𝑁 ⊂ 𝑋𝑛(𝑁) with respect to a fixed
compact set Ω ∈ SL𝑛(R)/SO(𝑛). Assuming hypothesis (2.1.1), we have the bound𝜙|Ω𝑁


∞ ≪Ω,𝑛,𝜇,𝜀 𝑁

− 1
4𝑛+𝜀.
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In particular, the bound holds under the Grand Riemann Hypothesis.

Considering previous work on the sup-norm problem in higher rank, the
main contribution of this paper is a new counting argument, based on the
reduction of the domain Ω𝑁 using generalised Atkin-Lehner operators, which
might be of independent interest. These arguments significantly generalise
and give a new perspective on the geometric methods of Harcos and Templier
[HT13], which generated many strong results for the sup-norm problem on
GL(2) (e.g. [Blo+20], [Sah17], [Ass a]). They also seem to be fundamentally
different and provide stronger results than in the spectral aspect in higher rank,
where savings are inverse super-exponential in 𝑛 [Gil20], as opposed to our
inverse polynomial savings. In any case, the methods presented here provide
the first steps in tackling the level aspect in higher rank and, we believe, a
useful framework for proving more general and possibly stronger results in
the future.

2.1.3 Methods

For proving both main theorems, we employ an amplified pretrace formula
to transform the analytic issue of bounding the sup-norm into a counting
problem. This is one of the most common methods of studying the sup-norm
of automorphic forms and goes back to the influential paper [IS95].

As in Proposition 2.3.3 below, we reduce the problem of bounding 𝜙(𝑧) for
𝑧 ∈ SL𝑛(R) to counting matrices in sets of the form

𝐻(𝑧, 𝑚, 𝑁) := {𝛾 ∈ ℳ𝑛(Z, 𝑁) | det 𝛾 = 𝑚, 𝑧−1𝛾𝑧 = 𝑂(𝑚1/𝑛)},

where 𝑚 is running over different, potentially sparse, sets of integers. Here,
ℳ𝑛(Z, 𝑁) is the set of integral matrices with last row congruent to (0, . . . , 0, ∗)
modulo 𝑁 . This is an order in the algebra of rational matrices.

2.1.3.1 lattices

To start, we give the sets𝐻(𝑧, 𝑚, 𝑁) an interpretation in terms of lattices, which
motivates the development of new tools introduced below. This is natural,
since we recall that the space 𝑋𝑛(1) parametrises shapes of unimodular lattices
by associating to 𝑧 ∈ SL𝑛(R) the lattice

𝐿 = Z𝑛 · 𝑧 ⊂ R𝑛 .

Here we understand R𝑛 and Z𝑛 as sets of row vectors. In this interpretation,
the matrix 𝑧 gives a specific basis for 𝐿. If 𝑁 is prime, the space 𝑋𝑛(𝑁) now
parametrises pairs (𝐿, 𝐿𝑁 ) of lattices, up to simultaneous rotation by SO(𝑛),
where

𝐿𝑁 = Z𝑛 · diag(𝑁, . . . , 𝑁 , 1)𝑧 = (𝑁Z× · · ·𝑁Z×Z) · 𝑧,
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is a sublattice of 𝐿.
Let 𝑒1 , . . . , 𝑒𝑛 be the standard basis for R𝑛 . We evaluate the condition

𝑧−1𝛾𝑧 = 𝑂(𝑚1/𝑛)

at the vectors 𝑒𝑖 , after multiplying from the left by 𝑧. This amounts to the
conditions

𝑒𝑖 · 𝛾𝑧 ∈ 𝐵(𝑚1/𝑛 ∥𝑒𝑖 · 𝑧∥)
for each 𝑖, where 𝐵(𝑟) is a Euclidean ball of radius 𝑂(𝑟) around 0. Note that,
since 𝛾 is an integral matrix, 𝑒𝑖 · 𝛾𝑧 is a lattice point in 𝐿 determining the 𝑖-th
row of 𝛾. Moreover, it is important to observe that 𝑒𝑛 · 𝛾𝑧 is additionally a
lattice point in the sublattice 𝐿𝑁 . On the other side, 𝑒𝑖 · 𝑧 is simply one of the
basis vectors in the basis of 𝐿 determined by 𝑧.

To count the number of relevant 𝛾, we can therefore bound the number of
possibilities for each of their rows and by the conditions above we reduce to
counting lattice points in balls. However, this naïve strategy needs to be refined
by an application of the Gram-Schmidt process, which we make precise in
Section 2.6.2. By its very nature, this involves the Iwasawa coordinates of 𝑧.

In any case, it is apparent that the dependence on 𝑧 manifests itself in two
ways already at this level. Firstly, there might be many lattice points that we
count because the basis vectors 𝑒𝑖 · 𝑧 which control the size of the balls are
large. Secondly, the lattices 𝐿 and 𝐿𝑁 might be very dense, in the sense that
they could have very short vectors relative to their covolume.

Understanding such issues is one of the main goals of reduction theory and
the geometry of numbers. However, the level structure needs to be taken into
consideration and, indeed, puts serious restrictions on the prospect of success
for the amplified pretrace formula strategy. We develop a novel reduction
theory with level structure in Section 2.5 and we describe the main ideas below.

2.1.3.2 generalised atkin-lehner operators and reduction

In a nutshell, classical reduction theory provides a way to fit a fundamental
domain for 𝑋𝑛(1) inside a Siegel set (for the cusp at infinity). If 𝑧 ∈ SL𝑛(R)
lies in such a fundamental domain, its rows then provide a reduced basis for
the lattice 𝐿, that is, a basis of vectors that are as short and as orthogonal as
possible.

We also obtain in this way an interpretation of the Iwasawa coordinates
of 𝑧 in terms of the successive minima of 𝐿. See Section 2.2.3 for more details.
This is not only important for implementing the refined counting strategy
described above, but also for compensating with other tools when the latter
fails.

For instance, solving the matrix counting problem optimally and plugging
the result into the amplified pretrace formula cannot yield sub-baseline bounds
when 𝑧 is high enough in the cusp. One then compensates by using the Fourier
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expansion, which gives strong bounds in terms of the Iwasawa 𝑦-coordinates
following from the cuspidality of our automorphic form 𝜙. This is common
for many of the previous works [IS95, Lemma A.1], [HT12, Lemma 5.1], etc.

In the level aspect, already 𝑧 = id𝑛 has to be treated using the Fourier
bound and notice that this point certainly lies in a standard bulk Ω𝑁 of
𝑋𝑛(𝑁) for Ω a compact neighbourhood of the identity. From one perspective,
which we do not explicate here further, this is because of the contribution of
Eisenstein series on the spectral side of the pretrace formula. In our framework,
the reason is that, even though 𝐿 is a perfectly balanced lattice and 𝑧 gives
an actual orthogonal basis of shortest vectors, the sublattice 𝐿𝑁 is maximally
imbalanced.

A desirable reduction theory with level structure might thus fulfil the
following. It should provide a basis for the lattice 𝐿 that, while perhaps not
reduced, gives useful information about shortest vectors in the sublattice 𝐿𝑁
and about the Iwasawa coordinates, meaning the Gram-Schmidt process for
the basis. It should also permit some understanding of the successive minima
of both 𝐿 and 𝐿𝑁 . Of course, preserving the level structure means changing
bases is only allowed by matrices in Γ0(𝑁). However, there are additional
symmetries at our disposal.

It was recognised early on in the treatment of the sup-norm problem in the
level aspect that Atkin-Lehner operators would be useful for such reductions.
It is classically not hard to see that one can fit the fundamental domain for
𝑋2(𝑁), where 𝑁 is square-free, quotiented out by the action of these operators
in a Siegel set of finite volume. This is because the Atkin-Lehner operators for
𝑁 square-free conjugate all cusps to the cusp at infinity. Unfortunately, for
powerful levels there is a deficiency of Atkin-Lehner operators and this forms
an important reason why the first and many results on the sup-norm problem
are restricted to square-free levels.

The first authors to connect these group theoretic facts to lattices were
Harcos and Templier in [HT12, Lemma 2.2]. For example, at the level of lattices,
the Fricke involution for prime levels can be understood as switching the
lattices in the pair (𝐿, 𝐿𝑁 ). Together with ideas from reduction theory, this
allows us to trade imbalancedness of 𝐿 or 𝐿𝑁 for closeness of 𝑧 to the cusp (see
loc. cit.). Effectively, when the matrix counting results are weak, the Fourier
bound gets better.

Generalising the case 𝑛 = 2, we study the symmetries of 𝑋𝑛(𝑁). The point
of departure from the classical case is the observation that PGL(𝑛) for 𝑛 > 2
has an additional outer automorphism, given by 𝑧 ↦→ 𝑧−𝑇 . This corresponds
to taking duals, either at the level of lattices, or at the level of automorphic
forms. In this paper, we use this to introduce in Section 2.4 a higher-rank
Atkin-Lehner operator corresponding to the Fricke involution. It has probably
been implicitly present in the theory of newforms, yet an explicit definition
seems hard to find in the literature.
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Definition. Let
𝐴𝑁 = 𝑁−1/𝑛 diag(1, . . . , 1, 𝑁)

and define the Fricke involution𝑊𝑁 : 𝐿2(𝑋𝑛(𝑁)) −→ 𝐿2(𝑋𝑛(𝑁)) as

𝑊𝑁𝜙(𝑧) = 𝜙(𝐴𝑁 · 𝑧−𝑇).

We also perform an investigation of other potential generalisations of
Atkin-Lehner operators. First, we prove that the normaliser of Γ0(𝑁) inside
PGL𝑛(R), the source of Atkin-Lehner operators for 𝑛 = 2, is trivial for 𝑛 > 3.
We refer to Section 2.4.1.

Theorem 2.3. For 𝑛 > 2, the normaliser of Γ0(𝑁) inside PGL𝑛(R) is trivial.

We then provide a different perspective on the classical Atkin-Lehner
operators and show in Proposition 2.4.4 that the only possible generalisation in
this interpretation is the Fricke involution. On the one hand, this is in contrast
to the case of square-free levels in PGL(2), but it is also a reflection of the
remarkable lack of such symmetries for powerful levels. Therefore, we first
only consider the case of prime level in this paper, similar to the common
restrictions in the rank-one case.

The main result of our reduction theory is given in Proposition 2.5.2. It
satisfies the intuition from the 𝑛 = 2 case, where the bulk of the reduced
fundamental domain is at ℑ(𝑧) ≍ 1/𝑁 . In general, there are the Iwasawa
coordinates 𝑦1 , . . . , 𝑦𝑛−1 and the bulk can be found at

𝑦1 ≍ 1
𝑁
, 𝑦2 ≍ . . . ≍ 𝑦𝑛−1 ≍ 1.

In this region, we prove that reduced 𝑧 satisfy that both 𝐿 and 𝐿𝑁 are balanced
in Lemma 2.6.1. As noted above, there is also the exceptional region Ω of the
bulk, where counting results would be too weak due to imbalancedness of the
lattices, but the Fourier bound suffices due to closeness to the cusp.

However, the reduction of the full fundamental domain for Γ0(𝑁) is more
complex, as can be seen from the case work in Section 2.5.2. It seems that more
refined information can be extracted and doing so would be an important next
step in the study of the sup-norm problem in the level aspect.

In higher rank, the reduction process involves the outer automorphism
included in the Fricke involution and thus dualising lattices. We are therefore
required to develop tools for keeping track of sizes of vectors in the lattices
associated to 𝑧 and its conjugate under the Fricke involution, as well as
their duals. This is the content of Section 2.5.1 and Table 2.1. We have found
the language of wedge products particularly useful for this because of its
flexibility in relating lengths of vectors in lattices and their duals with Iwasawa
coordinates.

As a historical interlude, we point out some connections of the above
considerations with previous work. The Atkin-Lehner involutions were already



CHAPTER 2. THE SUP-NORM OF NEWFORMS 27

used in the breakthrough [BH10], but balancedness of lattices was interpreted
in terms of Diophantine approximation properties of the Iwasawa coordinates,
using terminology from the circle method.

The language of lattices was used directly in [HT12], [HT13], and sub-
sequent works, and lead to strong numerical improvements to the bounds.
However, the counting problem is interpreted using coordinates not truly
inherent to lattices. Many computations in the GL(2) case use, in fact, the
“sporadic” symplectic nature of this group. This is not available in higher
degree and the direct use of coordinates seems to be very cumbersome.

For the family of groups PGL(𝑛), some ideas reminiscent of the more
general strategy used here can be seen in [BHM20, Sec. 3.2]. We refer also to
[Ven06], where certain aspects of the geometry of 𝑋𝑛(𝑁) are studied using
lattices as well.

2.1.3.3 detecting sparse sequences of determinants

The upshot of the reduction theory with level and the iterative counting
strategy is that we get bounds for the set⋃

1≤𝑚≤Λ
𝐻(𝑧, 𝑚, 𝑁)

for a parameter Λ small enough in terms of 𝑁 , uniformly in the balanced part
of Ω𝑁 . The motto of the counting strategy under these conditions is a rigidity
principle: the last row of 𝛾 ∈ 𝐻(𝑧, 𝑚, 𝑁) determines the whole matrix.

However, the unconditional amplifier of [BM15] gives rise to a counting
problem where matrices have perfect power determinants, for instance, 𝑛-th
powers. Such a sequence of determinants is too sparse and the method above,
averaging over all determinants, produces gross over-counting. Similar issues
are well-known already in the classical case 𝑛 = 2 (see e.g. the special treatment
of square determinants in [HT13]).

The appearance of sparse sequences of determinants on the geometric side
is due to the lack of good lower bounds for Hecke eigenvalues. Indeed, such
bounds are precisely what Hypothesis (2.1.1) provides. Unconditionally, there
is thankfully a substitute obtained from Hecke relations, such as𝜆(𝑝)2−𝜆(𝑝2) =
1 in suitable normalisation for 𝑛 = 2, from which one derives that at least
one of the two eigenvalues is bounded from below. Introducing the Hecke
operator 𝑇𝑝2 in this way results in sequences of square determinants, and we
have similar phenomena in higher degree.

We are able to detect perfect power determinants by using a refinement
of the counting strategy above (see Section 2.6.3). The problem reduces to
counting solutions to an equation of the shape

𝜒𝛾(𝑋) − 𝑌𝜈 = 0
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for 1 ≤ 𝜈 ≤ 𝑛, where 𝜒𝛾 is the characteristic polynomial of 𝛾. If this equation
is irreducible, then a powerful theorem of Heath-Brown [HB02] provides an
adequate non-trivial bound.

To treat the case where the polynomial is reducible, we assume that 𝑛 is
prime to simplify the classification of these degenerate cases. We can thus
reduce to counting matrices with 𝜒𝛾(𝑋) = (𝑋 − 𝑚)𝑛 . For 𝑛 = 2, this is the
special case of parabolic matrices that was also handled in [HT12, Lemma 4.1].

Finally, resolving this problem involves some group theoretic investigations
once more. We classify the cusps of 𝑋𝑛(𝑁) as in Lemma 2.6.8, of which there
are 𝑛 many, and observe the action of the Fricke involution on them. The
cusp corresponding to the identity element, informally the cusp at infinity,
can be dealt with by the counting methods already introduced. The one
corresponding to the long Weyl element is conjugated to the identity by the
Fricke involution.

Counting at “intermediate” cusps presents new challenges, which might
be a consequence of the lack of more symmetries of 𝑋𝑛(𝑁) for 𝑛 > 2. Although
much of what is developed in this paper appears to the author to be con-
ceptually necessary and inherent to the problem, this last step is solved by a
trick, as one might call it. We use the specific shape of the amplifier of Blomer
and Maga. Namely, we take advantage of the fact that, for certain Hecke sets
attached to primes 𝑝 and 𝑞, the determinantal divisors are asymmetric in
terms of 𝑝 and 𝑞, as in (2.3.1). This eventually collapses an average over two
primes to one over a single prime (the case 𝑝 = 𝑞), and leads to the required
power saving.

Notation

By the Vinogradov notation 𝑓 (𝑥) ≪ 𝑔(𝑥) for two functions 𝑓 , 𝑔 it is meant
that | 𝑓 (𝑥)| ≤ 𝐶 · |𝑔(𝑥)|, at least for large enough 𝑥, for some 𝐶 > 0 called the
implied constant. Similarly, for a matrix 𝑋 and a scalar function 𝑓 (𝑋) we say
that 𝑋 = 𝑂( 𝑓 (𝑋)) when ∥𝑋∥ ≤ 𝐶 · 𝑓 (𝑋) for some constant 𝐶 > 0 and some
choice of matrix norm ∥·∥.

We use ≪𝑃 to say that the implied constant depends on a parameter 𝑃, yet
we do not always add the subscript if it is clear from context in order to avoid
clutter. For instance, dependency on the compact space Ω ⊂ SL𝑛(R) includes
dependency on 𝑛.

2.2 PRELIMINARIES ON LATTICES

Consider the real vector space 𝑉 = R𝑛 with standard inner product ⟨𝑣, 𝑤⟩ =
𝑣 ·𝑤𝑇 , where we think of 𝑣, 𝑤 ∈ 𝑉 as row vectors in the standard basis 𝑒1 , . . . , 𝑒𝑛 .
Let 𝑧 be a matrix in GL𝑛(R) and define 𝐿𝑧 to be the lattice Z𝑛 · 𝑧 inside 𝑉 . Note
that 𝑒𝑖 · 𝑧 is equal to the 𝑖-th row of 𝑧. We also define the inner product and
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norm
⟨𝑣, 𝑤⟩𝑧 = ⟨𝑣𝑧, 𝑤𝑧⟩, ∥𝑣∥𝑧 =

√
⟨𝑣𝑧, 𝑣𝑧⟩,

for 𝑣, 𝑤 ∈ 𝑉 .
The dual lattice 𝐿∗𝑧 is defined as the set of vectors 𝑤 such that ⟨𝑣, 𝑤⟩ ∈ Z for

all 𝑣 ∈ 𝐿𝑧 . It is straight-forward to compute that

𝐿∗𝑧 = 𝐿𝑧−𝑇 .

We also note that 𝐿𝑧 = 𝐿𝑤 for any 𝑤 ∈ GL𝑛(Z) · 𝑧.

2.2.1 Exterior powers

If 𝑘 is a positive integer, the 𝑘-th exterior power of 𝐿𝑧 is denoted by
∧𝑘 𝐿𝑧 and is

defined as the Z-span of the wedge products 𝑣1 ∧· · · ∧ 𝑣𝑘 for all 𝑣1 , . . . , 𝑣𝑘 ∈ 𝐿𝑧 .
It is a lattice inside

∧𝑘 𝑉 . The inner product is given by

⟨𝑣1 ∧ · · · ∧ 𝑣𝑘 , 𝑤1 ∧ · · · ∧ 𝑤𝑘⟩ = det(⟨𝑣𝑖 , 𝑤 𝑗⟩)1≤𝑖 , 𝑗≤𝑘
and extended linearly.

We have an isomorphism

𝑛−1∧
𝑉 � 𝑉,

by sending 𝑤 ∈ ∧𝑛−1𝑉 to 𝑣 ∈ 𝑉 such that, for all 𝑢 ∈ 𝑉 ,

𝑤 ∧ 𝑢 = ⟨𝑣, 𝑢⟩.

We make implicit use of the fact that
∧𝑛 R𝑛 � R and of an intermediary

isomorphism with the dual space 𝑉∗. The isomorphism above is an isometry.
Indeed, we can check that an orthonormal basis is sent to an orthonormal

basis. Let (𝑒1 , . . . , 𝑒𝑛) be the standard orthonormal basis of 𝑉 . Then

(𝑒1 ∧ · · · ∧ 𝑒𝑛−1 , 𝑒1 ∧ · · · ∧ 𝑒𝑛−2 ∧ 𝑒𝑛 , . . . , 𝑒2 ∧ · · · ∧ 𝑒𝑛),

is an orthonormal basis of
∧𝑛−1𝑉 , formed by respectively removing each

vector 𝑒𝑖 from the wedge product 𝑒1 ∧ . . . 𝑒𝑛 . It is then easy to check that

𝑒1∧ . . .∧𝑒𝑛−1 ↦→ 𝑒𝑛 , 𝑒1∧ . . .∧𝑒𝑛−2∧𝑒𝑛 ↦→ −𝑒𝑛−1 , . . . , 𝑒2∧ . . .∧𝑒𝑛 ↦→ (−1)𝑛−1𝑒1.

Lemma 2.2.1. The lattice
∧𝑛−1 𝐿𝑧 is isometric to the lattice 𝐿det(𝑧)·𝑧−𝑇 .

Proof. We use the isomorphism
∧𝑛−1𝑉 � 𝑉 described in the paragraphs above.

The wedge product has the property that 𝑣1𝑧∧. . .∧𝑣𝑛𝑧 = det(𝑧)·𝑣1∧. . .∧𝑣𝑛 for
𝑛 row vectors (𝑣𝑖). This allows us to check that, under the given isomorphism,

𝑒1𝑧 ∧ . . . ∧ 𝑒𝑛−1𝑧 ↦→ det(𝑧) · 𝑒𝑛𝑧−𝑇 ,

and analogously for the other basis vectors above.
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2.2.2 Successive minima

Throughout this paper, we consider successive minima of lattices 𝐿𝑧 with
respect to the unit ball 𝐵1 ⊂ 𝑉 given by the standard inner product. When
considering the exterior products of these lattices, successive minima are
defined with respect to the compounds of the unit ball, as in the work of
Mahler [Mah55] (refer also to [Eve19], Section 3, for a modern treatment).

More precisely, the 𝑘-th compound of 𝐵1, denoted here by 𝐵𝑘 , is defined as
the convex hull of the points 𝑥1 ∧ · · · ∧ 𝑥𝑘 , for all 𝑥1 , . . . , 𝑥𝑘 ∈ 𝐵1. Mahler notes
that 𝐵𝑘 is a bounded, convex body in

∧𝑘 R𝑛 , though generally not a sphere
(see Section 4 in [Mah55]). Nevertheless, since 𝐵𝑘 is bounded and 0 is an inner
point of 𝐵𝑘 , there are constants 𝑐𝑘,𝑛 , 𝐶𝑘,𝑛 > 0 such that

𝐵(𝑛, 𝑘, 𝑐𝑘,𝑛) ⊂ 𝐵𝑘 ⊂ 𝐵(𝑛, 𝑘, 𝐶𝑘,𝑛),

where 𝐵(𝑛, 𝑘, 𝑟) is the ball of radius 𝑟 inside
∧𝑘 R𝑛 . As such, the lenght 𝑙 of

the shortest non-zero vector in
∧𝑘 𝐿𝑧 can be approximated as

𝑙 ≍𝑛,𝑘 𝜇1 ,

where 𝜇1 is the first successive minimum of
∧𝑘 𝐿𝑧 with respect to 𝐵𝑘 .

A theorem of Mahler (Theorem 3 in [Mah55]; Theorem 3.2 in [Eve19])
relates the successive minima of a lattice to those of its exterior powers. We
state here a special case, relevant in this paper.

Lemma 2.2.2. Let 𝐿 be a lattice in R𝑛 and let 𝜆1 , . . . ,𝜆𝑛 be its successive minima
with respect to the unit ball 𝐵1. Let 𝜇1 be the first successive minimum of the lattice∧𝑘 𝐿 with respect to 𝐵𝑘 . Then

𝜇1 ≍𝑛,𝑘 𝜆1 · · ·𝜆𝑘 .
As explained above, this lemma implies that, if 𝑙 is the length of the shortest

non-zero vector in
∧𝑘 𝐿, then

𝑙 ≍𝑛,𝑘 𝜆1 · · ·𝜆𝑘 .
We use this relation in Section 2.5.2.

We also recall here a classical theorem of Minkowski (see [Cas97, Theorem
VIII.1]), stating that

𝑑(𝐿) ≪𝑛 𝜆1 · · ·𝜆𝑛 ≪𝑛 𝑑(𝐿), (2.2.1)
where 𝑑(𝐿) is the determinant of the lattice, e.g. 𝑑(𝐿𝑧) = det(𝑧). In particular,
for a lattice of determinant 1, called a unimodular lattice, we have

𝜆1 ≪𝑛 1, (2.2.2)

using the inequalities 𝜆1 ≤ 𝜆𝑖 , for all 𝑖.
The detailed study of successive minima of 𝐿𝑧 is crucial in this paper due

to the following well-known lemma (see e.g. [BHM16, Lemma 1]), which we
apply when counting integral matrices, as explained at the end of Section 2.3.
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Lemma 2.2.3. Let 𝐿 ⊂ R𝑛 be a lattice and let 𝜆1 ≤ . . . ≤ 𝜆𝑛 be its successive minima
with respect to the unit ball. Let 𝐵 ⊂ R𝑛 be a ball of radius 𝑅 and arbitrary centre. We
have the inequality

|𝐿 ∩ 𝐵| ≪𝑛 1 + 𝑅

𝜆1
+ 𝑅2

𝜆1𝜆2
+ · · · + 𝑅𝑛

𝜆1 · · ·𝜆𝑛
.

2.2.3 Iwasawa coordinates and reduction theory

Let H = H𝑛 be the generalised upper half plane, that is

H = GL𝑛(R)/(O(𝑛) ·R×) � SL𝑛(R)/SO(𝑛).

In particular, the statement 𝑧 ∈ H is taken to imply 𝑧 ∈ SL𝑛(R).
By the Iwasawa decomposition (see Section 1.2 in [Gol06]), we can take

elements in H to be of the form 𝑧 = 𝑛(𝑥) · 𝑎(𝑦), where 𝑛(𝑥) = (𝑥𝑖 𝑗)1≤𝑖 , 𝑗≤𝑛 ∈
SL𝑛(R) is upper triangular unipotent, meaning that it satisfies

𝑥𝑖 𝑗 =

{
0, 𝑗 < 𝑖;
1, 𝑖 = 𝑗;

and 𝑎(𝑦) is diagonal, parametrised as

𝑎(𝑦) = diag(𝑑1 , . . . , 𝑑𝑛) = diag(𝑑𝑦1 · · · 𝑦𝑛−1 , . . . , 𝑑𝑦1𝑦2 , 𝑑𝑦1 , 𝑑),

where 𝑑, 𝑦1 , . . . , 𝑦𝑛−1 ∈ R>0 such that

det 𝑎(𝑦) = 𝑑𝑛𝑦𝑛−1
1 𝑦𝑛−2

2 · · · 𝑦𝑛−1 = 1.

Define the Siegel set 𝔖 to be the set of all 𝑧 = 𝑛(𝑥)𝑎(𝑦) ∈ SL𝑛(R) such that

|𝑥𝑖 𝑗| ≤
1
2

for all 𝑖 < 𝑗 and

𝑦𝑖 ≥
√

3
2 ,

for all 𝑖, using the Iwasawa coordinates defined above. Reduction theory (see
[Bor19, Theorem I.1.4] or [Gol06, Proposition 1.3.2]) shows that

SL𝑛(R) = SL𝑛(Z) ·𝔖.

If 𝑧 ∈ 𝔖, we say that (𝑒1𝑧, . . . , 𝑒𝑛𝑧) is a reduced basis for 𝐿𝑧 . We also remark that
reduction theory allows us to pick 𝑒𝑛𝑧 to be any vector of shortest length in 𝐿𝑧
(this is, indeed, part of the reduction algorithm).
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Remark 2.2.4. It is useful in later sections to note an embedding of SL𝑛−1(R) into
SL𝑛(R) and the connection between the two systems of Iwasawa coordinates.
More precisely, we can write 𝑧 = 𝑛(𝑥)𝑎(𝑦) ∈ H as

𝑧 =

(
𝑑𝑦1 · 𝑤 ∗

0 𝑑

)
,

where 𝑤 ∈ H𝑛−1 is a matrix in GL𝑛−1(R). Though not normalised, we can use
a variant of the Iwasawa coordinates (it is the one used in Definition 1.2.3 in
[Gol06]) to write 𝑤 = 𝑛(𝑥′) · 𝑎(𝑦′), where

𝑎(𝑦′) = diag(𝑦2 · · · 𝑦𝑛−1 , . . . , 𝑦2 , 1).

Multiplication of 𝑧 by parabolic matrices

𝑔 =

(
ℎ 0
0 1

)
∈ SL𝑛(Z)

with ℎ ∈ SL𝑛−1(Z), acts on 𝑤 by sending it to ℎ · 𝑤 and otherwise leaves the
last row of 𝑧 invariant. Reduction theory in degree 𝑛 − 1 now implies that
there is a parabolic block matrix 𝑔 ∈ SL𝑛(Z) as above so that 𝑔 · 𝑧 = 𝑛(𝑥) · 𝑎(𝑦)
with 𝑦𝑖 ≥

√
3/2 for 𝑖 = 2, . . . , 𝑛 − 1.

More generally one could define a Siegel set 𝔖𝜂 for any 𝜂 > 0 as the set of
all 𝑧 = 𝑛(𝑥)𝑎(𝑦) ∈ SL𝑛(R) such that |𝑥𝑖 𝑗| ≤ 1/2 and 𝑦𝑖 ≥ 𝜂. The following is a
well-known fact in reduction theory, which we state and prove in the version
needed in this paper.

Lemma 2.2.5. If 𝑧 = 𝑛(𝑥)𝑎(𝑦) ∈ 𝔖𝜂 and 𝜆1 ≤ . . . ≤ 𝜆𝑛 are the successive minima
of 𝐿𝑧 , then

𝜆𝑖 ≍𝑛,𝜂 ∥𝑒𝑛+1−𝑖∥𝑧 ≍𝑛,𝜂 𝑑𝑛+1−𝑖 . (2.2.3)

Proof. Notice that we can find 𝑛(𝑥′) ∈ SL𝑛(R) upper triangular unipotent such
that

𝑧 = 𝑛(𝑥)𝑎(𝑦) = 𝑎(𝑦)𝑛(𝑥′).
One can easily check that

𝑥′𝑖 𝑗 = 𝑥𝑖 𝑗 · 𝑑 𝑗/𝑑𝑖 = 𝑥𝑖 𝑗 · (𝑦𝑛−𝑖 · · · 𝑦𝑛−𝑗+1)−1 ≪𝜂 1

for 𝑖 < 𝑗 when 𝑧 ∈ 𝔖𝜂. Thus, every entry of 𝑛(𝑥′) is bounded uniformly in
terms of 𝜂 and so the operator norm of 𝑛(𝑥′) with respect to the Euclidean
norm is bounded in terms of 𝜂 and 𝑛. Since the entries of the inverse 𝑛(𝑥′)−1

are polynomials in the 𝑥′
𝑖 𝑗
, we see analogously that its operator norm is also

bounded and we can deduce that

∥𝑣∥𝑛(𝑥′) ≍𝑛,𝜂 ∥𝑣∥
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for all vectors 𝑣 ∈ R𝑛 . Using coordinates with respect to the standard basis
𝑒1 , . . . , 𝑒𝑛 , we have

∥(𝑐1 , . . . , 𝑐𝑛)∥𝑧 = ∥(𝑐1 , . . . , 𝑐𝑛)∥𝑎(𝑦)𝑛(𝑥′) =
∥(𝑑1𝑐1 , . . . , 𝑑𝑛𝑐𝑛)∥𝑛(𝑥′) ≍ ∥(𝑑1𝑐1 , . . . , 𝑑𝑛𝑐𝑛)∥ .

Now 𝑒𝑛 · 𝑧, . . . , 𝑒1 · 𝑧 are linearly independent vectors in 𝐿𝑧 , which implies
that 𝜆𝑖 ≤ ∥𝑒𝑛+1−𝑖∥𝑧 . Conversely, suppose that 𝑣1 , . . . , 𝑣𝑘 ∈ 𝐿𝑧 are linearly
independent vectors with max ∥𝑣𝑖∥ = 𝜆𝑘 . In particular, for any 𝑖 we have
𝑣𝑖 = (𝑐𝑖1 , . . . , 𝑐𝑖𝑛) · 𝑧 with 𝑐𝑖 𝑗 ∈ Z and there is at least one 𝑖 ∈ {1, . . . , 𝑘} such
that 𝑐𝑖 𝑗 ≠ 0 for some 𝑗 ≤ 𝑛+1− 𝑘 (we are just expressing the fact that 𝑣1 , . . . , 𝑣𝑘
cannot be contained in the linear span of the 𝑘 − 1 vectors 𝑒𝑛+2−𝑘𝑧, . . . , 𝑒𝑛𝑧).
As such, we have

𝜆𝑘 ≥ ∥𝑣𝑖∥ = ∥(𝑐𝑖1 , . . . , 𝑐𝑖𝑛)∥𝑧 ≍𝑛,𝜂 ∥(𝑑1𝑐𝑖1 , . . . , 𝑑𝑛𝑐𝑖𝑛)∥

≥ 𝑑 𝑗 =
𝑑 𝑗

𝑑𝑛+1−𝑘
· 𝑑𝑛+1−𝑘 ≥ 𝜂𝑛+1−𝑘−𝑗𝑑𝑛+1−𝑘 .

We recall also another standard lemma, which informally says that a
reduced basis behaves similarly to an orthogonal basis.

Lemma 2.2.6. Let (𝑣1 , . . . , 𝑣𝑛) be a reduced basis of a lattice 𝐿. Let 𝑣 ∈ 𝐿 and write
𝑣 =

∑𝑛
𝑖=1 𝑎𝑖𝑣𝑖 with 𝑎𝑖 ∈ Z. Then 𝑎𝑖 ≪𝑛 ∥𝑣∥ /∥𝑣𝑖∥.

Proof. See Lemma 1 in [Ven06].

Finally, if Ω ⊂ H is a compact set (in particular, it projects to a compact
set in the space of lattices SL𝑛(Z)\H) and 𝑧 ∈ Ω, then 𝜆1 ≫Ω 1 by Mahler’s
criterion [Bor19, Corollary I.1.9]. The other successive minima must then also
be bounded from below, so 𝜆𝑖 ≫ 1. By (2.2.1), we have that

1 ≪ 𝜆𝑛−1
2 ≤ 𝜆2 · · ·𝜆𝑛 ≪ 1/𝜆1 ≪ 1

since 𝑧 has determinant 1. Thus 𝜆2 ≍ 1 and inductively we find 𝜆𝑖 ≍Ω 1 for all
𝑖. We may say 𝐿𝑧 is an Ω-balanced lattice.

For any 𝑧 ∈ Hwe say that 𝑧 reduces to Ω if there is 𝑤 ∈ Ω such that 𝐿𝑧 = 𝐿𝑤 ,
in other words if there is 𝛾 ∈ SL𝑛(Z) such that 𝑧 = 𝛾𝑤. The discussion in the
paragraph above proves the following lemma.

Lemma 2.2.7. Suppose that 𝑧 ∈ H reduces to a compact set Ω and let 𝜆1 , . . . ,𝜆𝑛 be
the successive minima of 𝐿𝑧 . Then 𝜆𝑖 ≍Ω 1 for all 𝑖 ∈ {1, . . . , 𝑛}, where the implicit
constant depends only on Ω.
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2.3 THE AMPLIFIED PRETRACE FORMULA

We follow the amplification scheme of Blomer and Maga [BM15], using their
archimedean test function but giving also a version that simplifies the sum
over Hecke eigenvalues by assuming a conjecture about their sizes.

Let 𝐺 = SL𝑛(R), 𝐾 = SO(𝑛), Γ = Γ0(𝑁), and let 𝜙 be the cuspidal Hecke-
Maaß form of level𝑁 that we wish to bound. Let𝜇 = (𝜇1 , . . . , 𝜇𝑛) be the spectral
parameters of 𝜙. We may embed 𝜙 into a basis of the space of Hecke-Maaß
cusp forms for Γ0(𝑁). More precisely, we have a spectral decomposition

𝐿2(Γ0(𝑁)\H) =
∫

𝑉𝜛𝑑𝜛 = 𝐿2
cusp ⊕ 𝐿2

Eis ,

where every 𝑉𝜛 is a one-dimensional space generated by an eigenform 𝜙𝜛 of
the algebra of invariant differential operators and the Hecke algebra. Let 𝜇𝜛

be the spectral parameter of 𝜙𝜛 and assume that 𝜙 = 𝜙𝜛0 . Note moreover that
𝐿2

cusp has a discrete decomposition.
Recall the Cartan decomposition 𝐺 = 𝐾𝐴𝐾, where 𝐴 is the subgroup of

diagonal matrices. The latter has a Lie algebra 𝔞, on which the Weyl group𝑊
of 𝐺 acts. We define the Cartan projection 𝐶(𝑔) ∈ 𝔞/𝑊 of an element 𝑔 ∈ 𝐺 via
the Cartan decomposition 𝑔 = 𝑘1 exp(𝐶(𝑔))𝑘2, where 𝑘1 , 𝑘2 ∈ 𝐾. Now pick a
𝑊-invariant norm ∥·∥ on 𝔞. We note that, if

𝐶(𝑔) ≪ 1, then by exponentiating
we have

𝑔 = 𝑘 + 𝑂(1),
where 𝑘 ∈ 𝐾 and 𝑂(1) stands for a matrix whose norm (by equivalence, any
norm) is 𝑂(1).

2.3.1 The Hecke algebra and Hecke eigenvalues

We now briefly review some aspects of the structure of the unramified Hecke
algebra. Let 𝑝 be a prime not dividing 𝑁 and a = (𝑎1 , . . . , 𝑎𝑛) ∈ Z𝑛 . The double
coset

Γdiag(𝑝𝑎1 , . . . , 𝑝𝑎𝑛 )Γ =

⋃
𝑗

Γ𝛼 𝑗

defines a Hecke operator

𝑇a(𝑝)(𝜓)(𝑧) =
∑
𝑗

𝜓(𝛼 𝑗 · 𝑧),

where 𝜓 is any function on Γ\H. We define the standard Hecke operator as

𝑇(𝑝) = 𝑇(1,0,...,0)(𝑝).

One computes that the adjoint of 𝑇(𝑝) is the operator 𝑇′(𝑝) = 𝑇(1,...,1,0)(𝑝). Let
𝜆(𝑝, 𝜙𝜛) be the eigenvalue of 𝜙𝜛 under 𝑇(𝑝), so that 𝜆(𝑝, 𝜙𝜛) is its eigenvalue
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under 𝑇′(𝑝). By [BM15, Lemma 4.4] we have

𝑇(𝑝) · 𝑇′(𝑝) = 𝑎 · 𝑇(2,1,...,1,0)(𝑝) + 𝑏 · 𝑝𝑛−1 id,

where 𝑎, 𝑏 ≪ 1. Furthermore, if 𝑝 and 𝑞 are distinct primes not dividing 𝑁 ,
then we have the multiplication rule on double cosets

Γdiag(𝑝, 1, . . . , 1)Γ · Γdiag(𝑞, . . . , 𝑞, 1)Γ = Γdiag(𝑝𝑞, 𝑞, . . . , 𝑞, 1)Γ (2.3.1)

in the Hecke algebra, corresponding to the composition 𝑇(𝑝) ·𝑇′(𝑞) (see [BM15,
Section 6]).

Let now 𝐿 > 0 be a parameter and 𝒫 be the set of primes contained in
[𝐿, 2𝐿], not dividing 𝑁 . Define

𝐴𝜛 =

������∑𝑝∈𝒫 𝜆(𝑝, 𝜛)
𝑝(𝑛−1)/2 · 𝑥𝑝

������
2

,

where 𝑥𝑝 = |𝜆(𝑝, 𝜛0)|/𝜆(𝑝, 𝜛0).
We use here the normalised eigenvalues 𝜆(𝑝, 𝜛)/𝑝(𝑛−1)/2 as defined in

[Gol06, (9.3.5)]. Note that

𝐴𝜛0 =

�����∑
𝑝

|𝜆(𝑝, 𝜛0)/𝑝(𝑛−1)/2|
�����2 .

A lower bound for this quantity is given in Hypothesis (2.1.1). We now prove
it follows from GRH.

Lemma 2.3.1. Let 𝛿 > 0 be any positive constant and 𝑁 ≫𝛿 1 be large enough.
Assuming the Grand Riemann Hypothesis, if 𝐿 > 𝑁𝛿, then∑

𝑝∈𝒫

|𝜆(𝑝, 𝜛0)|
𝑝(𝑛−1)/2 ≫𝜀 𝐿

3/4−𝜀. (2.3.2)

Proof. The following are standard computations and we refer to Sections 5.1,
5.3, 5.6, 5.7 in [IK04] for more details. Let 𝜆(𝑝) = 𝜆(𝑝, 𝜛0)/𝑝(𝑛−1)/2 and note
that these give the coefficients of the 𝐿-function attached to 𝜙 or, equivalently,
to the automorphic representation 𝜋 generated by 𝜙. Let 𝐿RS(𝑠) = 𝐿(𝑠,𝜋 × �̃�)
be the Rankin-Selberg 𝐿-function and define ΛRS(𝑛) to be its coefficients, so
that

𝐿′RS
𝐿RS

(𝑠) =
∞∑
𝑛=1

ΛRS(𝑛)
𝑛𝑠

.

Then we have ΛRS(𝑝) = |𝜆(𝑝)|2 log 𝑝.
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The prime number theorem under GRH states that∑
𝑛≤𝑥

ΛRS(𝑛) = 𝑥 + 𝑂𝜀,𝜇(𝑥1/2+𝜀 · 𝑁𝜀). (2.3.3)

For 𝑦 ≤
√
𝑥, we obtain that∑

𝑥≤𝑛≤𝑥+𝑦
ΛRS(𝑛) ≪𝜀,𝜇 𝑥

1/2+𝜀𝑁𝜀.

Now we note that ΛRS(𝑛) ≥ 0 for all 𝑛 by the definition of the Rankin-
Selberg convolution. It follows from the prime number theorem above by
dropping all but one term that

𝜆(𝑝)2 ≪ ΛRS(𝑝) ≪ 𝑥1/2+𝜀𝑁𝜀

for 𝑝 ≍ 𝑥.
Let 𝑥 ≫ 𝑁𝛿 for some 𝛿 > 0. The bound above and (2.3.3) imply that

𝑥1−𝜀 ≪
∑
𝑝≍𝑥

|𝜆(𝑝)|2 ≪ 𝑥1/4+𝜀
∑
𝑝≍𝑥

|𝜆(𝑝)|.

This proves the claim.

Remark 2.3.2. It is expected that a stronger version of (2.1.1) holds, that is, with
exponent 1 instead of 3/4. To prove this we would require the Ramanujan-
Petersson conjecture. This would improve the saving in Theorem 2.2 by
doubling the exponent.

2.3.2 Amplifiers

Let ℳ𝑛(Z, 𝑁) be the set of integral matrices with last row congruent to
(0, . . . , 0, ∗) modulo 𝑁 . For (𝑚, 𝑁) = 1 let

𝐻(𝑚, 𝑁) := {𝛾 ∈ ℳ𝑛(Z, 𝑁) | det 𝛾 = 𝑚}

and

𝐻(𝑧, 𝑚, 𝑁) := {𝛾 ∈ ℳ𝑛(Z, 𝑁) | det 𝛾 = 𝑚, 𝑧−1𝛾𝑧 = 𝑂(𝑚1/𝑛)},

where the implicit constant depends on 𝑛, dependence which we suppress
throughout the arguments.

Proposition 2.3.3. Let 𝜙 be a Hecke-Maaß form for Γ0(𝑁) ≤ SL𝑛(R) with spectral
parameter 𝜇, let 𝐿≫ 𝑁𝛿 for some 𝛿 > 0 be a parameter and let 𝒫 be the set of primes
in [𝐿, 2𝐿], not dividing 𝑁 . Then, assuming Hypothesis (2.1.1), we have the bound

𝐿3/2−𝜀|𝜙(𝑧)|2 ≪𝜇,𝜀 |𝒫| · |𝐻(𝑧, 1, 𝑁)| + 1
𝐿𝑛−1

∑
𝑝,𝑞∈𝒫

|𝐻(𝑧, 𝑝 · 𝑞𝑛−1 , 𝑁)|.
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Proof. We choose the archimedean test function 𝑓𝜇 : 𝐶∞
𝑐 (𝐾\𝐺/𝐾) −→ Cdefined

in [BM15, Section 3]. It has compact support and is bounded 𝑓𝜇 ≪𝜇,𝑛 1 in
terms of 𝜇, where the dependence on 𝜇 is continuous.1 Its spherical transform
𝑓𝜇 satisfies

𝑓𝜇(𝜇) ≥ 1

and is non-negative on all possible spectral parameters occurring in the
decomposition of 𝐿2(Γ0(𝑁)\H). Finally, when writing 𝑓𝜇(𝑔) for 𝑔 ∈ GL𝑛(R),
where det(𝑔) > 0, we mean 𝑓𝜇(𝑔/det(𝑔)1/𝑛), thus extending the domain of 𝑓𝜇
by postulating its invariance under scalars.

Now consider ∫
𝐴𝜛 · 𝑓𝜇(𝜇𝜛)𝜙𝜛(𝑧)𝜙𝜛(𝑤)𝑑𝜛,

expand every 𝐴𝜛 and group terms into expressions of the form

1
(𝑝𝑞)(𝑛−1)/2

∫
𝜆(𝑝, 𝜛)𝑥𝑝 · 𝜆(𝑞, 𝜛)𝑥𝑞 · 𝑓𝜇(𝜇𝜛)𝜙𝜛(𝑧)𝜙𝜛(𝑤)𝑑𝜛,

which is equal to

𝑆𝑝,𝑞 =
𝑥𝑝𝑥𝑞

(𝑝𝑞)(𝑛−1)/2 · 𝑇(𝑝)𝑇′(𝑞) ·
∫

𝑓𝜇(𝜇𝜛)𝜙𝜛(𝑧)𝜙𝜛(𝑤)𝑑𝜛,

where the Hecke operators act in the variable 𝑧. We apply the pretrace formula
to obtain the geometric side

𝑆𝑝,𝑞 =
𝑥𝑝𝑥𝑞

(𝑝𝑞)(𝑛−1)/2 · 𝑇(𝑝)𝑇′(𝑞)
∑
𝛾∈Γ

𝑓𝜇(𝑧−1𝛾𝑤),

where again we write Γ0(𝑁) = Γ for brevity. Note that for any double coset
Γ𝑔Γ, the corresponding Hecke operator 𝑇𝑔 acts on the variable 𝑧 by

𝑇𝑔

∑
𝛾∈Γ

𝑓𝜇(𝑧−1𝛾𝑤) =
∑

𝛾∈Γ𝑔Γ
𝑓𝜇(𝑧−1𝛾𝑤),

by definition and sum unfolding. Moreover, using the compact support of 𝑓𝜇,
we can bound the right-hand side by∑

𝛾∈Γ𝑔Γ
𝑓𝜇(𝑧−1𝛾𝑤) ≪𝜇 |{𝛾 ∈ Γ𝑔Γ | 𝑧−1𝛾𝑤 = det(𝛾)1/𝑛(𝑘 + 𝑂(1)), 𝑘 ∈ 𝐾}|

using the triangle inequality. Since 𝐾 is compact, we can simplify 𝑘 + 𝑂(1) to
𝑂(1), where the implicit constant depends on 𝑛.

1In fact, there is an explicit bound for the function 𝑓𝜇. However, it is only useful in the
spectral aspect. For our purposes, we may simply bound 𝑓𝜇 by a constant depending on 𝜇, but
independent of the level.
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We now write the compositions 𝑇(𝑝) ·𝑇′(𝑞) as linear combinations of Hecke
operators 𝑇𝑔 . Let 𝑧 = 𝑤 and assume that 𝑝 ≠ 𝑞. Recalling that 𝑇(𝑝) · 𝑇′(𝑞) is
the Hecke operator corresponding to

Γdiag(𝑝𝑞, 𝑞, . . . , 𝑞, 1)Γ,
and that 𝑥𝑝 ≪ 1 for all 𝑝 ∈ 𝒫 , we bound

𝑆𝑝,𝑞 ≪𝜇
1

𝐿𝑛−1 · |𝐻(𝑧, 𝑝𝑞𝑛−1 , 𝑁)|.

Note that we have made this upper bound larger by forgetting the structure of
the double coset and simply retaining the information about the determinant,
which is an invariant of the double coset. Analogously we obtain

𝑆𝑝,𝑝 ≪𝜇
1

𝐿𝑛−1 · |𝐻(𝑧, 𝑝𝑛 , 𝑁)| + |𝐻(𝑧, 1, 𝑁)|.

We now put together the bounds above and observe that non-negativity of
𝑓𝜇 and of 𝐴𝜛 gives

𝐴𝜛0 |𝜙(𝑧)|2 ≤
∫

𝐴𝜛 · 𝑓𝜇(𝜇𝜛)|𝜙𝜛(𝑧)|2𝑑𝜛.

Finally, we get a lower bound on 𝐴𝜛0 by Hypothesis (2.1.1).

For unconditional bounds, one may work with the amplifier given in
[BM15, (6.2)]. It uses Hecke operators attached to higher powers of primes for
providing an alternative to Hypothesis (2.1.1). In fact, we give the slightly more
precise version of this amplifier by including information on the determinantal
divisors. Recall that the 𝑗-th determinantal divisor Δ𝑗(𝛾) of an integral matrix 𝛾
is equal to the greatest common divisor of all 𝑗 × 𝑗 minors.

Proposition 2.3.4. With the same notation as in Proposition 2.3.3, we have the
unconditional bound

𝐿2−𝜀|𝜙(𝑧)|2 ≪𝜇,𝜀 |𝒫| · |𝐻(𝑧, 1, 𝑁)| +
𝑛∑

𝜈=1

1
𝐿(𝑛−1)𝜈

∑
𝑝,𝑞∈𝒫

|𝐻(𝑧, 𝑝𝜈 , 𝑞(𝑛−1)𝜈 , 𝑁)|,

where 𝐻(𝑧, 𝑝𝜈 , 𝑞(𝑛−1)𝜈 , 𝑁) consists of matrices 𝛾 ∈ 𝐻(𝑧, 𝑝𝜈𝑞(𝑛−1)𝜈 , 𝑁) satisfying
the additional conditions

Δ𝑗(𝛾) = (𝑞𝑛−1)𝑗−1 ,

for all 1 ≤ 𝑗 ≤ 𝑛 − 1.

Remark 2.3.5. Blomer and Maga only preserve the condition on Δ1 and Δ2 (see
their definition of 𝑆(𝑚, 𝑙)). These and the additional ones in the proposition
above follow directly using the crucial property of the determinantal divisors,
namely their invariance under right or left multiplication by elements of SL𝑛(Z)
(see e.g. [New72, Thm. II.8]). Except for the proof of Proposition 2.6.10, these
conditions are not used and we mostly consider the larger set 𝐻(𝑧, 𝑚, 𝑁) for
simplicity of notation.
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2.4 HIGHER RANK ATKIN-LEHNER OPERATORS

In this section we consider possible generalisations of Atkin-Lehner operators
to the spaces 𝑋𝑛(𝑁) for 𝑛 > 2. We consider this to be of independent interest
and therefore do a thorough investigation of all cases, regardless of the
restrictions imposed in the rest of this paper. In fact, the results in this section
motivate these restrictions, as one of the main conclusions is the uniqueness
of the generalised Fricke involution among the potential symmetries of 𝑋𝑛(𝑁)
considered here for 𝑛 > 2.

2.4.1 The normaliser of the Hecke congruence subgroup

In the theory of automorphic forms on SL2(R), an Atkin-Lehner operator 𝑆
is an involution on space of left-Γ0(𝑁) invariant functions. It is obtained by
setting 𝑆 𝑓 (𝑧) = 𝑓 (𝑔𝑧) for all 𝑧 ∈ H, where 𝑔 lies in the normaliser of Γ0(𝑁)
inside SL2(R). This is a natural method of producing automorphisms, since
the invariance of 𝑓 (𝑧) under a group Γ is equivalent to the invariance of 𝑓 (𝑔𝑧)
under 𝑔−1Γ𝑔. The normaliser has been computed by Atkin and Lehner in
[AL70] and an example of a non-trivial normalising element is

𝑔 =

(
−1

𝑁

)
,

which induces the so-called Fricke involution. In fact, the normaliser gives all
automorphism of the modular curve 𝑋2(𝑁), in more standard notation 𝑋0(𝑁),
for all 𝑁 up to finitely many exceptions (see [KM88]).

Thus, searching for symmetries of automorphic forms in higher rank
should involve computing the normalisers of Γ0(𝑁) ≤ SL𝑛(R) for 𝑛 > 2.
Unfortunately, this method can only produce the identity operator, since we
prove below that these normalisers, in contrast to the case 𝑛 = 2, are trivial. In
the following we denote by GL+

𝑛 (Q) the subgroup of invertible matrices with
positive determinant.

Theorem 2.4. For 𝑛 > 2, the normaliser of Γ0(𝑁) inside GL+
𝑛 (Q) is trivial, that is,

equal to Q>0 · Γ0(𝑁).

For simplicity and clarity of the argument, since we work with some explicit
coordinates, we prove the theorem in the case of 𝑛 = 3. The way to generalise
the proof should be apparent to the reader.

Consider the left action of𝐺 := GL+
3 (Q)on fullZ-lattices inR3 (using column

vectors).2 Let 𝐿1 = ⟨𝑒1 , 𝑒2 , 𝑒3⟩ be the standard lattice for a basis (𝑒1 , 𝑒2 , 𝑒3) of R3

2As opposed to the rest of the present paper, in this independent section we let 𝐺 act from
the left on vectors. This allows for some simplifications of the arguments. In fact, from the point
of view of lattices, this is the more natural setting for Γ0(𝑁). For instance, when 𝑁 is prime, it
is easier to see that SL𝑛(R)/Γ0(𝑁) parametrises pairs of unimodular lattices together with a
sublattice of index 𝑁 . On the other hand, in the theory of automorphic forms, the dual picture
is more standard.
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and consider ℒ = 𝐺 · 𝐿1, the orbit of 𝐿1 under the action of 𝐺.
Note that the stabiliser of 𝐿1 under this action is the group SL3(Z). More

generally, for 𝑀 ∈ N, let 𝐿𝑀 = ⟨𝑒1 , 𝑒2 , 𝑀𝑒3⟩, or in other words,

𝐿𝑀 =
©«
1

1
𝑀

ª®¬ · 𝐿1.

If we let 𝐴𝑀 = diag(1, 1, 𝑀), then the stabiliser of 𝐿𝑀 is

Stab(𝐿𝑀) = 𝐴𝑀 Stab(𝐿1)𝐴−1
𝑀 =

©«
𝑎11 𝑎12

𝑎13
𝑀

𝑎21 𝑎22
𝑎23
𝑀

𝑀𝑎31 𝑀𝑎32 𝑎33

ª®¬ : (𝑎𝑖 𝑗) ∈ SL3(Z)
 .

It follows that Stab(𝐿1)∩Stab(𝐿𝑀) = Γ0(𝑀). Since Γ0(𝑁) ⊂ Γ0(𝑀) for all 𝑀 | 𝑁 ,
we also have that ⋂

𝑀|𝑁
Stab(𝐿𝑀) = Γ0(𝑁).

The following lemma provides a converse for this observation.

Lemma 2.4.1. The set of lattices fixed by Γ0(𝑁) is⋃
𝑀|𝑁

{𝑞𝐿𝑀 : 𝑞 ∈ Q>0}.

Proof. Let 𝐿 = 𝑔 · 𝐿1 ∈ ℒ, where 𝑔 ∈ GL+
3 (Q), and assume that Γ0(𝑁) fixes 𝐿.

Then 𝑔−1Γ0(𝑁)𝑔 fixes 𝐿1, so we must have 𝑔−1Γ0(𝑁)𝑔 ⊂ SL3(Z).
Scaling 𝑔 by a positive rational number, we may assume that 𝑔 ∈ ℳ3×3(Z).

Let then 𝐻 be the Hermite normal form of 𝑔, so that

𝐻 = 𝑔𝑈,

with 𝑈 ∈ SL3(Z) and 𝐻 lower triangular. We have 𝐻𝐿1 = 𝑔𝑈𝐿1 = 𝑔𝐿1 = 𝐿.

So we may further assume that 𝑔 = 𝐻 and is thus lower triangular. More
explicitly, write

𝐻 =
©«
𝛼1 0 0
𝛽1 𝛽2 0
𝛾1 𝛾2 𝛾3

ª®¬ ∈ ℳ3×3(Z).
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We test the inclusion 𝐻−1𝜉𝐻 ∈ SL3(Z) with various matrices 𝜉 ∈ Γ0(𝑁).
Observe that

𝐻−1 ©«
1 1

1
1

ª®¬𝐻 ∈ SL3(Z) implies that
𝛽1

𝛼1
,
𝛽2

𝛼1
,
𝛽1𝛾2 − 𝛾1𝛽2

𝛼1𝛾3
∈ Z;

𝐻−1 ©«
1 1

1
1

ª®¬𝐻 ∈ SL3(Z) implies that
𝛾1

𝛼1
,
𝛾2

𝛼1
,
𝛾3

𝛼1
∈ Z;

𝐻−1 ©«
1
1 1

1

ª®¬𝐻 ∈ SL3(Z) implies that 𝛼1
𝛽2
,
𝛼1
𝛽2

· 𝛾2

𝛾3
∈ Z;

𝐻−1 ©«
1

1
𝑁 1

ª®¬𝐻 ∈ SL3(Z) implies that 𝑁
𝛼1
𝛾3

∈ Z.

Since 𝛽2
𝛼1
, 𝛼1
𝛽2

∈ Z, we must have 𝛽2
𝛼1

= ±1. Since 𝛾3
𝛼1
, 𝑁 𝛼1

𝛾3
∈ Z, we must have

𝛾3
𝛼1

= ±𝑀, where 𝑀 | 𝑁 . Using the rest of the findings above, we may do
column manipulations and obtain

𝐻 = 𝛼1
©«

1 0 0
𝛽1
𝛼1

𝛽2
𝛼1

0
𝛾1
𝛼1

𝛾2
𝛼1

𝛾3
𝛼1

ª®®¬ = 𝛼1
©«
1

1
𝑀

ª®¬𝑈 ′,

with𝑈 ′ ∈ SL3(Z). Thus 𝐿 = 𝐻𝐿1 = 𝐿𝑀 up to Q>0 scalars.

Proof of Theorem 2.4. Let 𝑔 ∈ GL+
3 (Q) such that 𝑔−1Γ0(𝑁)𝑔 = Γ0(𝑁). Since

Γ0(𝑁) fixes the lattices 𝐿𝑀 for all divisors 𝑀 of 𝑁 , we find that Γ0(𝑁) must
also fix the lattices 𝑔𝐿𝑀 for 𝑀 | 𝑁 . By the previous lemma, for each divisor 𝑀
of 𝑁 there is a rational number 𝑞𝑀 and a divisor 𝑓 (𝑀) | 𝑁 such that

𝑔𝐿𝑀 = 𝑞𝑀𝐿 𝑓 (𝑀)

for all 𝑀 | 𝑁 .
By the definition of 𝐿𝑀 and using the fact that Stab(𝐿1) = SL3(Z), we can

deduce that

𝑞−1
𝑀

©«
1

1
𝑓 (𝑀)−1

ª®¬ · 𝑔 · ©«
1

1
𝑀

ª®¬ ∈ SL3(Z), (2.4.1)

for all 𝑀|𝑁 .
Rescaling 𝑔 by 𝑞1 ∈ Q we may assume that 𝑞1 = 1. Taking 𝑀 = 1 in

(2.4.1) and applying determinants, we deduce that det(𝑔) = 𝑓 (1). Applying
determinants to all other equations, we find that

𝑞3
𝑀 =

𝑓 (1)𝑀
𝑓 (𝑀) .
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In particular, for 𝑀 = 𝑁 , we have 𝑞3
𝑁
𝑓 (𝑁) = 𝑁 𝑓 (1). Since 𝑓 (𝑁) | 𝑁 , we must

have 𝑞𝑁 ∈ Z.
Let us make (2.4.1) more explicit. Taking 𝑀 = 1, we have

𝑔 =
©«

∗ ∗ ∗
∗ ∗ ∗

𝑓 (1)∗ 𝑓 (1)∗ 𝑓 (1)∗
ª®¬ ,

where ∗ denotes unknown integers. In particular, the last column of 𝑔 is integral.
If we now take 𝑀 = 𝑁 , we have

𝑔 =
©«

𝑞𝑁∗ 𝑞𝑁∗ ∗
𝑞𝑁∗ 𝑞𝑁∗ ∗

𝑞𝑁 𝑓 (𝑁)∗ 𝑞𝑁 𝑓 (𝑁)∗ ∗
ª®¬ .

Using the properties of the determinant and that ∗ denotes integers, we deduce
that 𝑞2

𝑁
|det(𝑔) = 𝑓 (1).

Let 𝑓 (1) = 𝑞2
𝑁
𝑘 for some 𝑘 ∈ Z. Now the last row of 𝑔 is divisible by 𝑞2

𝑁
𝑘

and the first two columns are divisible by 𝑞𝑁 . By the same method we infer
that 𝑞𝑁 𝑘 · 𝑞𝑁 · 𝑞𝑁 = 𝑞3

𝑁
𝑘 divides det(𝑔) = 𝑓 (1) = 𝑞2

𝑁
𝑘. Therefore 𝑞𝑁 = 1,

which implies that 𝑓 (𝑁) = 𝑁 𝑓 (1). Since 𝑓 (𝑁) | 𝑁 , it follows that 𝑓 (1) = 1 and
𝑓 (𝑁) = 𝑁 . Putting everything together, it follows that 𝑔 ∈ Γ0(𝑁).

Remark 2.4.2. The case 𝑛 > 3 can be done similarly. In essence, what makes the
case 𝑛 > 2 differ from 𝑛 = 2 is the imbalance between the number of columns
with divisibility conditions and the number of rows with such conditions.
This leads to the different exponents of 𝑞𝑁 in the proof and ultimately to the
triviality of the solutions to our equations.

Theorem 2.3 on the normaliser of Γ0(𝑁) in the real group PGL𝑛(R) now
follows as a corollary to Theorem 2.4.

Proof of Theorem 2.3. We use the results of [Bor66], which imply that the norm-
aliser of Γ0(𝑁), being commensurable with the arithmetic group PGL𝑛(Z), lies
in PGL𝑛(Q).

2.4.2 A different perspective

We have seen in the last section that 𝑛 = 2 is singular in the sequence of families
Γ0(𝑁) ≤ SL𝑛(Z) of congruence subgroups. To arrive at a general definition of
Atkin-Lehner operators, it is useful to note another way in which the group
PGL2(R) is distinguished, as described below.

An important automorphism of matrices in SL𝑛(R) is the map 𝑔 ↦→ 𝑔−𝑇 ,
sending a matrix to its inverse transpose. As already noted in the present
paper, this map sends a lattice 𝐿𝑔 to its dual, but is also used to define the dual
form of an automorphic form for SL𝑛(Z) (see section 9.2 in [Gol06]) or also the
contragredient representation of a GL(𝑛) automorphic representation.
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For PGL(2), dual forms are not commonly mentioned because this auto-
morphism is, in fact, inner in this case. Indeed, if we take

𝑤 =

(
−1

1

)
to be the non-trivial Weyl element, then we easily compute that

𝑤𝑔−𝑇𝑤−1 = − 1
det(𝑔) 𝑔. (2.4.2)

Thus, the map 𝑧 ↦→ 𝑧−𝑇 induces the identity on PGL2(Z)\PGL2(R)/PO(2).
We can artificially introduce the dual map into the theory of Atkin-Lehner

operators. For instance, one could write the Fricke involution𝑊𝑁 as

𝑊𝑁 𝑓 (𝑧) = 𝑓

((
−1

𝑁

)
𝑧

)
= 𝑓

((
−1

𝑁

)
𝑤𝑧−𝑇𝑤

)
= 𝑓

((
1

𝑁

)
𝑧−𝑇

)
.

Though slightly cumbersome in rank 1, this approach leads to the right
definition of Fricke involutions for 𝑛 > 2.

Let 𝑔 ∈ GL𝑛(R) such that

𝑔−1Γ0(𝑁)𝑔 = Γ0(𝑁)𝑇 . (2.4.3)

Then the map 𝑓 (𝑧) ↦→ 𝑓 (𝑔𝑧−𝑇) is an operator on the space of automorphic
forms for Γ0(𝑁), which we call by definition an Atkin-Lehner operator. As in the
previous example, all Atkin-Lehner operators for 𝑛 = 2 can be interpreted as
above. More precisely, taking a matrix in the normaliser of Γ0(𝑁) ≤ SL2(R)
and multiplying from the right by the non-trivial Weyl element gives a matrix
𝑔 satisfying (2.4.3).

We now provide an example of Atkin-Lehner operators for all 𝑛. The
author was informed that Gergely Harcos has also, independently, found an
example in the case 𝑛 = 3.

Definition 1. Let
𝐴𝑁 = 𝑁−1/𝑛 diag(1, . . . , 1, 𝑁)

and define the Fricke involution𝑊𝑁 : 𝐿2(𝑋𝑛(𝑁)) −→ 𝐿2(𝑋𝑛(𝑁)) as

𝑊𝑁𝜙(𝑧) = 𝜙(𝐴𝑁 · 𝑧−𝑇).

We often also refer to the Fricke involution at the group level and denote

𝑧′ := 𝐴𝑁 · 𝑧−𝑇 .

It is easy to check that 𝐴𝑁 satisfies (2.4.3). The operator defined above is
obviously an involution and the expected properties hold.
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Lemma 2.4.3. The Fricke involution𝑊𝑁 preserves the space of cuspidal newforms
and is self-adjoint. If 𝑇𝑔 is the Hecke operator associated to the coset Γ0(𝑁)𝑔Γ0(𝑁),
where (det(𝑔), 𝑁) = 1, then

𝑇𝑔𝑊𝑁 =𝑊𝑁𝑇
∗
𝑔 .

If an automorphic form 𝜙 has spectral parameters (𝜇1 , . . . , 𝜇𝑛), then 𝑊𝑁𝜙 has
parameters (−𝜇𝑛 , . . . ,−𝜇1).

Proof. We first prove that 𝑇𝑔𝑊𝑁 = 𝑊𝑁𝑇
∗
𝑔 . By a variant of the Smith normal

form, we may assume that 𝑔 is diagonal and by a variant of the transposition
anti-automorphism for Γ0(𝑁) (generalising Lemma 4.5.2 and Theorem 4.5.3 in
[Miy89], we may assume that there are matrices 𝛼𝑖 , 𝑖 = 1, . . . , 𝑘, for some 𝑘,
such that

Γ0(𝑁)𝑔Γ0(𝑁) =
⋃
𝑖

Γ0(𝑁)𝛼𝑖 =
⋃
𝑖

𝛼𝑖Γ0(𝑁).

Then by definition we have

𝑇𝑔𝑊𝑁 𝑓 (𝑧) =
∑
𝑖

𝑊𝑁 𝑓 (𝛼𝑖𝑧) =
∑
𝑖

𝑓 (𝐴𝑁 · 𝛼−𝑇
𝑖 𝑧−𝑇) =∑

𝑖

𝑓 (𝛽𝑖 · 𝐴𝑁 · 𝑧−𝑇) =𝑊𝑁

∑
𝑖

𝑓 (𝛽𝑖𝑧), (2.4.4)

where 𝛽𝑖 = 𝐴𝑁𝛼−𝑇
𝑖
𝐴−1
𝑁

. The proof is finished by showing that
⋃
𝑖 Γ0(𝑁)𝛽𝑖 =

Γ0(𝑁)𝑔−1Γ0(𝑁), since this double coset corresponds to 𝑇∗
𝑔 (s. [Gol06, Thm.

9.6.3]. Indeed, ⋃
𝑖

Γ0(𝑁)𝛽𝑖 =
⋃
𝑖

Γ0(𝑁)𝑊𝑁𝛼
−𝑇
𝑖 𝐴−1

𝑁

=

⋃
𝑖

𝐴𝑁Γ0(𝑁)𝑇𝐴−1
𝑁 𝐴𝑁𝛼

−𝑇
𝑖 𝐴−1

𝑁

= 𝐴𝑁

[⋃
𝑖

Γ0(𝑁)𝛼𝑖

]−𝑇
𝐴−1
𝑁

= 𝐴𝑁Γ0(𝑁)𝑇 𝑔−1Γ0(𝑁)𝑇𝐴−1
𝑁

= Γ0(𝑁)𝑔−1Γ0(𝑁).

Here we made use of fundamental property (2.4.3) of 𝐴𝑁 and of the fact that
𝑔 is diagonal, thus commuting with 𝐴𝑁 .

Next, we prove that 𝑊𝑁 is self-adjoint. This can easily be seen by using
a known fact about the dual forms for SL𝑛(Z). Namely, the map 𝑓 (𝑧) ↦→
𝑓 (𝑤𝑧−𝑇𝑤−1), where 𝑤 is the long Weyl element, is self-adjoint (one can
compute directly in explicit coordinates given in [Gol06], Proposition 9.2.1 or
Proposition 6.3.1). We can interpret the Fricke involution as

𝑊𝑁 𝑓 (𝑧) = 𝑓 (𝑚𝑤𝑧−𝑇𝑤−1),
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where 𝑚 = 𝐴𝑁𝑤
−1, that is, as the composition of the dualising map above

with the left-action of 𝑚. Since the measure on H𝑛 is GL𝑛(R)-invariant, we
can make the same explicit computations and change of coordinates as for
the dualising map. Since 𝐴𝑁 is diagonal, we easily deduce the conclusion
𝑊 ∗
𝑁
=𝑊𝑁 . Moreover, this interpretation of the Fricke involution and [BHM20,

(45)] also prove the statement about the spectral parameters of 𝜙.
To prove cuspidality it is best to work adelically, though this can be reduced

again to noting the relation between𝑊𝑁 and the dualising map. Namely, the
form 𝑊𝑁𝜙 generates the contragredient of the representation generated by
𝜙, which is known to be cuspidal (see e.g. [Bum97, Prop. 3.3.4]). From this
perspective, it is also easy to see that 𝑊𝑁𝜙 is a newform. In the interest of
brevity, we leave out the details of adelisation.

In this interpretation of Atkin-Lehner operators, the group structure
coming from the normaliser is not obvious any more. Indeed, using (2.4.3),
we cannot even recover the identity for 𝑛 > 2. Finding an even more general
definition proves difficult, since the available types of automorphisms on
invertible matrices are scarce.

As explained in [McD78], all automorphisms in the case 𝑛 > 2 are con-
structed out of inner automorphisms, radial automorphisms, and the inverse-
transpose automorphism. Inner automorphisms cannot contribute, since we
have proved that the normaliser of Γ0(𝑁) is trivial; radial automorphisms
are trivial in our context, since we consider only automorphic forms that are
invariant under the centre of GL𝑛(R); and the inverse-transpose automorphism
is precisely the basis for the definition given in this note.

2.4.3 Uniqueness of the Fricke involution

The theory of Atkin-Lehner operators for Γ0(𝑁) shows some weaknesses
already in the well-understood case 𝑛 = 2. Indeed, one can only define Atkin-
Lehner operators for divisors 𝑀 of the level 𝑁 , such that 𝑀 and 𝑁/𝑀 are
coprime. More precisely, there are no operators induced by matrices with
determinant equal 𝑀 | 𝑁 , such that (𝑀, 𝑁/𝑀) ≠ 1 (see [AL70, p. 138]).

This phenomenon creates difficulties in applications when considering
powerful levels, as already noted in the historical context of the sup-norm
problem. In the present section, we see that these difficulties only get more
problematic in higher rank (see Remark 2.4.5). In fact, the only Atkin-Lehner
operator for 𝑛 > 2, according to our definition, is the Fricke involution.

Proposition 2.4.4. Let 𝑔 ∈ GL+
𝑛 (Q) satisfy 𝑔−1Γ0(𝑁)𝑔 = Γ0(𝑁)𝑇 . Then, after

scaling by a suitable rational number, 𝑔 is integral, the last row and the last column of
𝑔 are divisible by 𝑁 , and det(𝑔) = 𝑁 . Equivalently,

𝑔 ∈ Q>0 · Γ0(𝑁)diag(1, . . . , 1, 𝑁).



CHAPTER 2. THE SUP-NORM OF NEWFORMS 46

Proof. We apply the same ideas as in the proof of Theorem 2.4. Again the proof
is done for 𝑛 = 3, merely for simplicity and clarity. One can check that Γ0(𝑁)𝑇
stabilises the lattices

𝐿𝑀−1 = ⟨𝑒1 , 𝑒2 , 𝑀−1𝑒3⟩ = diag(1, 1, 𝑀−1)𝐿1

for all divisors 𝑀 | 𝑁 . It follows that Γ0(𝑁) must stabilise (up to scalars) the
lattices 𝑔𝐿𝑀−1 .

By Lemma 2.4.1 determining the fixed points of Γ0(𝑁), we have

𝑔𝐿𝑀−1 = 𝑞𝑀𝐿 𝑓 (𝑀) ,

with 𝑓 (𝑀) | 𝑁 . We normalise 𝑔 by a rational number so that 𝑞1 = 1. The
equations above imply that

𝑔 ∈ 𝑞𝑀 diag(1, 1, 𝑓 (𝑀)) SL3(Z)diag(1, 1, 𝑀), (2.4.5)

using that the stabiliser of 𝐿1 is SL3(Z). Let us take determinants and deduce
that

det 𝑔 = 𝑞3
𝑀 · 𝑓 (𝑀) ·𝑀. (2.4.6)

By our assumption, det 𝑔 = 𝑓 (1).
Take 𝑀 = 𝑁 in (2.4.6) and note that

𝑞−3
𝑁 =

𝑓 (𝑁)𝑁
𝑓 (1) .

Since 𝑓 (1) | 𝑁 , we deduce that 𝑞−3
𝑁

∈ Z, so 𝑑 := 𝑞−1
𝑁

∈ Z. Using this notation
we have 𝑑3 𝑓 (1) = 𝑓 (𝑁)𝑁 .

Now we use the matrix equation for 𝑀 = 1 and 𝑀 = 𝑁 to find that

𝑔 =
©« 𝑓 (1)∗ 𝑓 (1)∗ 𝑓 (1)∗

ª®¬ and 𝑔 =

©«
𝑁
𝑑 ∗
𝑁
𝑑 ∗

𝑓 (𝑁)
𝑑 ∗ 𝑓 (𝑁)

𝑑 ∗ 𝑓 (𝑁)𝑁
𝑑 ∗,

ª®®®¬ (2.4.7)

where ∗ stands for unknown integers and the rest of the matrices are also filled
by integers.

We claim that
𝑑 | 𝑁.

Indeed, say there is a prime 𝑝 such that 𝑝𝑘 | 𝑑, but 𝑝𝑘 ∤ 𝑁 . Then 𝑝𝑘 ∤ 𝑓 (𝑁) since
𝑓 (𝑁) | 𝑁 , and thus 𝑝2𝑘 ∤ 𝑁 𝑓 (𝑁). But we know that 𝑑3 𝑓 (1) = 𝑁 𝑓 (𝑁), so we
must have 𝑝3𝑘 | 𝑁 𝑓 (𝑁), which is a contradiction unless 𝑘 = 0.

Now suppose 𝑝 is a prime dividing 𝑑 such that 𝑝𝑘 ∥ 𝑑 is the maximal
power of 𝑝 dividing 𝑑, with 𝑘 ⩾ 1. As in the last paragraph, it would follow
that 𝑝3𝑘 | 𝑓 (𝑁)𝑁 and 𝑝𝑘 | 𝑁 . Since 𝑓 (𝑁) | 𝑁 , we deduce that 𝑝 divides 𝑁/𝑑.
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We now use the divisibility conditions from the right of (2.4.7) for the last
column of 𝑔 and the divisibility conditions from the left of (2.4.7) for the first
two entries of the last row of 𝑔. Putting everything together we obtain

𝑔 =
©«

𝑝∗
𝑝∗

𝑓 (1)∗ 𝑓 (1)∗ 𝑓 (1)𝑝2∗
ª®¬ .

It would follow that 𝑓 (1)·𝑝 | det(𝑔) = 𝑓 (1), but this is a contradiction. Therefore
𝑑 = 1.

We infer that 𝑓 (1) = 𝑁 𝑓 (𝑁), so considering divisibility we must have
𝑓 (1) = 𝑁 and 𝑓 (𝑁) = 1. This implies that det 𝑔 = 𝑁 and that the last row and
column of 𝑔 are divisible by 𝑁 .

Thus 𝑔 is of the form

𝑔 =
©«
𝛼1 𝛼2 𝑁𝛼3
𝛽1 𝛽2 𝑁𝛽3
𝑁𝛾1 𝑁𝛾2 𝑁𝛾3

ª®¬
with 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ∈ Z. Since det(𝑔) = 𝑁 , it must be that 𝛾3 is coprime to 𝑁 and
that (𝛼3 , 𝛽3 , 𝛾3) = 1. In fact, put these together to have (𝑁𝛼3 , 𝑁𝛽3 , 𝛾3) = 1.

Now take 𝑥, 𝑦, 𝑧 ∈ Z such that

𝑥𝑁𝛼3 + 𝑦𝑁𝛽3 + 𝑧𝛾3 = 1.

Then (𝑥𝑁, 𝑦𝑁, 𝑧) = 1, so we can find a matrix 𝑢 ∈ Γ0(𝑁) with last row equal to
(𝑥𝑁, 𝑦𝑁, 𝑧). It follows from the above that the entry in the lower right corner
of 𝑢 · 𝑔 is equal to 𝑁 . By doing row manipulations we can find 𝑢′ ∈ Γ0(𝑁) such
that

𝑢′𝑔 =
©«
∗ ∗ 0
∗ ∗ 0
𝑁∗ 𝑁∗ 𝑁

ª®¬ .
In this form, it is obvious that we can find another 𝑢′′ ∈ Γ0(𝑁) so that
𝑢′′𝑔 = diag(1, 1, 𝑁).

Remark 2.4.5. Let us note what changes in the proof in the case 𝑛 = 2 and
how this leads to the lack of Atkin-Lehner operators for powerful levels. In
the notation above, we would have the equation 𝑑2 𝑓 (1) = 𝑓 (𝑁)𝑁 , where the
exponent of 𝑑 is equal to 𝑛 in general. We can still prove that 𝑑 | 𝑁 , yet the
next paragraph in the proof differs slightly.

We suppose 𝑝 is a prime dividing 𝑑 such that 𝑝𝑘 ∥ 𝑑 is the maximal power
of 𝑝 dividing 𝑑, with 𝑘 ≥ 1. As in the proof above, we deduce that 𝑝2𝑘 | 𝑓 (𝑁)𝑁
and 𝑝𝑘 | 𝑁 . If we were to continue the proof as above and deduce that 𝑑 = 1,
we would need the step showing that 𝑝 divides 𝑁/𝑑. This is not true in this
case any more. For example, if 𝑁 is square free, then 𝑘 ≤ 1 and the claim in
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the step may not hold for certain choices of 𝑓 (𝑁). In fact, solving the matrix
equations eventually leads to the matrices found by Atkin and Lehner (after
suitably multiplying by the long Weyl element).

If 𝑁 is powerful, then we could have that a higher power of 𝑝 divides 𝑁 .
For certain choices of 𝑑, we can indeed deduce that 𝑝 | 𝑁/𝑑 and produce a
contradiction. These choices of 𝑑 correspond to divisors 𝑀 of 𝑁 , such that
(𝑀, 𝑁/𝑀) ≠ 1. Indeed, suppose that det(𝑔) = 𝑓 (1) =: 𝑀, 𝑝 | 𝑀 and 𝑝 | 𝑁/𝑀.
Then 𝑝 divides 𝑑 = 𝑓 (𝑁)𝑁/𝑀. If 𝑝𝑘 ∥ 𝑑, then applying the 𝑝-adic valuation to
𝑑2𝑀 = 𝑓 (𝑁)𝑁 and recalling that 𝑓 (𝑁) | 𝑁 shows that 𝑝 | 𝑁/𝑑. We proceed as
in the proof above and derive a contradiction. This shows that there are no
Atkin-Lehner operators for such divisors 𝑀 as above.

2.5 REDUCTION OF THE DOMAIN

After studying generalised Atkin-Lehner operators, we showcase their main
application in this section. More precisely, we study fundamental domains for
the action of these operators on 𝑋𝑛(𝑁). Though very natural at a geometric
level, we first note how this is relevant to the sup-norm problem.

The value of 𝜙(𝑧) is independent of which element in the orbit Γ0(𝑁) · 𝑧
we choose instead of 𝑧. Similarly, the number and shape modulo 𝑁 of the
matrices we are considering in the amplified pretrace formula in Proposition
2.3.3 is invariant under shifting by elements of Γ0(𝑁), which would merely
amount to conjugating 𝐻(𝑧, 𝑚, 𝑁).

Consider now the action of the Fricke involution 𝑊𝑁 (𝜙)(𝑧) = 𝜙(𝑧′). If
𝑌 ⊂ Γ0(𝑁) is a subset, we denote by 𝑌′ the image of 𝑌 under the map 𝑧 ↦→ 𝑧′.
It is clear that we obtain a bound for a Hecke-Maaß form 𝜙 on 𝑌 ∪ 𝑌′ if we
have a bound for both 𝜙 and𝑊𝑁 (𝜙) on the subset 𝑌.

Recall now that𝑊𝑁 (𝜙) has essentially the same properties as 𝜙 by Lemma
2.4.3. Since the amplifiers, Proposition 2.3.3 and Proposition 2.3.4, and the
Fourier bound, Proposition 2.7.1, apply similarly to both forms, we are free to
choose any representative in

Γ0(𝑁)𝑧 ∪ Γ0(𝑁)𝑧′

when attacking the counting problem.3
In this section we propose a system for making this selection of represent-

ative. In other words, we construct an approximate fundamental domain for
the action of Γ0(𝑁) and the Fricke involution, at least in the bulk. It can be seen
as a reduction theory with level structure, for which we often use the shorter
term Fricke reduction.

3Indeed, the implied constant depending on 𝜇 in the amplifier is also of the same size, as
the computation of spectral parameters in Lemma 2.4.3 shows.
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2.5.1 Two lattices

Throughout the following sections we assume that 𝑁 is a prime.
Recall that for 𝑧 ∈ SL𝑛(R) we write

𝑧′ := 𝐴𝑁 𝑧
−𝑇 = 𝑁−1/𝑛 diag(1, . . . , 1, 𝑁)𝑧−𝑇 .

We consider the lattices 𝐿𝑧 and 𝐿𝑧′ in the notation and terminology established
in Section 2.2. Note that both lattices have determinant 1. We define the sets

𝐴(𝑧) = {∥𝑒𝑛∥𝛾𝑧 | 𝛾 ∈ Γ0(𝑁)},
𝐵(𝑧) = {∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝛾𝑧 | 𝛾 ∈ Γ0(𝑁)}.

In the following paragaphs we show how the union of 𝐴(𝑧), 𝐵(𝑧), 𝐴(𝑧′), 𝐵(𝑧′)
provides the lengths of all primitive vectors in 𝐿𝑧 , 𝐿𝑧′, and their duals.

First, we claim that the union of lengths

{∥𝑒𝑛∥𝛾𝑧 | 𝛾 ∈ Γ0(𝑁)} ∪ {∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝛾𝑧′ | 𝛾 ∈ Γ0(𝑁)}

exhausts the lengths of all primitive vectors in 𝐿𝑧 . For this we use the fact that
any primitive vector in Z𝑛 is the last row (in fact, any row or any column) of
some matrix in SL𝑛(Z). Consequently, the vectors 𝑒𝑛𝛾 give all primitive vectors
in 𝑁Z× · · · × 𝑁Z×Z in the lattice 𝐿𝑧 .

For the second set, note using Lemma 2.2.1 that

∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝛾𝑧′ = ∥𝑒1∥𝛾−𝑇𝐴−1
𝑁
𝑧 = 𝑁1/𝑛 ∥(𝑎1 , . . . , 𝑎𝑛)∥𝑧 , (2.5.1)

where (𝑎1 , . . . , 𝑎𝑛−1 , 𝑁𝑎𝑛) is the top row of 𝛾−𝑇 . We prove in Lemma 2.5.1
below that we obtain this way all primitive vectors (𝑎1 , . . . , 𝑎𝑛) in 𝐿𝑧 , for which

gcd(gcd(𝑎1 , . . . , 𝑎𝑛−1), 𝑁) = 1.

Since 𝑁 is prime, the greatest common divisor of gcd(𝑎1 , . . . , 𝑎𝑛−1) and 𝑁 can
only be 1 or 𝑁 , and thus, considering the paragraph above we have exhausted
all primitive vectors in 𝐿𝑧 .

Lemma 2.5.1. For 𝑁 prime, if 𝑣 = (𝑎1 , . . . , 𝑎𝑛−1 , 𝑁𝑎𝑛) ∈ Z𝑛 is a primitive vector,
then there is 𝛾 ∈ Γ0(𝑁) such that 𝑣 is the first row of 𝛾𝑇 .

Proof. Let 𝑔 ∈ SL𝑛(Z) be any matrix with first row 𝑣. Multiplying 𝑔 from the
left by block matrices of the form (

1
ℎ

)
,

where ℎ ∈ SL𝑛−1(Z), leaves the first row invariant. We shall inductively apply
such row operations on 𝑔 to make its last column be of the form (𝑐1 , . . . , 𝑐𝑛),
where 𝑐1 = 𝑁𝑎𝑛 and 𝑁 divides 𝑐1 , . . . , 𝑐𝑛−1.
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Indeed, if 𝑁 | 𝑐𝑖 for any 𝑖 ∈ {2, . . . , 𝑛}, then we can permute rows to
assume that 𝑁 | 𝑐2. Otherwise we can assume that gcd(𝑁, 𝑐3) = 1. Let 𝑐3 be
any representative of the inverse of 𝑐3 modulo 𝑁 . Bézout’s lemma provides a
matrix ℎ′ ∈ SL2(Z) with top row (𝑁, 𝑐3). Using ℎ of the form

ℎ =

(
ℎ′

1𝑛−3

)
,

as above, we may now assume that 𝑐2 ≡ 1 modulo 𝑁 . Another transformation
of the same type, where ℎ′ now has top row (1,−𝑐3), allows us to assume that
𝑁 | 𝑐2. We conclude by induction.

Next, the union of lengths

{∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝛾𝑧 | 𝛾 ∈ Γ0(𝑁)} ∪ {∥𝑒𝑛∥𝛾𝑧′ | 𝛾 ∈ Γ0(𝑁)}

exhausts the lengths of all primitive vectors in 𝐿∗𝑧 = 𝐿𝑧−𝑇 . Indeed, Lemma 2.2.1
gives that

∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝛾𝑧 = ∥𝑒1∥𝛾−𝑇 𝑧−𝑇 = ∥(𝑎1 , . . . 𝑎𝑛−1 , 𝑁𝑎𝑛)∥𝑧−𝑇 , (2.5.2)

where (𝑎1 , . . . , 𝑁𝑎𝑛) is the first row of 𝛾−𝑇 . As above, we obtain this way all
primitive vectors in Z𝑛−1 × 𝑁Z in the lattice 𝐿𝑧−𝑇 . Furthermore,

∥𝑒𝑛∥𝛾𝐴𝑁 𝑧−𝑇 = 𝑁1−1/𝑛 ∥(𝑎1 , . . . , 𝑎𝑛)∥𝑧−𝑇 , (2.5.3)

for (𝑎1 , . . . , 𝑎𝑛) primitive with gcd(𝑎𝑛 , 𝑁) = 1. Since 𝑁 is prime, this shows the
claim.

The above considerations are collected for an overview in Table 2.1. Each
𝐿𝑧 𝐴(𝑧) 𝑁−1/𝑛 · 𝐵(𝑧′)

𝐿∗𝑧 𝑁−1+1/𝑛 · 𝐴(𝑧′) 𝐵(𝑧)

𝐿𝑧′ 𝐴(𝑧′) 𝑁−1/𝑛 · 𝐵(𝑧)

𝐿∗𝑧′ 𝑁−1+1/𝑛 · 𝐴(𝑧) 𝐵(𝑧′)

Table 2.1: Lattices and sets of lengths of primitive vectors.

row corresponds to a lattice and the union of the two sets in that row is
the set of the lengths of all primitive vectors in the corresponding lattice. By
multiplication of a set by a scalar we mean multiplication of each element
in the set by the given scalar. We use here that 𝑧 ↦→ 𝑧′ is an involution on
unimodular lattices.

2.5.2 Fricke reduction

Let us consider minima of the lattices in the previous section. Write

𝛼(𝑧) = min𝐴(𝑧), 𝛽(𝑧) = min 𝐵(𝑧).
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As in Table 2.1, the minimal non-zero length in the lattice 𝐿𝑧 is found either in
𝐴(𝑧), equal in this case to 𝛼(𝑧), or in 𝐵(𝑧′), equal to 𝑁−1/𝑛𝛽(𝑧′).

More generally, let 𝑥 be any of the letters 𝛼 or 𝛽. Let 𝐿 be any of the lattices
𝐿𝑧 , 𝐿𝑧′, 𝐿∗𝑧 , 𝐿∗𝑧′. Then the minimal length in 𝐿 is an 𝑥-expression if it is of
the form 𝑁𝜂𝑥(𝑤), where 𝜂 is a non-positive number and 𝑤 is either 𝑧 or 𝑧′.
From Table 2.1 and the discussion of that section, we see that there are only
two possibilities for each lattice, namely a unique 𝛼-expression or a unique
𝛽-expression.

Definition 2. Let 𝑋 and 𝑌 denote the Greek letters 𝐴 or 𝐵, and analogously
for their lowercase variants. We say that 𝑧 ∈ ℒ(𝑋,𝑌) if the smallest length
in 𝐿𝑧 is the unique 𝑥-expression and the smallest length in 𝐿∗𝑧 is the unique
𝑦-expression. Similarly, 𝑧 ∈ ℒ′(𝑋,𝑌) if the smallest lengths in 𝐿𝑧′ and 𝐿∗𝑧′ are
the 𝑥-expression and the 𝑦-expression, respectively.

Example 1. If 𝑧 ∈ ℒ(𝐵, 𝐴), then the smallest length in 𝐿𝑧 is given by 𝑁−1/𝑛𝛽(𝑧′)
and the smallest length in 𝐿∗𝑧 is given by 𝑁−1+1/𝑛𝛼(𝑧′).

Let 𝑧 ∈ H. For the study of the sup-norm and our counting problem, we
are allowed to choose any conjugate of 𝑧 in the orbit Γ0(𝑁) · 𝑧 and also switch
between 𝑧 and 𝑧′, as explained at the beginning of Section 2.5. Now it is clear
by construction that every 𝑧 is contained in some ℒ(𝑋,𝑌). We then make the
choice of conjugate to obtain a well-positioned 𝑧, where we have control over
its successive minima and Iwasawa coordinates, based on which set ℒ(𝑋,𝑌)
contains 𝑧.

2.5.2.1 case i

Let
𝑧 ∈

⋃
𝑋∈{𝐴,𝐵}

ℒ(𝐴, 𝑋) ∪ ℒ′(𝐴, 𝑋).

By switching between 𝑧 and 𝑧′ if needed, we can assume that 𝑧 ∈ ℒ(𝐴, 𝑋), for
some 𝑋 ∈ {𝐴, 𝐵}. In this case, the minimal length in 𝐿𝑧 is 𝛼(𝑧). Shifting 𝑧 by
𝛾 ∈ Γ0(𝑁) if needed, we assume that 𝛼(𝑧) = ∥𝑒𝑛∥𝑧 . In Iwasawa coordinates
𝑧 = 𝑛(𝑥) · 𝑎(𝑦) as in Section 2.2.3, we have 𝛼(𝑧) = 𝑑.

Let 𝛾 be of the form

𝛾 =

(
ℎ

1

)
∈ Γ0(𝑁),

where ℎ ∈ SL𝑛−1(Z). Note that 𝑒𝑛 ·𝛾 = 𝑒𝑛 , so we can make the same assumptions
about 𝛾𝑧 as about 𝑧 above. As in Remark 2.2.4, shifting by 𝛾 as above if needed,
we may now additionally assume that 𝑧 = 𝑛(𝑥)𝑎(𝑦) satisfies 𝑦𝑖 ≥

√
3/2 for

𝑖 = 2, . . . , 𝑛 − 1.
By Lemma 2.2.2, if 𝜆1 and 𝜆2 are the first two successive minima of 𝐿𝑧 ,

then the shortest length 𝑙 in
∧2 𝐿𝑧 satisfies

𝑙 ≍𝑛 𝜆1 · 𝜆2.
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In particular, 𝑙 ≫ 𝜆2
1. This implies that

𝑑2𝑦1 = ∥𝑒𝑛−1 ∧ 𝑒𝑛∥𝑧 ≫ 𝛼(𝑧)2 = 𝑑2.

We deduce that 𝑦1 ≫𝑛 1.4

2.5.2.2 case ii

Let

𝑧 ∈ [ℒ(𝐵, 𝐵) ∩ ℒ′(𝐵, 𝐴)] ∪ [ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐵)] ∪ [ℒ(𝐵, 𝐵) ∩ ℒ′(𝐵, 𝐵)].

Applying the Fricke involution if needed, we can assume that 𝑧 lies in ℒ′(𝐵, 𝐵)
and in ℒ(𝐵, ∗). Then the minimal length in 𝐿∗𝑧′ is given by 𝑏(𝑧′) and the minimal
length in 𝐿𝑧 is 𝑁−1/𝑛𝑏(𝑧′).

By Minkowski’s theorem, more precisely equation (2.2.2), applied to 𝐿∗𝑧′,
we find that 𝑏(𝑧′) ≪𝑛 1. This now implies that the minimal length in 𝐿𝑧 is
𝑁−1/𝑛𝑏(𝑧′) ≪ 𝑁−1/𝑛 .

2.5.2.3 case iii

Let
𝑧 ∈ ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐴).

Applying the Fricke involution if required, we may assume that 𝛼(𝑧′) ≤ 𝛼(𝑧).
Shifting 𝑧 = 𝑛(𝑥)𝑎(𝑦) by a suitable 𝛾 ∈ Γ0(𝑁) as in Case I, i.e. Section 2.5.2.1,
we also assume that 𝛼(𝑧) = ∥𝑒𝑛∥𝑧 = 𝑑 and that 𝑦𝑖 ≫ 1 for 𝑖 = 2, . . . , 𝑛 − 1.

Note now that the minimal lenght in 𝐿∗𝑧′ is 𝑁−1+1/𝑛𝛼(𝑧). Note also that 𝐿∗𝑧′
is the lattice corresponding to

𝑧′−𝑇 = 𝐴−1
𝑁 𝑧.

We now compute that

∥𝑒𝑛−1 ∧ 𝑒𝑛∥𝑧′−𝑇 = ∥𝑒𝑛−1 ∧ 𝑒𝑛∥𝐴−1
𝑁
𝑧 = 𝑁−1+2/𝑛𝑑2𝑦1.

Using Lemma 2.2.2, we deduce that the minimal lenght 𝑙 in
∧2 𝐿∗𝑧′ satisfies

𝑙 ≫ 𝜇2
1, where 𝜇1 is the first successive minimum of 𝐿∗𝑧′. Putting everything

together we arrive at

𝑁−1+2/𝑛𝑑2𝑦1 ≫ 𝑁−2+2/𝑛𝑑2 ,

which implies that 𝑦1 ≫𝑛 𝑁
−1.

4This can be viewed as a soft version of Hermite reduction, that is, reduction to a Siegel set.
Indeed, here we also take the last row to be the shortest vector and then use induction, as in the
classical proof of reduction.
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2.5.2.4 fricke reduction of points that reduce to a compactum

We summarise the cases described above in the context of points 𝑧 that reduce
to a fixed compact set Ω ⊂ H.

Proposition 2.5.2. Let 𝑧 ∈ H and let Ω ⊂ H be a compact set. For 𝑁 ≫Ω 1 prime,
large enough, there is

𝑤 ∈ {𝛾𝑧 | 𝛾 ∈ Γ0(𝑁)} ∪ {𝛾𝑧′ | 𝛾 ∈ Γ0(𝑁)},

where 𝑧′ = 𝐴𝑁 𝑧
−𝑇 , with Iwasawa coordinates 𝑤 = 𝑛(𝑥)𝑎(𝑦) which, if 𝑧 reduces to

Ω, satisfy either
𝑦𝑖 ≍Ω 1

for all 𝑖 = 1, . . . , 𝑛 − 1, in which case

𝑤 ∈
⋃

𝑋∈{𝐴,𝐵}
ℒ(𝐴, 𝑋) ∪ ℒ′(𝐴, 𝑋)

or
𝑦1 ≍Ω

1
𝑁

and 𝑦𝑖 ≍Ω 1

for 𝑖 = 2, . . . , 𝑛 − 1, in which case

𝑤 ∈ ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐴).

Proof. By Lemma 2.2.7, we eliminate Case II, since there the minimal length in
𝐿𝑧 is ≪ 𝑁−1/𝑛 .

In Case I we find 𝑤 as in the statement such that 𝑦𝑖 ≫𝑛 1 for all 𝑖 =
1, . . . , 𝑛 − 1. Thus 𝑤 lies in a Siegel set and Lemma 2.2.5 together with Lemma
2.2.7 implies that 𝑦𝑖 ≍𝑛,Ω 1 for all 𝑖.

In Case III we find 𝑤 such that 𝛼(𝑤′) ≤ 𝛼(𝑤), 𝑦1 ≫𝑛 𝑁
−1, and 𝑦𝑖 ≫ 1 for

𝑖 = 2, . . . , 𝑛 − 1. Since 𝑤 ∈ ℒ(𝐵, 𝐴), the minimal length in 𝐿∗𝑤 is 𝑁−1+1/𝑛𝛼(𝑤′)
and by Lemma 2.2.7 we deduce that 𝛼(𝑤′) ≫Ω 𝑁1−1/𝑛 . Since 𝛼(𝑤′) ≤ 𝛼(𝑤),
we also have that 𝛼(𝑤) ≫ 𝑁1−1/𝑛 .

Now 𝛼(𝑤) = ∥𝑒𝑛∥𝑧 = 𝑑. Writing out the definition of 𝑑, we see that

𝑑−𝑛 = 𝑦𝑛−1
1 · · · 𝑦𝑛−1 ≪ 𝑁−(𝑛−1).

Combining this with the bounds above for the 𝑦-coordinates, we deduce that
𝑦1 ≍ 𝑁−1 and 𝑦𝑖 ≍ 1 for 𝑖 = 2, . . . , 𝑛 − 1, where the implicit constants depend
on Ω.

2.6 COUNTING MATRICES

2.6.1 An overview

When applying the amplified pretrace formula, e.g. Proposition 2.3.4, we arrive
at the problem of counting matrices in 𝐻(𝑧, 𝑚, 𝑁). We give a brief overview of
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the counting strategy in the simplest case of 𝑛 = 2. The perspective taken in
this paper is new even in this case. We recall some ideas already introduced in
Section 2.1.3.1.

Let 𝑧 ∈ SL2(R), for which we assume the Iwasawa form

𝑧 =

(√
𝑦 𝑥/√𝑦

0 1/√𝑦

)
and let 𝛾 ∈ 𝐻(𝑧, 𝑚, 𝑁). The bound

𝑧−1𝛾𝑧 = 𝑂(𝑚1/2) (2.6.1)

implies the conditions

𝑒𝑖 · 𝛾𝑧 ∈ 𝐵(𝑚1/2 ∥𝑒𝑖 · 𝑧∥)

for 𝑖 = 1, 2, where 𝐵(𝑟) is a Euclidean ball of radius 𝑂(𝑟) around 0.
We assume now that 𝑧 lies in what we call the balanced bulk, as in

the second alternative in Proposition 2.5.2, meaning that 𝑧 reduces to some
compact Ω and 𝑦 ≍ 1/𝑁 . Let

𝑧𝑁 = diag(𝑁, 1) · 𝑧,

which defines a sublattice of index 𝑁 of 𝐿𝑧 . We prove in Lemma 2.6.1 that the
lattices defined by 𝑧, 𝑧′, and 𝑧𝑁 are balanced. That is to say that their respective
successive minima and covolume satisfy

𝜆1 ≍ 𝜆2 ≍
√

vol.

Notice also that

∥𝑒2∥𝑧 =
(0, 1/√𝑦) ≍

√
𝑁 ≍

√
vol(𝐿𝑧𝑁 ),

making 𝑒2 · 𝑧 one of the shortest vectors in 𝐿𝑧𝑁 .
This is helpful since we now count the possibilities for 𝑒2 · 𝛾, a vector in

the sublattice 𝑁Z× Z. We do this by applying Lemma 2.2.3, which counts
lattice points in balls. Since 𝑧𝑁 is balanced, the bound we obtain is roughly
the volume of the ball 𝐵(𝑚1/2 ∥𝑒2∥𝑧) divided by the covolume of the lattice 𝑧𝑁 .
This gives ≪ 𝑚 possibilities.

For 𝑒1 ·𝛾, we notice that ∥𝑒1∥𝑧 is equal to 𝑦+𝑥/𝑦 ≍ 1/𝑁+𝑁𝑥. Unfortunately,
if 𝑧 is a balanced lattice, one can compute that we must have a bound 𝑥 ≫ 1/

√
𝑁 .

Thus the norm above can be rather large. Even though 𝐿𝑧 is balanced, the size
of the ball would give a hopelessly large bound.

Fortunately, we notice that

𝑒1 · 𝑧 − 𝑥𝑒2 · 𝑧 = (√𝑦, 𝑥/√𝑦) − 𝑥(0, 1/√𝑦) = (√𝑦, 0),
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by the Iwasawa decomposition or the Gram-Schmidt process. The conditions
above can be combined to show that

𝑒1 · 𝛾𝑧 − 𝑥𝑒2 · 𝛾𝑧 ∈ 𝐵(𝑚1/2 (√𝑦, 0)).
Since 𝑦 ≍ 1/𝑁 , we see that if 𝑚 ≪ 𝑁1−𝜀, the ball we obtain has a small radius
of size 𝑜(1). Since 𝐿𝑧 is a balanced lattice, we can only have at most one lattice
point in such a small ball, regardless of its centre. For every vector 𝑒2 · 𝛾 fixed
as above, this leaves at most one possibility for 𝑒1 · 𝛾. Therefore, the second
row 𝑒2 · 𝛾 already fixes the whole matrix 𝛾.

This strategy gives a bound

#
𝑚⋃
𝑙=1

𝐻(𝑧, 𝑙, 𝑁) ≪ 𝑚

if 𝑚 is small enough in terms of 𝑁 . A glance at Proposition 2.3.4 shows that
this bound is insufficient to obtain a saving when averaging over square
determinants 𝑙 = 𝑝2𝑞2 and thus 𝑚 = 𝐿4, in the notation of the proposition.

To refine the process above, we only partially fix the second row of 𝛾. This
seems difficult to do in standard coordinates, that is, working with the exact
entries of 𝛾. Instead, we choose a reduced basis, 𝑣1 and 𝑣2, for the balanced
lattice 𝐿𝑧𝑁 . An upshot of Fricke reduction is that we can choose 𝑣2 = 𝑒2 · 𝑧 (we
already noticed above that 𝑒2 · 𝑧 is a shortest vector in 𝐿𝑧𝑁 ).

We now write 𝑒2 ·𝛾𝑧 ∈ 𝐿𝑧𝑁 in coordinates using 𝑣1 and 𝑣2. By our conditions
and the balancedness of the lattice, the coefficients for both basis vectors are
bounded by

√
𝑚. In a first step, we only choose the coefficient of 𝑣1, giving us√

𝑚 possibilities.
We now ask how many matrices 𝛾 have such a coefficient. For two such

matrices 𝛾1 , 𝛾2, the difference 𝛾1 − 𝛾2 would have last row equal to 𝑐 · 𝑒2 with
𝑐 ≪

√
𝑚. It would also satisfy (2.6.1). These two observations imply that the

strategy above applies to this difference. The principle that the last row fixes
the matrix now gives that 𝛾1 − 𝛾2 = 𝑐 · id2.

Applying the determinant to 𝛾1 = 𝛾2 + 𝑐 · id2 and assuming that 𝛾1 has a
square determinant imply that −𝑐 gives a solution to

𝜒𝛾2(𝑋) = 𝑌2.

We employ a theorem of Heath-Brown to count solutions to such equations
and obtain adequate bounds for the amplified pretrace formula in the non-
degenerate case.

The degenerate case is precisely when the characteristic polynomial of 𝛾2
is a square. This means that 𝛾2 is a parabolic matrix and therefore fixes a cusp.
For Γ0(𝑁) with 𝑁 prime, there are two such cusps and these are conjugated
by the Fricke involution. This allows us to assume that 𝛾2 fixes the cusp at
infinity and is therefore an upper triangular matrix, up to conjugation. The
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strategy above can be adapted slightly for us to apply, again, the principle that
the last row determines the matrix. In this case, the last row is the same as
that of a multiple of the identity matrix and we are done.

2.6.2 The iterative strategy

In this section we generalise the process described above for 𝑛 = 2.
Let 𝑧 = 𝑛(𝑥)𝑎(𝑦) ∈ SL𝑛(R) be a matrix in Iwasawa form. Let 𝛾 ∈ ℳ𝑛(Z, 𝑁)

with det 𝛾 = 𝑚 and
𝑧−1𝛾𝑧 = 𝑂(𝑚1/𝑛).

We can now multiply the previous equation with its transpose and obtain

𝑧−1 · 𝛾 · 𝑧 · 𝑧𝑇 · 𝛾𝑇 · 𝑧−𝑇 = 𝑂(𝑚2/𝑛). (2.6.2)

Notice now that 𝛾 · 𝑧 · 𝑧𝑇 · 𝛾𝑇 is the Gram matrix of the rows of 𝛾 with respect
to the scalar product defined by 𝑧.

Denote the rows of 𝛾 by 𝛾1 , . . . , 𝛾𝑛 , and denote the rows of 𝑛(𝑥)−1𝛾 by
𝑣1 , . . . , 𝑣𝑛 . We compute that

𝑧−1𝛾𝑧𝑧𝑇𝛾𝑇𝑧−𝑇 =

©«
∥𝑣1∥2

𝑧 · 𝑑−2
1 ⟨𝑣1 , 𝑣2⟩𝑧 · (𝑑1𝑑2)−1 . . . ⟨𝑣1 , 𝑣𝑛⟩𝑧 · (𝑑1𝑑𝑛)−1

∗ ∥𝑣2∥2
𝑧 · 𝑑−2

2 . . . ⟨𝑣2 , 𝑣𝑛⟩𝑧 · (𝑑2𝑑𝑛)−1

...
...

. . .
...

∗ ∗ . . . ∥𝑣𝑛∥2
𝑧 · 𝑑−2

𝑛

ª®®®®¬
,

where the matrix should be completed by noting that it is symmetric. Observe
now that the condition (2.6.2) reduces to

∥𝑣𝑖∥𝑧 ≪ 𝑚1/𝑛 · 𝑑𝑖 , (2.6.3)

for all 𝑖 = 1, . . . , 𝑛, since the off-diagonal conditions simply follow by the
Cauchy-Schwarz inequality.

The strategy for counting the number of matrices 𝛾 is to iteratively count
the number of possibilities for its rows. More precisely, we first count the
number of possible 𝛾𝑛 = 𝑣𝑛 by a lattice point counting argument, that is
Lemma 2.2.3, since 𝛾𝑛 ∈ Z𝑛 . For each such fixed possibility, we then count
the number of possible 𝛾𝑛−1 by using the condition on 𝑣𝑛−1 in (2.6.3). For this
observe that

𝑣𝑛−1 = 𝛾𝑛−1 − 𝜉 · 𝛾𝑛 ,
where 𝜉 ∈ R can be computed from the 𝑥-coordinates of 𝑧 (in fact, 𝜉 = 𝑥𝑛−1,𝑛).
Thus, having fixed 𝛾𝑛 , the condition can be interpreted as saying that 𝛾𝑛−1 is
a lattice point inside a ball with shifted centre. We can use that the bounds
in 2.2.3 are independent of the centre of the ball. In the results below, we
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ultimately choose 𝑚 small enough so that the ball can only contain one lattice
point.

We continue this process iteratively, using that 𝑛(𝑥)−1 is upper triangular
unipotent. We bound the number of 𝛾 by multiplying together the number of
possibilities for each row. As before, we only used the inequality det(𝛾) ≤ 𝑚

and therefore we cannot detect, at this point, the sparseness of the sequence of
determinants. This latter issue only shows up when using the unconditional
amplifier and is dealt with in the next section.

To get the point 𝑧 into a good position for applying the strategy above,
we make the reduction given by Proposition 2.5.2 and assume the second
alternative in the statement. In this case, we study the properties of all lattices
derived from 𝑧 relevant for this and the next sections. For the other alternative
we use a bound derived from the Whittaker expansion, for which we refer to
Section 2.7.1.

Definition 3. For any 𝑧 ∈ SL𝑛(R) define

𝑧𝑁 = diag(𝑁, . . . , 𝑁 , 1) · 𝑧.

Lemma 2.6.1. Let 𝑁 be a prime and let 𝑧 ∈ H reduce to a compactum Ω. Assume
that 𝑧 has Iwasawa coordinates

𝑦1 ≍Ω

1
𝑁

and 𝑦𝑖 ≍Ω 1

for 𝑖 = 2, . . . , 𝑛 − 1, with 𝑑 = 𝛼(𝑧) = ∥𝑒𝑛∥𝑧 and satisfies

𝑧 ∈ ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐴).

Then the successive minima of 𝑧 and 𝑧′ are all ≍Ω 1 and the successive minima of 𝑧𝑁
and (𝑧′)𝑁 are all ≍Ω 𝑁 (𝑛−1)/𝑛 .

Proof. Throughout this proof all implied constants are allowed to depend
on Ω and, implicitly, 𝑛. We call a lattice 𝐿 balanced if 𝜆1 ≍ 𝑑(𝐿)1/𝑛 , where
𝜆1 ≤ . . . ≤ 𝜆𝑛 are the successive minima of 𝐿. By Minkowski’s theorem (2.2.1),
generalising Lemma 2.2.7, this is equivalent to 𝜆𝑖 ≍ 𝑑(𝐿)1/𝑛 for all 𝑖 = 1, . . . , 𝑛.
This, together with Lemma 2.2.1 on the dual lattice and Lemma 2.2.2 on the
successive minima of exterior products, implies that 𝐿 is balanced if and only
if the dual 𝐿∗ is balanced. Note also that the property of being balanced is
invariant under scaling.

Computing the determinants, we thus aim to prove that 𝐿𝑧 , 𝐿𝑧′ , 𝐿𝑧𝑁 , 𝐿(𝑧′)𝑁
are balanced lattices. That 𝐿𝑧 is balanced is part of the assumption (see again
Lemma 2.2.7). We also compute from the Iwasawa coordinates and the fact
that det(𝑧) = 1 that

𝑑𝑛 ≍ 𝑁𝑛−1 = det(𝑧𝑁 ).
Now since 𝑧 ∈ ℒ′(𝐵, 𝐴), Table 2.1 shows that the first successive minimum

of 𝐿∗𝑧′ is equal to 𝑁−1+1/𝑛𝛼(𝑧) ≍ 1. Therefore 𝐿∗𝑧′ is balanced and so is 𝐿𝑧′.
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Next, compute explicitly that

(𝑧𝑁 )−𝑇 = 𝑁−1 diag(1, . . . , 1, 𝑁)𝑧−𝑇 = 𝑁−1+1/𝑛𝑧′.

By the above, it follows that 𝐿∗𝑧𝑁 is balanced and so is 𝐿𝑧𝑁 .
We finally note that

(𝑧′)𝑁 = 𝑁1−1/𝑛𝑧−𝑇

so the same reasoning implies that 𝐿(𝑧′)𝑁 is balanced.

The following is the main and simplest counting result of this paper and
implements the strategy discussed above.

Proposition 2.6.2. Let𝑁 be a prime and let 𝑧 ∈ H reduce to a compactum Ω. Assume
that 𝑧 has Iwasawa coordinates

𝑦1 ≍Ω

1
𝑁

and 𝑦𝑖 ≍Ω 1

for 𝑖 = 2, . . . , 𝑛 − 1, and 𝑑 = 𝛼(𝑧) = ∥𝑒𝑛∥𝑧 , and satisfies

𝑧 ∈ ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐴).

Then

|{𝛾 ∈ ℳ𝑛(Z, 𝑁) | det(𝛾) ≪ Λ𝑛 , 𝑧−1𝛾𝑧 = 𝑂(Λ)}| ≪𝑛,Ω Λ𝑛(1 +Λ𝑛/𝑁)𝑛−1.

Proof. The bottom row 𝑒𝑛 · 𝑧 has congruence conditions and thus lies in
the lattice corresponding to 𝑧𝑁 . By Lemma 2.6.1, this is a balanced lattice,
meaning that we can approximate all successive minima of 𝐿𝑧𝑁 by det(𝑧𝑁 )1/𝑛 =

𝑁 (𝑛−1)/𝑛 ≍ 𝑑. In fact, the proof of Lemma 2.6.1 shows that the minimum of 𝑧𝑁
is equal to the minimum of 𝑁1−1/𝑛(𝑧′)−𝑇 , which is 𝛼(𝑧) = 𝑑. Thus 𝑒𝑛𝑧𝑁 is a
vector of shortest length in 𝐿𝑧𝑁 .

Recall now the condition

∥𝛾𝑛∥𝑧 ≪ Λ𝑑𝑛 = Λ𝑑

from (2.6.3). By Lemma 2.2.3, there are at most

1 + Λ𝑑

𝑑
+ (Λ𝑑)2

𝑑2 + · · · + (Λ𝑑)𝑛
𝑑𝑛

≪𝑛 Λ𝑛

possibilities for the row 𝛾𝑛 = 𝑒𝑛 · 𝛾.
We continue bounding the number of possibilities for 𝛾𝑖 inductively, 𝑖 < 𝑛.

More precisely, we suppose that 𝛾𝑗 with 𝑖 < 𝑗 ≤ 𝑛 are fixed. Then, by using the
fact that 𝑛(𝑥)−1 is unipotent upper triangular in condition (2.6.3), the number
of possibilities left for 𝛾𝑖 is bounded by the number of lattice points in 𝐿𝑧 in a
ball of radius 𝐿 · 𝑑𝑖 with fixed centre determined by the 𝛾𝑗 , 𝑖 < 𝑗, and 𝑛(𝑥).
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Next, note that the successive minima of 𝐿𝑧 are all ≍𝑛,Ω 1, by Lemma 2.2.7.
Furthermore,

𝑑𝑛𝑖 = (𝑑𝑦1 · · · 𝑦𝑛−𝑖)𝑛 ≍𝑛,Ω 1/𝑁.
By Lemma 2.2.3, there are at most

≪𝑛,Ω 1 +Λ𝑑𝑖 + · · · + (Λ𝑑𝑖)𝑛 ≪𝑛,Ω 1 + Λ𝑛

𝑁

possibilities for 𝛾𝑖 .
Putting all bounds together, we bound the number of matrices 𝛾 by

≪𝑛,Ω Λ𝑛(1 +Λ𝑛/𝑁)𝑛−1.

Remark 2.6.3. The last part of the proof above shows that, as long as Λ is small
enough in terms of 𝑁 , the choice of last row of 𝛾 already determines the whole
matrix.5

2.6.3 Detecting determinants that are higher powers

The bound supplied by Proposition 2.6.2 is too weak to suffice in the uncondi-
tional amplifier, Proposition 2.3.4, where powers 𝜈 > 1 show up and introduce
sparseness into the average. Taking Remark 2.6.3 into consideration, we see
that the approach in the previous section is over-counting the possibilities for
the last row of 𝛾. Motivated by this observation, we refine the argument by
counting the lattice points 𝛾𝑛 only up to the contribution of the vector 𝑒𝑛 . This
latter contribution and the shape of the determinant (being a 𝜈-th power) give
rise to a diophantine equation that has the right amount of solutions in the
generic case. We then consider the degenerate case separately. To simplify the
latter, we eventually make the assumption that the degree 𝑛 is prime.

For talking about the non-degenerate case, denote by 𝜒𝛾(𝑋) = det(𝑋 ·
id𝑛 −𝛾) the characteristic polynomial of a matrix 𝛾. We call 𝛾 ∈ 𝑀𝑛(Q) non-
degenerate if the polynomials

(−1)𝑛𝜒𝛾(𝑋) − 𝑌𝜈 ∈ Q[𝑋,𝑌]
are irreducible over Q for all 1 ≤ 𝜈 ≤ 𝑛. Define

𝐻∗(𝑧, 𝑚, 𝑁) = {𝛾 ∈ 𝐻(𝑧, 𝑚, 𝑁) | 𝛾 non-degenerate}.
Proposition 2.6.4. Assume the same conditions as in Proposition 2.6.2. Additionally,
let 𝐿≪ 𝑁1/𝑛2−𝜀 and 𝑁 ≫Ω 1 be large enough. Then∑

𝑚≍𝐿𝑛
|𝐻∗(𝑧, 𝑚𝜈 , 𝑁)| ≪ 𝐿(𝑛−1)𝜈 · 𝐿1+𝜀

for any 1 ≤ 𝜈 ≤ 𝑛.
5We also remark that numerical experiments in dimension 𝑛 = 2 seem to indicate that the

bound we obtain for the possibilities for the last row might be sharp.
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Proof. Let 𝛾 ∈ 𝐻∗(𝑧, 𝑚𝑛 , 𝑁), 𝑚 ≍ 𝐿𝑛 , and consider again the number of
possibilities for the last row 𝛾𝑛 . For this, let 𝑏1 , . . . , 𝑏𝑛−1 , 𝑒𝑛𝑧 be a reduced basis
for 𝐿𝑧𝑁 (see Section 2.2.3 for the definition, which we apply to 𝑁−(𝑛−1)/𝑛𝑧𝑁 ∈
SL𝑛(R)). From the proof of Proposition 2.6.2, we note again that 𝑒𝑛 is a vector
of shortest length in 𝐿𝑧𝑁 , where

∥𝑒𝑛∥𝑧 = ∥𝑒𝑛∥𝑧𝑁 = 𝑑 ≍𝑛,Ω 𝑁 (𝑛−1)/𝑛 .

By Minkowski’s theorem, we also have ∥𝑏𝑖∥ ≍𝑛,Ω 𝑁 (𝑛−1)/𝑛 .
Now 𝛾𝑛 ∈ 𝐿𝑧𝑁 , so it can be written as

𝛾𝑛 =

𝑛−1∑
𝑖=1

𝑎𝑖𝑏𝑖 + 𝑎𝑛𝑒𝑛𝑧

with 𝑎𝑖 ∈ Z. By Lemma 2.2.6 and recalling the condition ∥𝛾𝑛∥𝑧 ≪ 𝐿𝜈𝑑 from
(2.6.3), we deduce that 𝑎𝑖 ≪ 𝐿𝜈, for all 1 ≤ 𝑖 ≤ 𝑛.

There are 𝐿(𝑛−1)𝜈 possibilities for 𝑎1 , . . . , 𝑎𝑛−1. Choose any such combination
of coefficients and assume there exist 𝛾 ∈ 𝐻∗(𝑧, 𝑚𝜈 , 𝑁) and 𝛾′ ∈ 𝐻∗(𝑧, 𝑙𝜈 , 𝑁),
for 𝑚, 𝑙 ≍ 𝐿𝑛 , such that 𝛾𝑛 =

∑𝑛−1
𝑖=1 𝑎𝑖𝑏𝑖 + 𝑎𝑛𝑒𝑛𝑧 and

𝛾′
𝑛 − 𝛾𝑛 = 𝜆𝑒𝑛 .

Then 𝜆 ∈ Zand 𝜆 ≪ 𝐿𝜈. Observe also that the matrix 𝛾 − 𝛾′ satisfies the same
geometric conditions (2.6.3) as 𝛾 and 𝛾′, simply by the triangle inequality
(with a doubled implied constant, of course).

We now apply the same iterative process as in the proof of Proposition
2.6.2. We note however that, under the present conditions, each step yields at
most one possibility. Indeed, fix the last row of 𝛾 − 𝛾′, having the form 𝜆𝑒𝑛 ,
by fixing 𝜆 ≪ 𝐿𝜈. Next, the number of possibilities for the row (𝛾 − 𝛾′)𝑛−1 is
bounded by the number of 𝐿𝑧-lattice points in a ball of radius 𝐿𝜈 ·𝑁−1/𝑛 centred
at 𝑥𝑛−1,𝑛 · 𝜆𝑒𝑛𝑧, where 𝑥𝑛−1,𝑛 is one of the 𝑥-coordinates of 𝑧. By assumption,
the radius is bounded by 𝑁−𝜀. However, if 𝑁 is large enough, this is greater
than the first successive minimum of 𝑧, which is ≍Ω 1. There is thus only one
possible lattice point.

On the other hand, it is clear that the multiple 𝜆 · id𝑛 of the identity matrix
lies in the set 𝐻(𝑧,𝜆, 𝑁). Since 𝜆 ≪ 𝐿𝜈, we see that 𝜆𝑒𝑛−1 · 𝑧 satisfies the
condition of the lattice point above (again, condition (2.6.3)). Consequently, it
follows that

(𝛾 − 𝛾′)𝑛−1 = 𝜆 · 𝑒𝑛−1.

Iterating this argument and keeping in mind the computations in the proof of
Proposition 2.6.2, we deduce that

𝛾 − 𝛾′ = 𝜆 · id𝑛 .



CHAPTER 2. THE SUP-NORM OF NEWFORMS 61

It remains to count the possibilities for 𝜆. Considering the determinant of
𝛾′, we have

𝑙𝜈 = det(𝛾′) = det(𝛾 − 𝜆 · id𝑛) = (−1)𝑛𝜒𝛾(𝜆).
Therefore, (𝜆, 𝑙) ∈ Zare a solution to the equation

(−1)𝑛𝜒𝛾(𝑋) − 𝑌𝜈 = 0.

Since this polynomial is defined over Zand irreducible over Q by assumption,
we count the number of such solutions using Heath-Brown’s Theorem 3 in
[HB02]. In the notation there, after homogenising the polynomial, we set
𝐵1 = 𝐿𝜈 for the bound on 𝜆, then 𝐵2 = 𝐿𝑛 for the bound on 𝑙, and finally
𝐵3 = 1 for the bound on the additional variable. Then we compute 𝑇 = 𝐿𝑛𝜈

and 𝑉 = 𝐿𝜈+𝑛 . Heath-Brown’s result then gives the bound

𝑉1/𝑛+𝜀

𝑇1/𝑛2 = 𝐿1+𝜀

on the number of solutions we are considering. This bounds in particular the
number of possibilities for 𝜆 over all relevant determinants and so finishes the
proof.

We are now left with counting degenerate matrices. This is reminiscent of
treating the special case of parabolic matrices in [HT12, Lemma 2]. For this we
restrict to prime degrees, allowing for a clean classification of the degenerate
case.

Let 𝑛 ≥ 2 be prime. Since 𝜒𝛾 is a polynomial of degree 𝑛 over Q, a result of
Schinzel [Sch67] shows that

(−1)𝑛𝜒𝛾(𝑋) − 𝑌𝜈

is irreducible, unless 𝜈 = 𝑛 and

𝜒𝛾(𝑋) = 𝛼(𝑋 − 𝛽)𝑛

for 𝛼, 𝛽 ∈ Q. In the first case, it is irreducible overC if and only if it is irreducible
over Q. In the latter case, we have 𝛼 = 1 by normalisation and 𝛽𝑛 = det(𝛾).

The irreducibility criterion above and Proposition 2.6.4, by following its
proof again verbatim, imply the following bounds.

Corollary 2.6.5. Assume the same conditions as in Proposition 2.6.4 and, additionally,
let 𝑛 be prime. Then ∑

𝑚≍𝐿𝑛
|𝐻(𝑧, 𝑚𝜈 , 𝑁)| ≪ 𝐿(𝑛−1)𝜈 · 𝐿1+𝜀

for any 1 ≤ 𝜈 ≤ 𝑛 − 1.
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We have thus reduced the problem to counting matrices 𝛾 ∈ 𝐻(𝑧, 𝑚𝑛 , 𝑁)
for some 𝑚 ≍ 𝐿𝑛 , such that

𝜒𝛾(𝑋) = (𝑋 − 𝛽)𝑛 .

Since 𝛽 ∈ Q, it follows that 𝛽 = ±𝑚 ∈ Z (there is no sign for odd 𝑛). Denote the
subset of such matrices by 𝐻par(𝑧, 𝑚𝑛 , 𝑁).

The method of proof in Proposition 2.6.4 provides even more. We recall at
this point that the determinants 𝑚𝜈 appearing in the counting problem have a
particular shape, namely 𝑚 = 𝑝 · 𝑞𝑛−1, where 𝑝 and 𝑞 are primes of size 𝐿 (see
the amplifier in Proposition 2.3.4). We are thus averaging over a set of size 𝐿2.
However, we can consider the special case 𝑝 = 𝑞 to reduce this size.

Corollary 2.6.6. Assume the same conditions as in Corollary 2.6.5. Then∑
𝑝≍𝐿

|𝐻par(𝑧, 𝑝𝑛
2
, 𝑁)| ≪ 𝐿(𝑛−1)𝑛 · 𝐿.

Proof. We follow the proof of Proposition 2.6.4, but first we fix the determinant
𝑝𝑛

2 , where 𝑝 ≍ 𝐿. There are, of course, at most 𝐿 such determinants. Now
the number of choices for a potential last row of 𝛾 ∈ 𝐻par(𝑧, 𝑝𝑛

2
, 𝑁) up to the

contribution of 𝑒𝑛 , i.e. up to the last component, is bounded by 𝐿(𝑛−1)𝑛 . Choose
𝛾 and 𝛾′ two matrices in 𝐻par(𝑧, 𝑝𝑛

2
, 𝑁) with the same last row up to the last

component.
As in the proof of Proposition 2.6.4, we find that

𝛾 − 𝛾′ = 𝜆 · id𝑛 .

We apply again the determinant to this equation and obtain that

(𝜆 − 𝑝𝑛)𝑛 = 𝑝𝑛
2
.

It follows that there are only two possibilities for 𝜆 and this proves the
statement.

We observe that the actual average of size 𝐿2 would have given a bound of
the form 𝐿𝑛(𝑛−1) · 𝐿2, which is on the edge of what is needed for a saving. The
next section significantly refines the argument to treat this issue.

2.6.4 Counting at different cusps

Corollary 2.6.6 allows us now to reduce the problem further. We are now
counting matrices 𝛾 in the set⋃

𝑝,𝑞≍𝐿
𝑝≠𝑞

𝐻par(𝑧, (𝑝𝑞𝑛−1)𝑛 , 𝑁).
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By Theorem III.12 in [New72], there is ℎ ∈ SL𝑛(Z) such that

ℎ𝛾ℎ−1 =
©«
𝑚 ∗ ∗

. . . ∗
𝑚

ª®®¬ (2.6.4)

is upper triangular with 𝑚 on the diagonal. Indeed, 𝜒𝛾 splits into linear factors
and thus the blocks in [New72, Thm. III.12] are one dimensional.

In the simplest case, we could assume that ℎ ∈ Γ0(𝑁). The next lemma
shows that this is almost the same as assuming that ℎ = 1 and that 𝛾 has the
same last row as the identity matrix, in which case we apply the philosophy
from Remark 2.6.3, namely that the last row determines the matrix. However,
we remark here already that there are other possibilities for ℎ that correspond
to different cusps, as in Lemma 2.6.8 below, for which counting becomes more
difficult.

Lemma 2.6.7. Assume the same conditions as in Proposition 2.6.4 and let 𝛾 ∈
𝐻(𝑧, 𝑚𝑛 , 𝑁) or 𝛾 ∈ 𝐻(𝑧′, 𝑚𝑛 , 𝑁) for 𝑚 ≍ 𝐿𝑛 . If there exists ℎ ∈ Γ0(𝑁) such ℎ𝛾ℎ−1

has last row equal to 𝑚 · 𝑒𝑛 = (0, . . . , 0, 𝑚), then 𝛾 = 𝑚 · id𝑛 .

Proof. Assume that 𝛾 ∈ 𝐻(𝑧, 𝑚𝑛 , 𝑁). Since ℎ ∈ Γ0(𝑁), it is easy to see from the
definition that 𝛾 ∈ 𝐻(𝑧, 𝑚𝑛 , 𝑁) implies 𝜂 := ℎ𝛾ℎ−1 ∈ 𝐻(ℎ𝑧, 𝑚𝑛 , 𝑁). Consider
the Iwasawa coordinates of ℎ𝑧 = 𝑛(𝑥)𝑎(𝑦). Multiplying ℎ from the left by a
matrix of the form (

𝜉
1

)
∈ Γ0(𝑁)

with 𝜉 ∈ SL𝑛(Z), we may assume that 𝑦𝑖 ≫ 1 for 𝑖 = 2, . . . , 𝑛 − 1 (see Remark
2.2.4). Under such a modification, we may also still assume that the last row
𝑒𝑛𝜂 has the form (0, . . . , 0, 𝑚) = 𝑚 · 𝑒𝑛 .

To obtain from this bounds on the entries of 𝑎(𝑦) we note that, since
det(ℎ𝑧) = 1,

∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥ℎ𝑧 = (𝑑𝑦1 · · · 𝑦𝑛−1)−1 ≥ 𝛽(𝑧),
recalling the definition of 𝛽(𝑧) in Section 2.5.2 and that ℎ ∈ Γ0(𝑁). By assump-
tion, 𝑧 ∈ ℒ′(𝐵, 𝐴), which by Table 2.1 implies that 𝛽(𝑧) = 𝑁1/𝑛𝜆1 for 𝜆1 the
first successive minimum of 𝐿𝑧′ . Lemma 2.6.1 shows now that 𝛽(𝑧) ≍ 𝑁1/𝑛 . As
such, we have

𝑑𝑦1 ≪ 𝑑𝑦1𝑦2 ≪ . . . ≪ 𝑑𝑦1 · · · 𝑦𝑛−1 ≪ 𝑁−1/𝑛 .

This is now a similar situation in the proofs of the counting results
Proposition 2.6.2 and Proposition 2.6.4, except that 𝑑 might be large. However,
the last row of 𝜂 is already fixed to be 𝑚 · 𝑒𝑛 . As in Proposition 2.6.4, the
assumption 𝐿 ≪ 𝑁1/𝑛2−𝜀 and the bound above on the entries of 𝑎(𝑦) imply
that the last row of 𝜂 determines the whole matrix. Therefore, 𝜂 = 𝑚 · id𝑛 and
so, undoing conjugation, 𝛾 = 𝑚 · id𝑛 .
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The case 𝛾 ∈ 𝐻(𝑧′, 𝑚𝑛 , 𝑁) follows analogously. What changes is, for
instance, that 𝛽(𝑧′) = 𝑁1/𝑛𝜆1 for 𝜆1 the minimum of 𝐿𝑧 . We then continue by
using Lemma 2.6.1 again.

We investigate now the cusps ofΓ0(𝑁)with respect to the minimal parabolic.
Define therefore 𝑈𝑛(Z) to be the subgroup of SL𝑛(Z) of unipotent upper
triangular matrices, that is, with ones on the diagonal.

Let also𝑊𝑛 ≤ SL𝑛(Z) denote the subgroup of permutation matrices. We
call two such matrices equivalent if they have the same last row and denote by
𝑊𝑛 the set of equivalence classes. By considering SL𝑛−1(Z) embedded inside
Γ0(𝑁), it is easy to see that

𝑊𝑛 � Γ0(𝑁) ∩𝑊𝑛\𝑊𝑛 .

and note also that |𝑊𝑛| = 𝑛.

Lemma 2.6.8. Let 𝑁 be prime. Then any system of representatives for𝑊𝑛 is a system
of representatives for the double quotient

Γ0(𝑁)\ SL𝑛(Z)/𝑈𝑛(Z).

Proof. Let 𝜉 ∈ SL𝑛(Z) and let (𝑎1 , . . . , 𝑎𝑛) be the first column of 𝜉, a primitive
vector in Z𝑛 . First, we reduce 𝑎𝑛 to either 0 or 1 by acting from the left by Γ0(𝑁).

Indeed, assume that gcd(𝑎𝑛 , 𝑁) = 1. Then the vector (𝑁𝑎1 , . . . , 𝑁𝑎𝑛−1 , 𝑎𝑛)
is also primitive. Therefore there is a primitive (𝑏1 , . . . , 𝑏𝑛) ∈ Z𝑛 such that

𝑁𝑎1𝑏1 + . . . + 𝑁𝑎𝑛−1𝑏𝑛−1 + 𝑎𝑛𝑏𝑛 = 1.

From this it is clear that gcd(𝑁, 𝑏𝑛) = 1 so that (𝑁𝑏1 , . . . , 𝑁𝑏𝑛−1 , 𝑏𝑛) is primitive.
Let 𝛾 ∈ SL𝑛(Z) be a matrix with the latter as its last row. Then 𝛾 ∈ Γ0(𝑁) and
𝛾𝜉 has last row of the form (1, ∗, . . . , ∗).

Since 𝑁 is prime, negating the assumption above means that 𝑁 | 𝑎𝑛 . Now
let 𝑑 = gcd(𝑎1 , . . . , 𝑎𝑛−1). Then gcd(𝑎𝑛 , 𝑑) = 1 and there exists a primitive
vector (𝑏1 , . . . , 𝑏𝑛−1) such that

𝑏1𝑎1 + . . . 𝑏𝑛−1𝑎𝑛−1 = 𝑑.

Therefore
𝑛−1∑
𝑖=1

(𝑎𝑛𝑏𝑖) · 𝑎𝑖 + (−𝑑)𝑎𝑛 = 0.

The vector (𝑎𝑛𝑏1 , . . . , 𝑎𝑛𝑏𝑛−1 ,−𝑑) is primitive by the observations above, so
there is 𝛾 ∈ SL𝑛(Z) with this vector as its last row. Again, 𝛾 ∈ Γ0(𝑁) since
𝑁 | 𝑎𝑛 and the last row of 𝛾𝜉 has the form (0, ∗, . . . , ∗).

Assume now that 𝜉 has last row of the form (1, ∗, . . . , ∗). It is clear that we
can multiply 𝜉 from the right by a matrix in𝑈𝑛(Z) such that the resulting last
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row is simply (1, 0, . . . , 0). Call this new matrix 𝜉 again and take 𝑤 ∈ 𝑊𝑛 a
permutation matrix with the same last row (for instance the so-called long
Weyl element). In other words, 𝑒𝑛𝜉 = 𝑒𝑛𝑤, where 𝑒𝑛 is the 𝑛-th standard basis
vector (0, . . . , 0, 1). The matrix 𝑤𝜉−1 preserves 𝑒𝑛 so it must have 𝑒𝑛 as its last
row. In particular, 𝑤𝜉−1 ∈ Γ0(𝑁) and we are done in this case.

On the other hand, let 𝜉 have last row of the form (0, ∗, . . . , ∗). Using the
embedding of SL𝑛−1(Z) in the upper left corner of Γ0(𝑁), we may modify 𝜉 so
that its first column is of the form (1, 0, . . . , 0), by similar arguments. This now
allows an inductive procedure, considering the lower right 𝑛 − 1 × 𝑛 − 1 block
of 𝜉. We see that one can always reduce the last row of 𝜉 to be a standard basis
vector and the paragraph above shows how to obtain a permutation matrix
from 𝜉.

To check that no two such representatives in𝑊𝑛 produce the same double
coset is easy. For 𝑤1 , 𝑤2 ∈ 𝑊𝑛 , if 𝑤1 = 𝛾𝑤2𝑢 with 𝛾 ∈ Γ0(𝑁) and 𝑢 ∈ 𝑈𝑛(Z),
then 𝛾 = 𝑤1𝑢

−1𝑤2. One now computes the shape of 𝑈𝑛(Z) transformed
by permutation of rows and of columns. We leave out the details of this
argument.

Remark 2.6.9. We make the following simple observation that becomes very
useful in the arguments below. Let 𝑤𝑘 ∈𝑊𝑛 be a representative with last row
equal to 𝑒𝑘 . We can take 𝑤𝑛 = id𝑛 . We can also take 𝑤1 to be the long Weyl
element

𝑤1 =

©«

1
1

...

1
1

ª®®®®®®¬
with ones on the anti-diagonal. Finally, for any 𝑘 ≠ 1, we can choose the
representative 𝑤𝑘 to have first row (and thus also first column) equal to 𝑒1.

We finally state the main result for degenerate matrices below and recall the
additional condition on the determinantal divisors appearing in the amplifier,
Proposition 2.3.4.

Proposition 2.6.10. Assume the same conditions as in Corollary 2.6.5. For 𝑁 large
enough, the set of matrices 𝛾 possibly occurring in 𝐻par(𝑧, (𝑝𝑞𝑛−1)𝑛 , 𝑁) for some
primes 𝑝, 𝑞 ≍ 𝐿, 𝑝 ≠ 𝑞, satisfying additionally that

Δ𝑛−1(𝛾) = 𝑞(𝑛−1)(𝑛−2)

is empty.

It is perhaps useful at this point to give a brief overview of the proof.
We make a case distinction, based on the cusp classification above. If ℎ in
(2.6.4) corresponds to the identity 𝑤𝑛 , then we are done by Lemma 2.6.7. If
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ℎ corresponds to the long Weyl element 𝑤1, we apply the Fricke involution,
which effectively switches the cases 𝑤𝑛 and 𝑤1, and so the same lemma,
available for both 𝑧 and 𝑧′, finishes this case as well.

In fact, the Fricke involution generally exchanges the cases 𝑤𝑘 and 𝑤𝑛+1−𝑘 .

𝑤2 · · · 𝑤𝑛−1

𝑤1 𝑤𝑛𝑊𝑁

However, the usual counting argument, choosing vectors step-by-step from
the bottom of the matrix going upwards, seems difficult to implement in the
intermediate cases 1 < 𝑘 < 𝑛. It is here that the assumption 𝑝 ≠ 𝑞, together with
the seemingly harmless choice of representatives 𝑤𝑘 in Remark 2.6.9, comes
in. Indeed, the choice of representatives is akin to a very weak balancedness
assumption on the new, unknown basis for the lattice that appears in the
counting problem. This assumption implies that at least one element of the
superdiagonal of the upper triangular matrix in (2.6.4) is zero. Computing
Δ𝑛−1, this is enough to derive a contradiction to 𝑝 ≠ 𝑞.

Proof. Let 𝑚 = 𝑝𝑞𝑛−1. As in (2.6.4), there is ℎ ∈ SL𝑛(Z) such that ℎ𝛾ℎ−1 is
upper-triangular with diagonal (𝑚, . . . , 𝑚). By Lemma 2.6.8 we can write
ℎ−1 = 𝜎−1𝑤𝑢−1 with 𝜎 ∈ Γ0(𝑁), 𝑢 ∈ 𝑈𝑛(Z), and 𝑤 ∈𝑊𝑛 .

Next, conjugating by 𝑢, we easily see that

𝑤𝑇𝜎𝛾𝜎−1𝑤 =
©«
𝑚 ∗ ∗

. . . ∗
𝑚

ª®®¬ =: 𝜂 (2.6.5)

is also of the same form. Now if 𝑤 = 𝑤𝑛 = id𝑛 , meaning that the last row of 𝑤
is 𝑒𝑛 as in Remark 2.6.9, we are done by Lemma 2.6.7. The latter implies that
𝛾 = 𝑝𝑞𝑛−1 · id𝑛 , which does not have the required determinantal divisors and
leads to a contradiction.

If 𝑤 = 𝑤1 is the long Weyl element, we apply the Fricke involution. By
transposing the condition

𝑧−1𝛾𝑧 = 𝑂(𝑚).
we see that

𝐴𝑁 (𝜎𝛾𝜎−1)𝑇𝐴−1
𝑁

lies in 𝐻(�̃�𝑧′, 𝑚𝑛 , 𝑁) with some �̃� ∈ Γ0(𝑁).
Next, observe that

(𝜎𝛾𝜎−1)𝑇 = 𝑤𝜂𝑇𝑤𝑇

is again upper triangular. By Lemma 2.6.7, we deduce that

𝐴𝑁 (𝜎𝛾𝜎−1)𝑇𝐴−1
𝑁 = 𝑚 · id𝑛
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and thus 𝛾 = 𝑚 · id𝑛 , which is a contradiction again.
Finally, let 𝑤 = 𝑤𝑘 with 1 < 𝑘 < 𝑛. Notice first that (2.6.5) and the

congruences modulo 𝑁 satisfied by 𝛾 and 𝜎 imply that the 𝑘-th row of 𝜂 also
satisfies congruences. Indeed, 𝑤𝑘𝜂𝑤𝑇𝑘 is a matrix of the Γ0(𝑁) shape. More
precisely, 𝑁 | 𝜂𝑘 𝑗 for 𝑗 > 𝑘. Since 𝑘 < 𝑛, we have in particular 𝑁 | 𝜂𝑘,𝑘+1.

Let us now assume that the superdiagonal of 𝜂 only contains non-zero
elements. That is, 𝜂 𝑗 , 𝑗+1 ≠ 0 for all 1 ≥ 𝑗 < 𝑛. Recall the condition

𝑧−1𝛾𝑧 = (𝑤𝑇𝜎𝑧)−1𝜂(𝑤𝑇𝜎𝑧) = 𝑂(𝑚).

We can rewrite 𝑤𝑇𝜎𝑧 = 𝑛 · 𝑎 in Iwasawa coordinates (indeed, conjugating by
an orthogonal matrix leaves 𝑂(𝑚) invariant), denoting the 𝑦-coordinates as
usual. It is now a common and important observation that the superdiagonal
of upper triangular matrices enjoys a certain additive abelian-like property
with respect to matrix multiplication. This observation or direct computation
should convince the reader that

(𝑛𝑎)−1𝜂𝑛𝑎 =

©«

𝑚 𝑦−1
𝑛−1𝜂1,2 ∗ . . .

𝑚 𝑦−1
𝑛−2𝜂2,3 . . .
...

...

𝑚 𝑦−1
1 𝜂𝑛−1,𝑛
𝑚

ª®®®®®®¬
.

Since this is 𝑂(𝑚), the assumption that |𝜂 𝑗 , 𝑗+1| ≥ 1 now implies that 𝑦 𝑗 ≫ 1/𝑚.
Even more and crucially, recall that 𝑁 | 𝜂𝑘,𝑘+1, so that 𝑦𝑛−𝑘 ≫ 𝑁/𝑚. Putting
these together, we obtain the bound

𝑦1 · · · 𝑦𝑛−1 ≫ 𝑁

𝑚𝑛−1 ≫ 𝑁1/𝑛+𝜀

using the assumption 𝐿≪ 𝑁1/𝑛2−𝜀 and that 𝑚 ≍ 𝐿𝑛 .
We return now to a technique used in the proof of Lemma 2.6.7. We observe

again that
∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝑤𝑇𝜎𝑧 = (𝑑𝑦1 · · · 𝑦𝑛−1)−1.

On the other hand, our choice of representative𝑤 = 𝑤𝑘 in Remark 2.6.9 implies
that the first row of 𝑤𝑇 is equal to 𝑒1 and the other rows are permuted between
them in some way. This means that

∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝑤𝑇𝜎𝑧 = ∥𝑒2 ∧ · · · ∧ 𝑒𝑛∥𝜎𝑧 ≥ 𝛽(𝑧) ≍ 𝑁1/𝑛 .

Therefore, as in the proof of the aforementioned lemma, we obtain that

𝑑𝑦1 · · · 𝑦𝑛−1 ≪ 𝑁1/𝑛 .

Recall also that 𝑑 = ∥𝑒𝑛∥𝑤𝑇𝜎𝑧 , and since 𝑧 defines a balanced lattice, 𝑑 ≫ 1.
Therefore

𝑦1 · · · 𝑦𝑛−1 ≪ 𝑁1/𝑛 ,
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which constitutes a contradiction to the previous paragraph for large enough
𝑁 .

We deduce that the superdiagonal of 𝜂 must contain some zero. It is now
straight-forward to prove that𝑚 dividesΔ𝑛−1(𝜂). Indeed, the only (𝑛−1)×(𝑛−1)
minor that is not obviously divisible by 𝑚 is the upper right minor, formed by
removing the first column and the last row of 𝜂. Proving the claim here is an
easy exercise in Laplace, or cofactor, expansion.

Observe now that the invariance properties of determinantal divisors (see
[New72, Thm. II.8]) imply that

Δ𝑛−1(𝜂) = Δ𝑛−1(𝛾),

since 𝑤, 𝜎 ∈ SL𝑛(Z). Since 𝑝 | 𝑚, it follows from the paragraph above and our
assumption on the determinantal divisors that

𝑝 | 𝑞(𝑛−1)(𝑛−2).

If 𝑛 > 2, this implies that 𝑝 = 𝑞, which is a contradiction to the assumption.

Remark 2.6.11. Notice that the case 𝑛 = 2 does not involve any intermediate
Weyl elements. Indeed, there are only two cusps and both reduce as above to
counting upper-triangular matrices directly. A more general result (for square-
free levels) is contained in a slightly different language in [HT12, Lemma
4.1].

The counting results of this section taken together produce the following
corollary. It gives a solution to the counting problem for prime 𝑛 that can
be successfully applied to the sup-norm problem through the amplifier in
Proposition 2.3.4.

Corollary 2.6.12. Let 𝑛 and 𝑁 be a prime, and let 𝑧 ∈ H reduce to a compactum Ω.
Assume that 𝑧 has Iwasawa coordinates

𝑦1 ≍Ω

1
𝑁

and 𝑦𝑖 ≍Ω 1

for 𝑖 = 2, . . . , 𝑛 − 1, and 𝑑 = 𝛼(𝑧) = ∥𝑒𝑛∥𝑧 , and satisfies

𝑧 ∈ ℒ(𝐵, 𝐴) ∩ ℒ′(𝐵, 𝐴).

Let 𝐿≪ 𝑁1/𝑛2−𝜀 and assume that 𝑁 ≫Ω,𝜀 1 is large enough. Then∑
𝑝,𝑞≍𝐿

|𝐻(𝑧, 𝑝𝜈 , 𝑞(𝑛−1)𝜈 , 𝑁)| ≪ 𝐿(𝑛−1)𝜈 · 𝐿1+𝜀

for any 1 ≤ 𝜈 ≤ 𝑛.



CHAPTER 2. THE SUP-NORM OF NEWFORMS 69

2.7 FINAL STEPS

2.7.1 The Fourier bound

To prove a bound in the first domain given by the reduction in Proposition 2.5.2,
we use the Whittaker expansion and bounds for the first Fourier coefficient of
newforms of level𝑁 . Here we state a version of the bound that is unconditional,
yet sufficient for our purposes.

Proposition 2.7.1. Let 𝜙 be an 𝐿2-normalised Hecke-Maaß newform of prime level
𝑁 and spectral parameter 𝜇, and let 𝑧 ∈ Ω for some compactum Ω ⊂ H. For 𝜀 > 0
we have

𝜙(𝑧) ≪Ω,𝜇𝜀 𝑁
−1/4+1/4𝑛+𝜀.

Proof. We use the bound given in Theorem 3 of [BHM20], making the necessary
adjustments from the level 1 results to level 𝑁 . The proof is very similar, so we
refer to [BHM20] for more details and mostly remark on what changes need to
be made.

Note first that the method of proof involves the Whittaker expansion
[BHM20, (46)]. An automorphic form for the group Γ0(𝑁) enjoys the same type
of Whittaker expansion, since SL𝑛−1(Z) embeds in the upper left (𝑛−1)×(𝑛−1)
block of Γ0(𝑁), so that one can follow the same arguments given in, for instance,
[Gol06, Theorem 5.3.2] in level 1. To follow the arguments in [BHM20] further,
we normalise 𝜙 arithmetically, so that the first coefficient in the expansion is 1.

Next, the bound [BHM20, (49)] for 𝐿(1 + 𝜀,𝜋 × �̃�) holds similarly, with
an additional 𝑁𝜀 on the right-hand side. Here, we let 𝜋 be the automorphic
representation generated by 𝜙. Finally, to account for the factor between
arithmetically normalised forms and 𝐿2-normalised forms, we note the display
before [BHM20, (66)]. More precisely, if we assume 𝜙 to be arithmetically
normalised, as in [BHM20, (46)], then standard Rankin-Selberg theory shows
that 𝜙2 ≍𝜇 vol(Γ0(𝑁)\H) · res𝑠=1 𝐿(𝑠,𝜋 × �̃�).
By [Bru06, Theorem 3], as in the two displays after (43) in [Lap13, Appendix],
we can use the lower bound

res𝑠=1 𝐿(𝑠,𝜋 × �̃�) ≫ 𝐶(𝜋 × �̃�)−1/2+1/2𝑛−𝜀 ,

where 𝐶(𝜋 × �̃�) = 𝐶(𝜋 × �̃�, 0) is the analytic conductor of 𝐿(𝑠,𝜋 × �̃�). We have
𝐶(𝜋) ≍𝜇 𝑁 and by [BH97, (2)] the bound

𝐶(𝜋 × �̃�) ≪ 𝑁𝑛·1+𝑛·1−1

holds.
It is easy to compute that vol(Γ0(𝑁)\H) ≍ 𝑁𝑛−1. Therefore,𝜙2 ≫𝜇 𝑁

𝑛−1 · 𝑁 (2𝑛−1)(−1/2+1/2𝑛)−𝜀 = 𝑁1/2−1/2𝑛−𝜀.
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Going back to 𝜙 being 𝐿2-normalised by putting together the bound above
and [BHM20, (49)] with the indicated adjustments, we deduce the claim.

Remark 2.7.2. Working more precisely, one could prove that 𝐶(𝜋 × �̃�) ≍
𝑁2𝑛−2 and improve the exponent in the bound above. This is not necessary
for this paper and we do not prove the claim. In fact, one expects that
res𝑠=1 𝐿(𝑠,𝜋× �̃�) ≫ 𝑁𝜀. This is proven by Hoffstein-Lockhart in the case 𝑛 = 2
and for this reason we have

𝜙(𝑧) ≪Ω,𝜇,𝜀 𝑁
−1/2 ,

for 𝑧 ∈ Ω as in [HT12, Lemma 4], for example.

2.7.2 Finishing the proof

First assume Hypothesis (2.1.1). Proposition 2.3.3 and Proposition 2.6.2 together
with the prime number theorem imply that

𝜙(𝑧)2 ≪𝜇,Ω,𝜀 𝐿
−1/2+𝜀 + 𝐿−1/2−𝑛+𝜀 · 𝐿𝑛(1 + 𝐿𝑛/𝑁)𝑛−1 ,

under the assumptions on 𝑧 specified in Proposition 2.6.2. Optimising the size
of 𝐿, we choose 𝐿 = 𝑁1/𝑛 . In this case, we have

𝜙(𝑧) ≪ 𝐿−1/4+𝜀 ≪ 𝑁−1/4𝑛+𝜀.

The Fourier bound, Proposition 2.7.1, certainly implies the same bound

𝜙(𝑧) ≪ 𝑁−1/4𝑛+𝜀

for 𝑛 ≥ 2.
These bounds are valid on the subsets of H given in Proposition 2.5.2.

As remarked at the beginning of Section 2.5, these now extend to the whole
domain Ω𝑁 , and the proof is finished.

Without assuming Hypothesis (2.1.1), we let 𝑛 be prime and we apply
Proposition 2.3.4 using the counting result Corollary 2.6.12. Similarly to the
computation above, we have

𝜙(𝑧)2 ≪𝜇,Ω,𝜀 𝐿
−1+𝜀 +

𝑛∑
𝜈=1

1
𝐿(𝑛−1)𝜈 · 𝐿(𝑛−1)𝜈𝐿1+𝜀

for 𝐿≪ 𝑁1/𝑛2−𝜀. Maximising 𝐿, we get

𝜙(𝑧) ≪ 𝐿−1/2+𝜀 ≪ 𝑁−1/2𝑛2+𝜀.
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This chapter reproduces the scientific article [Tom23]:
R. Toma. ‘Hybrid bounds for the sup-norm of automorphic forms in higher
rank’. Trans. Amer. Math. Soc. 376.8 (2023), pp. 5573–5600.

Abstract

Let 𝐴 be a central division algebra of prime degree 𝑝 over Q. We
obtain subconvex hybrid bounds, uniform in both the eigenvalue and
the discriminant, for the sup-norm of Hecke-Maaß forms on the compact
quotients of SL𝑝(R)/SO(𝑝) by unit groups of orders in 𝐴. The exponents
in the bounds are explicit and polynomial in 𝑝. We also prove subconvex
hybrid bounds in the case of certain Eichler-type orders in division
algebras of arbitrary odd degree.

3.1 INTRODUCTION

3.1.1 Motivation and historical context

The sup-norm problem arises as a natural question in analysis and quantum
physics and has received considerable attention in the number theory com-
munity. It is the problem of bounding the 𝐿∞-norm of eigenfunctions on
Riemannian manifolds in terms of their 𝐿2-norm. To make this a reasonable
endeavour, one chooses some parameters for the eigenfunctions and estimates
the quotient of the two norms while these parameters vary.

For example, let 𝑋 be a compact Riemannian manifold of dimension 𝑛 and
let 𝜙 be an 𝐿2-normalised eigenfunction of the Laplacian Δ𝑋 with eigenvalue
𝜆 > 0. Motivated by semi-classical analysis, one would like to bound

𝜙
∞ in

terms of 𝜆 when 𝜆 → ∞. In general, local analysis gives the sharp baseline
bound 𝜙

∞ ≪ 𝜆(𝑛−1)/4+𝜀 ,

for large enough 𝜆. The bound is attained on the round 𝑛-spheres.
If 𝜙 is assumed to be an eigenfunction for a larger algebra of operators, then

we can expect better bounds. Indeed, if 𝑋 = Γ\𝑆 is a compact locally symmetric
space of rank 𝑟 and 𝐺(𝑆) is the groups of isometries of the symmetric space
𝑆, then one can consider the algebra of 𝐺(𝑆)-invariant differential operators.
This algebra is generated by 𝑟 operators, including the Laplacian. If 𝜙 is an

71
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𝐿2-normalised joint eigenfunction of these operators, then1𝜙
∞ ≪ 𝜆(𝑛−𝑟)/4+𝜀. (3.1.1)

For more details on the above paragraphs, see [Sar04].
In special cases when 𝑋 has arithmetic structure, we expect to obtain

better, so-called subconvex bounds, i.e. an exponent (𝑛 − 𝑟)/4 − 𝛿 in (3.1.1)
with 𝛿 > 0. In these cases, there is an additional algebra of commutative
normal Hecke operators, which commute with the differential operators
above. In this arithmetic setting, the sup-norm problem is to find a subconvex
bound for

𝜙
∞, where 𝜙 is a joint eigenfunction of the invariant differential

operators and the Hecke algebra. The prototype of such a result is due to
Iwaniec and Sarnak [IS95] in the case of 𝑋 = Γ\𝔥2, where 𝔥2 is the hyperbolic
plane and Γ ≤ SL2(R) is a cocompact arithmetic subgroup. They show that𝜙

∞ ≪ 𝜆1/4−1/24+𝜀 for an 𝐿2-normalised Hecke-Maaß form 𝜙.
Another parameter that one could choose is the volume of 𝑋. This is

particularly interesting in the arithmetic case and is reminiscent of the level
aspect in the subconvexity problem of 𝐿-functions (indeed, the two problems
are very much related in methodology and numerology). One thoroughly
studied example is the family of non-compact spaces 𝑋0(𝑁) := Γ0(𝑁)\𝔥2 of
volume 𝑁1+𝑜(1), where Γ0(𝑁) is the Hecke congruence subgroup of level 𝑁 .
For an example of an application, the corresponding ‘convexity’ bound on
average (for squarefree 𝑁) was used in [AU95] to compare the Arakelov and
the Poincaré metrics on 𝑋0(𝑁). A great amount of work was dedicated to
achieving sub-baseline bounds in more and more general settings, for example
in [BH10], [Tem10], [HT13], [Sah17], [Ass a]. See the introduction of [HS20] for
a more complete set of references with the corresponding bounds.

In general, the level aspect seems to factorise into the case of squarefree
level and the case of powerful level, in particular prime powers. The latter is
called the depth aspect and is amenable to techniques from 𝑝-adic analysis
that are not available in the squarefree case. To describe an example, let 𝑁1
denote the smallest positive integer such that 𝑁 | 𝑁2

1 . Note that 𝑁1 = 𝑁 if 𝑁
is squarefree, yet 𝑁1 ≍

√
𝑁 if 𝑁 is a high prime power. As an example of a

subconvex bound in the case of 𝑋0(𝑁) and the interplay between squarefree
and powerful levels, it was shown in [Sah17] that𝜙

∞ ≪ 𝑁−2/6+𝜀𝑁1/6
1 𝜆5/24+𝜀 ,

for 𝜙 a newform. This is also an example of a hybrid bound. Such a bound is
uniform in both the spectral and the volume aspect.

Closer to the topic of these notes is the case of cocompact surfaces, where
the arithmetic subgroup is given by the norm 1 units 𝒪1 of an order 𝒪 in
an indefinite division quaternion algebra 𝐴 over Q. The volume of 𝒪1\𝔥2 is

1Here and in the rest of this article, the implied constants are allowed to depend on 𝜀.
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approximately equal to the squareroot of the discriminant of 𝒪 (see Section
3.2.1). This discriminant is made up of the discriminant of the algebra and
the so-called level of 𝒪. More precisely, we choose a fixed maximal order
𝒪𝑚 containing 𝒪 and define 𝑁 = [𝒪𝑚 : 𝒪], which we call the level, and note
that disc(𝒪) = 𝑁2 · disc(𝒪𝑚) = 𝑁2 · disc(𝐴). Most results in the literature only
give bounds in the parameter 𝑁 , but the discriminant of 𝐴, and therefore the
covolume of 𝒪, can get arbitrarily large independently of the level. A hybrid
bound that is uniform in the full volume aspect was proved by Blomer and
Michel [BM13] for the related case of totally definite quaternion algebras.

For Eichler orders of indefinite quaternion algebras, the (𝑝-adic) local bound𝜙
∞ ≪ 𝑁−1/2+𝜀𝑁1/2

1 was shown by Marshall [Mar16] for 𝜙 a newform. For
squarefree 𝑁 this corresponds to the bound 𝑁𝜀, which was first improved by
Templier [Tem10], who obtained the bound𝑁−1/24+𝜀 for general𝑁 . Saha [Sah20,
Theorem 3] combines these two bounds to 𝑁−11/24+𝜀𝑁5/12

1 for newforms. Saha
remarks in Section 1.6 that the argument should also provide a non-trivial
hybrid bound but the details do not seem to be in print.

The depth aspect was recently improved in [HS20] for newforms. If the
level is a prime power 𝑝𝑛 , then Hu and Saha obtain the bound 𝑝𝑛(5/24+𝜀).

It should be noted at this point that the bounds above that include the
number 𝑁1 are proven using newform theory and, in particular, assuming
that the order is Eichler, as stated. Saha and Templier also prove results for
general orders (e.g. [Sah20, Theorem 1]), thus not assuming that the forms
are newforms, but only that they are Hecke eigenfunctions. Templier [Tem10,
Theorem 2] explicitly assumes 𝜙 is a newform, but the argument does not use
newform theory; it does, however, use the structure of an Eichler order. As
is apparent in the main results of this paper, described in the next section,
our focus is rather on proving bounds in the case of general orders and we
therefore never use newforms or the number 𝑁1.

The sup-norm problem has also been pushed in the last decade to the
case of higher-rank groups, such as GL(𝑛) for 𝑛 > 2. For example, Blomer
and Maga [BM16] prove that if 𝜙 is a Hecke-Maaß cusp form for the Hecke
congruence group Γ0(𝑁) ≤ SL𝑛(Z), then𝜙|Ω

∞ ≪Ω 𝑁𝜀𝜆
𝑛(𝑛−1)

8 (1−𝛿𝑛) ,

for some fixed compact set Ω ⊂ 𝔥𝑛 = SL𝑛(R)/SO(𝑛) and effectively computable
𝛿𝑛 > 0. The local bound (3.1.1) in this case is 𝑛(𝑛 − 1)/8.

In higher-rank, the only other bound related to the volume aspect (that is
available to the author) is a bound in the depth aspect given by Hu [Hu18].
The result is stated only for automorphic forms corresponding to minimal
vectors, which seem to be more suitable for the 𝑝-adic analysis of the depth
aspect.
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3.1.2 The main results and methods

The purpose of this article is to establish the first non-trivial hybrid sup-norm
bounds for Hecke-Maaß forms in unbounded rank. Note that the uniformity
in the volume (not just the level, but also the discriminant of the algebra) is a
new feature even in the degree 2 case.

Before stating the main theorem, recall that a locally norm-maximal order
is an order 𝒪 such that nr(𝒪×

𝑝 ) = Z×
𝑝 for all primes 𝑝, where 𝒪𝑝 is the 𝑝-adic

completion of 𝒪. This a technical assumption in the theorems below and we
refer to Remark 3.1.1 for a way to remove it.

Theorem 3.1. Let 𝑝 ≥ 3 be a prime and 𝐴 a central division algebra of degree 𝑝
over Q that is split over R. Let 𝒪 ⊂ 𝐴 be a locally norm-maximal order of covolume
𝑉 := vol𝒪1\𝔥𝑝 . If 𝜙 is an 𝐿2-normalised Hecke-Maaß form on 𝒪1\𝔥𝑝 with large
eigenvalue 𝜆, then 𝜙

∞ ≪ 𝜆
𝑝(𝑝−1)

8 −𝛿1+𝜀𝑉−𝛿2+𝜀 , (3.1.2)

where the savings can be taken to be 𝛿1 = (16𝑝3)−1 and 𝛿2 = (8𝑝3(𝑝 − 1))−1, and the
implied constant depends on 𝑝 and 𝜀.

The so-called convexity bound is given by setting 𝛿1 = 𝛿2 = 0 in the
exponents of (3.1.2), so that we obtain subconvex bounds in both aspects
simultaneously. The savings in the exponents also have the advantage of being
explicit and polynomial in the degree. In fact, the proof shows a marginally
stronger bound in the spectral aspect, but we have simplified the exponent for
aesthetic reasons.

There are certain assumptions that can be removed in the statement
of Theorem 3.1, as well as in the theorems below. These include allowing
automorphic forms that transform under characters and orders that are not locally
norm-maximal, as noted in Remark 3.1.1 after discussing the methods of proof.

The reason we only work over Q in Theorem 3.1 is explained in Remark
3.2.1. It is no loss of generality, but in fact the only field relevant to our problem
for the space 𝔥𝑝 with 𝑝 > 2. For the case 𝑝 = 2, we prove a bound over totally
real number fields.

Theorem 3.2. Let 𝐴 be an indefinite division quaternion algebra over a totally
real number field 𝐹. Let 𝒪 ⊂ 𝐴 be a locally norm-maximal order of covolume
𝑉 := vol𝒪1\𝔥2. If 𝜙 is an 𝐿2-normalised Hecke-Maaß form on 𝒪×\𝔥2 with large
eigenvalue 𝜆, then 𝜙

∞ ≪ 𝜆
1
4−𝛿1+𝜀 ·𝑉−𝛿2+𝜀 , (3.1.3)

where the savings can be taken to be 𝛿1 = 1/120 and 𝛿2 = 1/30, and the implied
constant depends on 𝐹 and 𝜀.

Considering the literature on the indefinite quaternion algebra case, the
novelty of the bound is the uniformity in the discriminant of the algebra, and
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thus in the full volume of the quotient, while previous bounds only considered
the level of the order. It should also be noted that this is the first hybrid bound
appearing in print (accessible to the author). However, as a compromise for
being hybrid, we should remark that our bounds in Theorem 3.2 are weaker
than those of [Tem10] (i.e. 𝑁−1/24, where we recall that 𝑉 ≍𝐴 𝑁1+𝑜(1)) or [IS95]
(i.e. 𝜆1/4−1/24) when isolating the relevant aspect.

In the case of quaternion algebras over the rational numbers, a sup-norm
bound uniform in the full volume of the hyperbolic surface, in particular
uniform in the discriminant, was also recently and independently achieved by
Khayutin, Nelson, and Steiner [KNS22]. Among many impressive results, their
theorem in the corresponding setting of Theorem 3.2 is that

𝜙
∞ ≪𝜆,𝜀 𝑉

−1/4+𝜀.
This is a major improvement over other bounds in the literature, however
only for Eichler orders and newforms, and without uniformity in the spectral
aspect. Their proof uses different novel methods which, though very powerful
in degree 2, do not seem to generalise easily to the higher rank situation.

To give the proof of our main theorems some historical context, we note
that it shares some strategies with Section 6 of [Tem10] and Section 2.4 of
[Sah20], the latter being inspired by the former. In turn, the proof in [Tem10]
was inspired by the work of Silberman and Venkatesh [SV19] on quantum
unique ergodicity, which has many similarities to the sup-norm problem. As
[SV19] treats more generally division algebras of prime degree, it seems only
natural that the previous sup-norm problem arguments should extend to this
setting, and this is achieved in these notes. The main new idea for obtaining
hybrid bounds is a systematic use of conjugation invariant functions, such as
the characteristic polynomial, as we explain below.

We observe that going beyond prime degrees seems to require a new
general strategy, as was also noted by Silberman and Venkatesh. The present
paper provides a first step in this direction and the methods suffice for treating
certain orders of Eichler type (see the discussion in Section 3.8), in arbitrary
odd degree. We work with orders 𝒪 of type 𝒪0(𝑁), by which we mean that, at
unramified primes 𝑝, the completion 𝒪𝑝 is of the form

𝒪0(𝑁)𝑝 =
{
𝛾 ∈ 𝑀𝑛(Z𝑝) | last row of 𝛾 ≡ (0, . . . , 0, ∗)mod𝑁Z𝑝

}
,

up to conjugation.

Theorem 3.3. Let 𝑛 ≥ 3 be an odd integer and 𝐴 a central division algebra of
degree 𝑛 over Q that is split over R. Let 𝒪 ⊂ 𝐴 be an order of type 𝒪0(𝑁) and
let 𝑉 := vol𝒪1\𝔥𝑛 be its covolume. If 𝜙 is an 𝐿2-normalised Hecke-Maaß form on
𝒪1\𝔥𝑛 with large eigenvalue 𝜆, then𝜙

∞ ≪𝐴 𝜆
𝑛(𝑛−1)

8 −𝛿1+𝜀𝑉−𝛿2+𝜀 , (3.1.4)

where the savings can be taken to be 𝛿1 = (8𝑛3)−1 and 𝛿2 = (4𝑛3(𝑛 − 1))−1, and the
implied constant depends on 𝑛, 𝜀, and the discriminant of 𝐴.
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Comparing the bound above with the one in Theorem 3.1, the reader may
remark that the savings are stronger by a factor of two. This is because, for
the special orders to which it applies, the argument can handle counting in
the spectral and level aspect at the same time, whilst for Theorem 3.1 we
interpolate two different bounds, whence the halving of the savings.

Generalising Theorem 3.3 to handle any type of orders only requires
improving the counting argument in the volume aspect. The uniform counting
argument in the spectral aspect, given in Section 3.5, is valid for any orders, at
least in odd degree.

The following discussion of the methods applies generally to all three
theorems stated above. As usual in the treatment of the sup-norm problem,
the argument starts with an amplified pretrace formula. We embed the form 𝜙
into a basis of Hecke-Maaß forms (𝜙 𝑗) for 𝐿2(𝒪1\𝔥𝑝) and we spectrally expand
an automorphic kernel with respect to this basis. This leads to an equality
between a weighted sum (the spectral side) of the form∑

𝑗

𝐴 𝑗|𝜙 𝑗(𝑧)|2

and a sum over elements in sets constructed from the group 𝒪1 (the geometric
side).

To choose an amplifier essentially means to find suitable non-negative
weights 𝐴 𝑗 so that the contribution of 𝜙 is large and that of the other forms
is little, hopefully negligible. These are constructed using Hecke eigenvalues.
This is a problem in analysis and combinatorics (or real and 𝑝-adic analysis),
and was solved for example in [BM15] for the groups PGL𝑛(R). Restricting to
unramified places, we are also able to use the amplifier of Blomer and Maga.

After choosing an amplifier, we can then drop all but one terms and obtain
a bound for |𝜙 𝑗(𝑧)|2 in terms of a sum over certain elements in 𝒪, determined
by the amplifier, which turns into a counting problem. We count elements
𝛾 ∈ 𝒪 of norms up to some parameter 𝐿, such that the distance between 𝑧

and 𝛾𝑧 is small. This is usually done quite explicitly in the non-compact case
of congruence subgroups of SL2(Z). In our case, we rely on the very rigid
structure of division algebras of prime degree.

More precisely, we may assume that the elements we are counting lie in
a proper subalgebra of 𝐴 at the cost of upper bounds for the parameter 𝐿.
Here we make crucial use of the degree being prime (and nowhere else in an
essential way). In this case, the only proper subalgebras of 𝐴 are fields, where
we have better techniques available. In particular, it suffices to count ideals and
units with certain conditions in the ring of integers, and the resulting number
of elements is essentially best-possible. Thus, the bound in the theorem is
dictated by how large we can take 𝐿 to be. We note that the scarceness of
subalgebras in the prime degree case is also the reason why Silberman and
Venkatesh prove their results in this setting (see Section 1.3 in [SV19]).
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There are several difficulties to be overcome in the more general setting
of this paper. One of them is that the counting problem we obtain when
bounding |𝜙 𝑗(𝑧)|2 depends on the point 𝑧. This point only needs to vary along
a compact region, but to make the bounds uniform in the volume, we need
to have a good grasp on how the counting depends on 𝑧. In this paper we
use conjugation invariant functions to completely remove 𝑧 from the counting
problem.

Another difficulty is finding a way to incorporate the discriminant of
the algebra, which is not visible in previous approaches. The crucial step
is at Lemma 3.4.2, where we deduce that a certain subspace spanned by
elements in our order is proper inside the whole algebra. This is done using
the determinant method, that is, by proving lower and upper bounds for a
well-chosen determinant which contradict each other if the determinant is
non-zero and certain parameters are small enough. The new input is the use
of a special type of matrix whose determinant is divisible by the discriminant.
This is a particularly useful choice of matrix, since it’s entries are given by
certain traces, which are conjugation invariant. This is a first example of the
strategy mentioned in the previous paragraph.

The other conjugation invariant function we extensively make use of is
the norm. It is essential for the uniform counting in the spectral aspect and
for obtaining bounds in composite degrees. Our arguments not only obtain
the properness of the algebra generated by the elements we are counting, but
we prove its commutativity directly in certain cases. This is based on two
simple but powerful observations: that commutators 𝑘1𝑘2 − 𝑘2𝑘1 of special
orthogonal matrices in arbitrary odd degree are singular; and that commutators
of elements in orders of 𝒪0(𝑁)-type (e.g. matrices in Γ0(𝑁)) have determinant
divisible by 𝑁 . These observations, together with the fact that the only element
in a division algebra with norm 0 is 0, solve the counting problem in the
spectral and level aspect simultaneously for 𝒪0(𝑁)-type orders and in the
spectral aspect for any order. We refer to Section 3.5 and Section 3.8 for more
details.

Another problem worth mentioning concerns the counting argument for
units in a field (as explained above, we must also count ideals, but this is
easily done by using unique factorisation). In this article, we handle this by
bounding the possibilities for the characteristic polynomial of these elements,
which again is conjugation invariant. Since we are counting in a (commutative)
field, this automatically bounds the number of units. This argument is valid
in any degree and can be employed whenever, by other arguments, one can
restrict counting to a commutative algebra.

Finally, we remark that the counting argument makes use of the discrim-
inant disc(𝒪) in lieu of the volume of 𝒪1\𝔥𝑝 . It is well-known that these two
parameters are essentially equal, as already mentioned in this introduction.
This is indeed readily available for quaternion algebras, for which there is
extensive literature available. Nevertheless, the author was not able to find a
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direct reference for the required formulae, at least for the more general setting
in this article. We generalise the quaternion algebra argument to show that
vol(𝒪1\𝔥𝑝) = disc(𝒪)1/2+𝑜(1) in section 3.2.1. The calculations may implicitly
be present in other works on zeta functions of division algebras, but since
this fact might be useful in particular in the theory of automorphic forms, we
provide the details here to serve as reference.
Remark 3.1.1. The statements of the theorems presented in this introduction
can be generalised by working adelically. Although this paper considers
automorphic forms as classical objects, as in the theory of quantum chaos, both
approaches are common in the literature (e.g. [BM15] is written classically and
[Sah20] adelically).

For example, taking 𝜙 in the theorems stated above to be an adelic form, one
could drop the assumption that 𝒪 is locally norm maximal (see also Remark
3.3.2) and one could allow 𝜙 to generate a finite dimensional representation
under the action of the corresponding adelisation of the unit group 𝒪1. Indeed,
this is the approach taken in [Sah20], Theorem 1. Following the argument
there, one would perform amplification using only unramified primes and
the counting problem would be the same as in the classical case. Some details
regarding the classical and adelic formulations of the theorems, in particular
for automorphic forms transforming under a finite character of 𝒪1, are given
in Section 1.3 of [Sah20].

The counting argument being the main novelty in this article, the classical
formulation was chosen here to reduce technicalities and size. Some details
on adelisation are given in Section 3.3 to aid with understanding the classical
Hecke algebra.

Notation

We recall the Vinogradov notation 𝑓 (𝑥) ≪ 𝑔(𝑥) for two functions 𝑓 , 𝑔, meaning
that 𝑓 (𝑥) ≤ 𝐶 · 𝑔(𝑥), at least for large enough 𝑥, for some 𝐶 > 0 called the
implied or implicit constant. We shall often use the notation 𝑔 = ℎ + 𝑂(𝛿) for
matrices 𝑔, ℎ, meaning that each coefficient of 𝑔 − ℎ is 𝑂(𝛿). An expression
of the form 𝑓 (𝑥) = 𝑥𝑜(1) is to be intepreted as 𝑓 (𝑥) ≪𝜀 𝑥

𝜀 and 𝑥−𝜀 ≪𝜀 𝑓 (𝑥) for
any 𝜀 > 0, where the implied constant in both bounds can depend on 𝜀. Also,
we sometimes work with more general degrees 𝑛 ∈ N for the division algebra
𝐴, and restrict where necessary to prime degrees 𝑝.
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3.2 DIVISION ALGEBRAS AND ARITHMETIC SUBGROUPS

Let 𝐴 be a central division algebra of degree 𝑛 over Q. Let 𝒪 ⊂ 𝐴 be an
order, i.e. a subring with 1 that is a full Z-lattice. Suppose that 𝐴 splits over R,
meaning that there is an embedding 𝐴 ↩→ 𝑀𝑛(R). For an element 𝑥 ∈ 𝐴, the
reduced norm nr(𝑥) and the reduced trace tr(𝑥) are given by the determinant
and the trace, respectively, of its image under this embedding. The group
𝒪1 = {𝛾 ∈ 𝒪 : nr(𝛾) = 1} now embeds into SL𝑛(R) as a cocompact arithmetic
lattice (see [Mor15], Proposition 6.8.9). In particular, denoting the symmetric
space of SL𝑛(R) by

𝔥𝑛 = SL𝑛(R)/SO(𝑛),
then the quotient 𝒪1\𝔥𝑛 is compact.

Note that for 𝑛 odd, 𝐴 splits automatically over R. Indeed, by the Albert-
Brauer-Hasse-Noether theorem, all central simple algebras of finite degree
over a number field are cyclic, meaning that they contain a strictly maximal
subfield that is a Galois extension of Q of degree 𝑛 (for background on these
statements and the following, see [Pie82], Theorem 18.6 and sections 13.1
through 13.3). The strictly maximal subfield of 𝐴 splits 𝐴 and is Galois of odd
degree over Q, so it must be totally real, in particular contained in R.

In the special case 𝑛 = 2, 𝐴 is called a quaternion algebra and we may
replace the ground fieldQby any totally real number field 𝐹. Let [𝐹 : Q] = 𝑛 and
denote by 𝔬𝐹 the ring of integers of 𝐹. For 𝐴 to be split over R, we assume that
there is an embedding 𝜎0 ∈ hom(𝐹,R) such that 𝐴⊗𝜎0 R � 𝑀2(R). For all other
embeddings 𝜎0 ≠ 𝜎 ∈ hom(𝐹,R) assume that 𝐴 ⊗𝜎 R � ℋ(R), where ℋ(R) is
the Hamilton quaternion algebra. We may view 𝐴 as embedded (diagonally)
into 𝐴∞ � 𝑀2(R) × ℋ(R)𝑛−1, and similarly for the norm 1 elements,

𝐴1 ↩→ SL2(R) × SO(3)𝑛−1.

We use 𝜙0 to denote the projection onto the first component 𝑀2(R) and 𝜙𝑖 ,
𝑖 = 1, . . . , 𝑛 − 1, to denote the projections onto the Hamiltonian components.

Generalising our setting, let 𝒪 be an 𝔬𝐹-order. By restriction of scalars, the
projection 𝜙0(𝒪1) ⊂ SL2(R) of the group of units of reduced norm 1 onto the
split component gives a cocompact arithmetic lattice.
Remark 3.2.1. For 𝜙0(𝒪1) to be a cocompact arithmetic subgroup in the split
component SL2(R), it is important that the other components, in this case all
isomorphic to SO(3), are compact (see the definition of an arithmetic group in
[Mor15], Definition 5.1.19). If 𝐴 is a central division algebra over a number
field 𝐹 ≠ Q and deg(𝐴) = 𝑛 > 2, this is not possible any more.

Indeed, the process of restriction of scalars requires us to embed 𝐴1 into
the product of its completions at all infinite places. Now a central simple
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algebra over R is isomorphic to a matrix algebra over a division algebra by
Wedderburn’s theorem. By a theorem of Frobenius (see [Pie82], Corollary 13.1
c) these are either matrix algebras over Ror over the Hamiltonians ℋ . Since
𝑛 > 2, the group of norm 1 units in these algebras cannot be compact any
more. Thus, the number field case in higher degree gives rise to non-compact
lattices, which are outside the scope of this article.

It will be useful later to note that the tower rule holds for division algebras
(also called skew fields). More precisely, the notion of vector space over a
division algebra and its dimension is the same as for commutative fields. If
𝐴′ ⊂ 𝐴 is a subalgebra, then 𝐴 may be viewed as a vector space over 𝐴′, where
𝐴′ acts by multiplication from the left (or from the right, according to taste).
We denote the dimension of the vector space by dim𝐴′ 𝐴 as usual.

Let now 𝐴1 ⊂ 𝐴2 ⊂ 𝐴3 be division algebras. Then

dim𝐴1 𝐴3 = dim𝐴2 𝐴3 · dim𝐴1 𝐴2 (3.2.1)

holds and is proven as in the commutative case (see [Coh08, Proposition 3.1.1]).
Thus, if 𝐴 is a finite dimensional division algebra over Q, then the dimension
over Q of any subalgebra of 𝐴 must divide dimQ 𝐴. Moreover, if 𝐴 is central,
then any subfield of 𝐴 must have dimension over Q dividing the degree of 𝐴
(see [Pie82], Corollary 13.1 a).

3.2.1 The volume approximation

For simplicity, we first assume that the ground field is Q and quote the relevant
results for quaternion algebras over number fields at the end of the section.

Let 𝒪𝑚 be a maximal order in 𝐴 containing 𝒪. Because of their lattice
structure, it is useful to work with the index [𝒪𝑚 : 𝒪], which we call the
level of 𝒪 in 𝒪𝑚 . Yet the volume of 𝒪1\𝔥𝑛 , the relevant parameter in our
sup-norm problem, is given by the volume of 𝒪1

𝑚\𝔥𝑛 and the multiplicative
index [𝒪1

𝑚 : 𝒪1]. Fortunately the two indices are related in an explicit way. For
our purposes (and because the exact formulae would involve too many cases
in general), it suffices to prove that they are approximately equal. The proper
equalities obtained in the proof can be used together with the machinery of
zeta functions and Tamagawa numbers to produce a formula for the volume
of 𝒪1\𝔥𝑛 (as in [Voi21], 39.2.8).

Lemma 3.2.2. Let 𝐴 be a central simple algebra over Q, but not a definite quaternion
algebra. Let 𝒪 ⊂ 𝒪𝑚 be two orders in 𝐴. If [𝒪𝑚 : 𝒪] = 𝑁 , then [𝒪1

𝑚 : 𝒪1] = 𝑁1+𝑜(1).

This lemma is a generalisation of the well-know fact that the index of the
Hecke congruence group Γ0(𝑁) in SL2(Z) is

𝑁
∏
𝑝|𝑁

(1 + 1/𝑝).
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In this case, 𝐴 is the matrix algebra 𝑀2(Q), the maximal order is 𝑀2(Z) and 𝒪
is the suborder of level 𝑁 of integral matrices with lower left entry divisible
by 𝑁 .

Before proving Lemma 3.2.2, we use it together with a formula for the
covolume of a maximal order to approximate the covolume of 𝒪 by the
discriminant. Recall that the discriminant of an arbitrary Z-order 𝒪 is defined
as the ideal disc(𝒪) ⊂ Zgenerated by the set

{det(tr(𝑥𝑖 · 𝑥 𝑗))1≤𝑖 , 𝑗≤𝑛 | 𝑥𝑖 ∈ 𝒪}.

By abuse of notation, we also denote a positive generator of this ideal by
disc(𝒪). For more details on discriminants, see Section 10 in [Rei75].

Proposition 3.2.3. Let 𝐴 be a central simple algebra over Q, but not a definite
quaternion algebra, and let 𝒪 be an order in 𝐴. Then vol(𝒪1\𝔥𝑛) = disc(𝒪)1/2+𝑜(1).

Proof. Let 𝒪𝑚 be a maximal order containing 𝒪. By Theorem 3.7 in [Kle00],
we can approximate

vol(𝒪1
𝑚\𝔥𝑛) = disc(𝒪𝑚)

1
2+𝑜(1).

By Lemma 15.2.15 in [Voi21], we also have

disc(𝒪) = [𝒪𝑚 : 𝒪]2 · disc(𝒪𝑚).

Together with Lemma 3.2.2, we now obtain the claimed approximation since
vol(𝒪1\𝔥𝑛) = vol(𝒪1

𝑚\𝔥𝑛) · [𝒪1
𝑚 : 𝒪1].

The proof of Lemma 3.2.2 generalises the argument for quaternion algebras
in [Voi21], Lemma 26.6.7, which in turn follows an argument of Körner. We
provide here full details for the sake of completeness.

The first ingredient is the strong approximation theorem (see Kneser’s
article in [BM66]), which allows us to reduce the statement to a local one. We
denote by 𝐴𝑝 = 𝐴 ⊗ Q𝑝 and 𝒪𝑝 = 𝒪 ⊗ Z𝑝 the completions at a prime 𝑝. For all
but finitely many primes 𝑝, the completion 𝐴𝑝 is split, i.e. 𝐴𝑝 �ℳ𝑛(Q𝑝) (see
Proposition 18.5 coupled with Corollary 17.10.a in [Pie82]). Additionally, for
all but finitely many primes 𝑝, the completion 𝒪𝑝 is a maximal order of 𝐴𝑝 (see
Lemma 10.4.4 in [Voi21]). In particular, at these primes we have 𝒪𝑚,𝑝 = 𝒪𝑝 .
The primes where equality does not hold will be referred to as ramified.

We embed𝒪 diagonally into �̂� =
∏

𝑝 𝒪𝑝 and, similarly,𝒪1 into �̂�1 =
∏

𝑝 𝒪1
𝑝 ,

where 𝑝 runs over all prime numbers. Then strong approximation implies that
𝒪1 is dense in �̂�1 (see [Voi21], Corollary 18.5.14, and more generally [Kle00],
Theorem 4.4). Explicitly, if 𝑆 a set of finite places, 𝑎𝑝 ∈ 𝒪1

𝑝 and 𝑡𝑝 for each 𝑝 ∈ 𝑆,
then we can find 𝑥 ∈ 𝒪1 such that

𝑥 ≡ 𝑎𝑣 (mod 𝑝𝑡𝑣𝒪𝑝) (𝑝 ∈ 𝑆).
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Lemma 3.2.4. For two orders 𝒪 ⊂ 𝒪𝑚 as above, the level and the index of the unit
groups can be computed locally, that is,

[𝒪𝑚 : 𝒪] =
∏
𝑝

[𝒪𝑚,𝑝 : 𝒪𝑝] and [𝒪1
𝑚 : 𝒪1] =

∏
𝑝

[𝒪1
𝑚,𝑝 : 𝒪1

𝑝].

Proof. Note first that the products contain only finitely many factors not equal
to 1, as in the remarks above. Next, we start the proof for the unit groups. The
claim follows by showing that the map

𝒪1
𝑚/𝒪1 =

∏
𝑝

𝒪1
𝑚,𝑝/𝒪1

𝑝

is bĳective.
Injectivity follows by noting that

⋂
𝑝 𝒪𝑝 = 𝒪. Surjectivity follows by strong

approximation. Indeed, let (𝑎𝑝) ∈
∏

𝑝 𝒪1
𝑚,𝑝 . Choose an integer 𝑁 such that

𝑁𝒪𝑚,𝑝 ⊂ 𝑝𝒪𝑝 for all ramified primes 𝑝. Strong approximation supplies us
with an element 𝑏 ∈ 𝒪1

𝑚 such that 𝑏 ∈ 𝑎𝑝 + 𝑁𝒪𝑚,𝑝 . Thus 𝑏 = 𝑎𝑝 · 𝑢𝑝 , where
𝑢𝑝 ∈ 1 + 𝑁𝒪𝑚,𝑝 , so that 𝑢𝑝 ∈ 𝒪1

𝑝 .
The proof for the factorisation of the level is similar, where the correspond-

ing strong approximation theorem is the Chinese Remainder Theorem.

In the following we work with the localised orders at a prime 𝑝, which we
suppress in notation for simplicity. We now remove the condition on the norm
to work with the full group of units. We have the short exact sequence

0 → 𝒪1 → 𝒪× → nr(𝒪×) → 0,

and similarly for 𝒪𝑚 . By defining a non-canonical bĳection2

𝒪1
𝑚/𝒪1 × nr(𝒪×

𝑚)/nr(𝒪×) → 𝒪×
𝑚/𝒪× ,

we obtain that
|𝒪1

𝑚/𝒪1| · |nr(𝒪×
𝑚)/nr(𝒪×)| = |𝒪×

𝑚/𝒪×|.

Lemma 3.2.5. For Z𝑝-orders 𝒪 ⊂ 𝒪𝑚 , we have

[𝒪×
𝑚 : 𝒪×] = [𝒪𝑚 : 𝒪] · 𝑝𝑜(1).

Proof. The proof starts as in Lemma 26.6.7 in [Voi21]. Let 𝑛 be such that
𝑝𝑛𝒪𝑚 ⊂ 𝑝𝒪. Note that 1+ 𝑝𝒪 ⊂ 𝒪× by the convergence of the geometric series.
We now have

[𝒪×
𝑚 : 𝒪×] = [𝒪×

𝑚 : 1 + 𝑝𝒪𝑚] · [1 + 𝑝𝒪𝑚 : 1 + 𝑝𝑛𝒪𝑚]
[𝒪× : 1 + 𝑝𝒪] · [1 + 𝑝𝒪 : 1 + 𝑝𝑛𝒪𝑚]

.

2Note that the groups in question are not abelian and not necessarily normal, so that we
cannot apply the snake lemma directly.
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For 𝛼, 𝛽 ∈ 1 + 𝑝𝒪, we have 𝛼𝛽−1 ∈ 1 + 𝑝𝑛𝒪𝑚 if and only if 𝛼 − 𝛽 ∈ 𝑝𝑛𝒪𝑚 , so
that

[1 + 𝑝𝒪 : 1 + 𝑝𝑛𝒪𝑚] = [𝑝𝒪 : 𝑝𝑛𝒪𝑚] = [𝒪 : 𝑝𝑛−1𝒪𝑚],
and similarly for 𝒪𝑚 . If follows that

[1 + 𝑝𝒪𝑚 : 1 + 𝑝𝑛𝒪𝑚]
[1 + 𝑝𝒪 : 1 + 𝑝𝑛𝒪𝑚]

=
[𝒪𝑚 : 𝑝𝑛−1𝒪𝑚]
[𝒪 : 𝑝𝑛−1𝒪𝑚]

= [𝒪𝑚 : 𝒪].

To further compute the factors [𝒪× : 1 + 𝑝𝒪], we employ the strategy in
[Voi21], Lemma 24.3.12, of introducing the Jacobson radical rad𝒪 =: 𝐽. We
have 𝑝𝒪 ⊂ 𝐽 and there is an integer 𝑟 such that 𝐽𝑟 ⊂ 𝑝𝒪 (see [Rei75], Theorem
6.13), which we assume to be minimal. Thus 1 + 𝐽 ⊂ 𝒪× and we obtain a
filtration

𝒪× ⊃ 1 + 𝐽 ⊃ 1 + 𝐽2 ⊃ . . . ⊃ 1 + 𝑝𝒪 ⊃ 1 + 𝐽𝑟 .
Being kernels, all subgroups are normal inside their parent groups. It follows
that

[𝒪× : 1 + 𝑝𝒪] = |𝒪×/1 + 𝐽| · |1 + 𝐽/1 + 𝐽2| · · · |1 + 𝐽𝑟−1/1 + 𝑝𝒪|.
On the additive side, we also have a filtration 𝒪 ⊃ 𝐽 ⊃ . . . ⊃ 𝑝𝒪 and the

quotients 𝒪/𝐽 , 𝐽/𝐽2 , . . . , 𝐽𝑟−1/𝑝𝒪 are F𝑝-algebras. If 𝑅 is the rank of 𝒪, then

𝑝𝑅 = [𝒪 : 𝑝𝒪] = [𝒪 : 𝐽][𝐽 : 𝐽2] · · · [𝐽𝑟−1 : 𝑝𝒪].
We now reduce the multiplicative indices to the additive ones. Indeed

1+𝐽/1+𝐽2 � 𝐽/𝐽2, and similarly for all powers of 𝐽, and 1+𝐽𝑟−1/1+𝑝𝒪 � 𝐽𝑟−1/𝑝𝒪,
since 𝐽2(𝑟−1) ⊂ 𝑝𝒪 (at least for 𝑟 > 1; the case 𝑟 = 1 is simpler and can be done
directly). Therefore,

|1 + 𝐽/1 + 𝐽2| = |𝐽/𝐽2|, . . . , |1 + 𝐽𝑟−1/1 + 𝑝𝒪| = |𝐽𝑟−1/𝑝𝒪|.
Thus,

[𝒪× : 1 + 𝑝𝒪] = 𝑝𝑅
[𝒪×/1 + 𝐽]
[𝒪 : 𝐽] .

Now one can easily see that 𝒪×/1 + 𝐽 � (𝒪/𝐽)×. The reason for working
with the Jacobson radical is that 𝒪/𝐽 is a semisimple F𝑝-algebra, meaning that

𝒪/𝐽 � 𝑀𝑑1(𝐴1) × · · · ×𝑀𝑑𝑙 (𝐴𝑙),
for some finite division algebras 𝐴𝑖 over F𝑝 . Since finite division algebras are
fields by Wedderburn’s theorem, one can check by counting that |𝐺𝐿𝑑𝑖 (𝐴𝑖)| =
|𝑀𝑑𝑖 (𝐴𝑖)|1−𝑜(1) (this can be made precise, but the approximation is sufficient
for our purposes).

Since 𝒪 and 𝒪𝑚 have the same rank, it follows that
[𝒪×

𝑚 : 1 + 𝑝𝒪𝑚]
[𝒪× : 1 + 𝑝𝒪] = 𝑝𝑜(1).

This finishes the proof.
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For the groups of norms, we note that Z×
𝑝 ⊂ 𝒪×, and so (Z×

𝑝 )𝑛 ≤ nr(𝒪×) ≤
Z×
𝑝 . Now [Z×

𝑝 : Z×
𝑝 )𝑛] ≪ 𝑛 by Korollar 5.8 in [Neu92]. This contributes to the

global index by 𝑛𝜔(𝑁) ≪𝑛 𝑑(𝑁) ≪ 𝑁𝜀, where 𝜔(𝑁) is the number of different
primes dividing the level 𝑁 , 𝑑(𝑁) is the number of divisors of 𝑁 , and 𝜀 is any
positive real number. This completes the proof of Lemma 3.2.2.

A similar argument, taking into account all of the different embeddings,
would also apply for division algebras over number fields. Since we are only
interested in quaternion algebras for totally real number fields, we simply
note an approximate version of Main Theorem 39.1.8 in [Voi21] (it is given
for locally norm-maximal orders; see Remark 39.1.12 for the general case,
which is the same observation we make in the previous paragraph). Let 𝐹 be a
totally real number field with ring of integers 𝔬𝐹 . In this case, we recall that the
discriminant disc(𝒪) is an 𝔬𝐹-ideal and we denote by 𝑁𝐹(disc(𝒪)) its norm.

Proposition 3.2.6. Let 𝐴 be an indefinite quaternion algebra over 𝐹 and let 𝒪 be
an order in 𝐴. Then vol(𝒪1\𝔥2) = 𝑁𝐹(disc(𝒪))1/2+𝑜(1), where the implicit constant
depends on 𝐹.

3.3 THE AMPLIFIED PRETRACE FORMULA

In this section we again assume that the ground field is Q. The additional
technicalities involved in the case of quaternion algebras over number fields
are described in Section 3.7.

The space of automorphic forms 𝐿2(𝒪1\𝔥𝑛) has a discrete decomposition,
admitting a basis of Hecke-Maaß forms (𝜙 𝑗)𝑗∈N, that is, eigenfunctions of the
algebra of invariant differential operators and of the Hecke algebra (described
below). Denote the spectral parameters of each form 𝜙 𝑗 by 𝜇𝑗 ∈ 𝔞∗C, where 𝔞∗C
is the complexified dual of the Lie algebra of the diagonal torus 𝐴 in SL𝑛(R).
Recalling the main goal of this paper we note that for bounding an individual
automorphic form 𝜙 with spectral parameter 𝜇, we may assume that 𝜙 is part
of the basis (𝜙 𝑗).

For setting up the pretrace formula, we follow the notation in [BM16]. In
particular, to any 𝜆 ∈ 𝔞∗C we attach the quantity 𝐷(𝜆) defined in [BM16, (1.2)].
To ease notational clutter due to the fact that the discriminant of 𝒪 is denoted
by 𝐷, we put 𝑆(𝜆) := 𝐷(𝜆) in this paper. As in Section 2, ibid., we denote
𝜇∗ := ℜ𝜇 ∈ 𝔞∗ and assume that

𝜇∗ is sufficiently large. If 𝜆𝜙 is the Laplace
eigenvalue of 𝜙, then

𝑆(𝜇∗) ≪ 1 + 𝜆𝑛(𝑛−1)/4
𝜙 , (3.3.1)

as in [BM16, (2.3)]. The bounds we obtain in the remainder of the paper use
𝑆(𝜇∗) instead of the eigenvalue since they are slightly improved this way (we
only stated the main theorems using the eigenvalue for simplicity), but also to
simplify some exponents.
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As usual we denote𝐾 = SO(𝑛). For a function 𝑓 ∈ 𝐶∞
𝑐 (𝐾\𝐺/𝐾), the pretrace

formula states that ∑
𝑗∈N

𝑓 (𝜇𝑗)𝜙 𝑗(𝑧)𝜙 𝑗(𝑧′) =
∑
𝛾∈𝒪1

𝑓 (𝑧−1𝛾𝑧′),

for 𝑧, 𝑧′ ∈ 𝐺, where 𝑓 is the spherical transform of 𝑓 .
To calibrate the pretrace formula for our distinguished function 𝜙 with

spectral parameter 𝜇, Blomer and Maga (e.g. see [BM16], Section 3) show that
we can find 𝑓𝜇 ∈ 𝐶∞

𝑐 (𝐾\𝐺/𝐾) such that the spherical transform 𝑓 satisfies
𝑓𝜇(𝜆) ≥ 0 for all possible spectral parameters 𝜆 and 𝑓𝜇(𝜇) ≥ 1.
Remark 3.3.1. We may use the same test function 𝑓𝜇 as Blomer and Maga, since
the relevant spectral parameters of automorphic forms for the division algebra
𝐴 depend only on the archimedean completion, more precisely on the Lie
group SL𝑛(R). These are included in the set defined in (2.2) of [BM16] by the
general theory of joint eigenfunctions and spherical functions on symmetric
spaces (see [Hel84], in particular Chapter IV, Section 1, 2, and 8). Generally, the
choice of test function 𝑓𝜇 is a local problem at the archimedean place, while
applying Hecke operators as we do below is a choice of test function at the
finite places (the reader comfortable with the adelic theory of automorphic
forms could see Section 4.1 of [Sah20] for the adelic treatment of amplification).

In fact, using bounds of Blomer and Pohl [BP16, Sect. 6], we can also assume
certain decay properties of 𝑓𝜇. More precisely, we can assume the diameter of
the support of 𝑓𝜇 to be bounded by any positive constant depending on the
(fixed) degree 𝑛 as we prefer. Moreover, if 𝑑 denotes the invariant distance
function on 𝔥𝑛 , then we have the bound

𝑓𝜇(𝑔) ≪ 𝑆(𝜇∗)(1 + 𝑆(𝜇∗)
2

𝑛(𝑛−1) · 𝑑(𝑔, 1))−1/2 , (3.3.2)

which is easily implied by [BM16, (2.4)].
To further amplify the contribution of 𝜙 in the pretrace formula, Blomer

and Maga also construct a general amplifier using Hecke operators (see [BM15],
Section 6) for SL𝑛(Z). This amplifier applies in our situation as well, as long
as we only use unramified places. To explain this statement, we sketch below
some facts about the Hecke algebra, for which we note our assumption that
the ground field is Q.

First, we define the group𝑈𝒪 as

𝑈𝒪 = GL+
𝑛 (R) ×

∏
𝑝

𝒪×
𝑝

Note that
𝒪1 = 𝑈𝒪 ∩ 𝐴×.
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Next, as can be seen from Lemma 3.2.4 for instance, the primes 𝑝 that
divide 𝐷 := disc(𝒪) are exactly the primes at which 𝐴 ramifies or 𝒪𝑝 is not
maximal, and we call these primes ramified.

From now on we assume that 𝒪 is locally norm-maximal, meaning that
nr(𝒪×

𝑝 ) = Z×
𝑝 for all primes 𝑝. This assumption, explained in Remark 3.3.2, is

satisfied, for example, by any maximal orders or intersection of two maximal
orders, i.e. Eichler orders. We define the semigroup 𝑆𝒪 inside the adelisation
𝐴×
A by

𝑆𝒪 =

(
GL+

𝑛 (R) ×
∏
𝑝

𝑆𝑝

)
∩ 𝐴×

A,

where 𝑆𝑝 = {𝛼 ∈ 𝒪𝑝 : nr(𝛼) ≠ 0} for 𝑝 ∤ 𝐷 and 𝑆𝑝 = 𝒪×
𝑝 for 𝑝 | 𝐷. This

distinction means that we only consider the unramified Hecke algebra. Finally,
let

Δ𝒪 = 𝑆𝒪 ∩ 𝒪 .
We can now define the classical Hecke algebra𝑅(𝒪1 ,Δ𝒪), which is generated

by double cosets of the form 𝒪1𝜉𝒪1, where 𝜉 ∈ Δ𝒪 , and similarly the adelic
Hecke algebra 𝑅(𝑈𝒪 , 𝑆𝒪). For more details, see [Miy89], Sections 2.7 and 5.3.

The adelic point of view is advantageous since we automatically obtain a fac-
torisation of 𝑅(𝑈𝒪 , 𝑆𝒪) as the tensor product

⊗
𝑝 𝑅(𝒪×

𝑝 , 𝑆𝑝) of the local Hecke
algebras. Fortunately in our case, there is essentially nothing lost in translation
between the classical and the adelic Hecke algebra (both unramified). Indeed,
they are isomorphic under the simple correspondence 𝒪1𝜉𝒪1 ↦→ 𝑈𝒪𝜉𝑈𝒪 . This
can be seen by carefully applying the argument in the proof of Theorem 5.3.5
in [Miy89]. The proof makes crucial use of approximation theorems.
Remark 3.3.2. The property of being locally norm-maximal implies that the
idelic quotient defined by 𝒪 has only one connected component. In particular,
the dictionary between classical automorphic forms and adelic forms is simpler.
For many works in the literature (see for instance the use of Eichler orders in
[Tem10], and [SV19], Remark 6.3.1), this is a common “cosmetic” assumption
on orders.

Indeed, our counting arguments in prime degree, the key new ideas in this
paper, simply make no use of this assumption. Removing it is merely a matter of
working directly with adelic automorphic forms and the full unramified Hecke
algebra. This is the approach in [Sah20], where the generalisation of Templier’s
argument for Eichler orders [Tem10] to arbitrary orders is transparent.

In fact, even working classically, the pretrace inequality (3.3.3) below and
Remark 3.3.4 are still true for any order 𝒪, at least conditionally on a suitable
Riemann hypothesis. We sketch this technicality in this paragraph, which
should be read preferably after going through the proof of Theorem 3.1. More
precisely, to adjust the definition of the Hecke algebra, one may need to impose
additionally that 𝑆𝑝 = 𝒪×

𝑝 for all primes 𝑝 that are not 𝑛-th powers modulo 𝐷
(supposing for simplicity that (𝐷, 𝑛) = 1). This is the “worst-case” scenario,
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since we have the inclusions (Z×
𝑝 )𝑛 ⊂ nr(𝒪×

𝑝 ) ⊂ Z×
𝑝 . Under this assumption,

the proof of Theorem 5.3.5 in [Miy89] goes through. We are now left with a
potentially smaller set of primes 𝒫 , defined just before (3.3.3), where we also
assume that these primes are 𝑛-th powers modulo 𝐷. An application of the
generalised Riemann hypothesis and the Chebotarev density theorem would
then imply that |𝒫| ≫𝑛 𝐿

1−𝜀𝐷−𝜀, even for 𝐿 a small power of 𝐷, as taken in
the proof of the main theorem.

Now at unramified primes 𝑝, the local Hecke algebra 𝑅(𝒪×
𝑝 , 𝑆𝑝) is iso-

morphic to the Hecke algebra of GL𝑛(Z𝑝). Therefore, we can use the same
Hecke operators as Blomer and Maga.

For 𝑚 ∈ Z, let
𝒪(𝑚) := {𝛾 ∈ 𝒪 | nr(𝛾) = 𝑚}.

Let 𝐿 > 5 be a parameter and 𝒫 be the set of primes in [𝐿, 2𝐿] that are
unramified. We have the pretrace inequality (see [BM16], (2.5))

|𝒫|2 · |𝜙(𝑧)|2 ≪ |𝒫| · 𝑆(𝜇∗) +
𝑛∑

𝜈=1

∑
𝑙1 ,𝑙2∈𝒫

1
𝐿(𝑛−1)𝜈

∑
𝛾∈𝒪(𝑙𝜈1 𝑙

(𝑛−1)𝜈
2 )

| 𝑓𝜇(𝑧−1�̃�𝑧)|, (3.3.3)

where �̃� = 𝛾/nr(𝛾)1/𝑛 ∈ SL𝑛(R). Note that the determinantal divisors in
[BM15] do not seem to easily translate into our setting, yet the norm does, as
one can easily check using the explicit isomorphism between the classical and
adelic Hecke algebras above. Although these additional conditions are very
important in the work of Blomer and Maga, we are able to solve the counting
problem described below using only the condition on the norm.

Since 𝑓𝜇 has compact support, let 0 < 𝜌 ≪ 1 be such that 𝑓𝜇(𝑔) = 0 if
𝑑(𝑔, 1) > 𝜌, where 𝑑 is the invariant distance function on 𝔥𝑛 . Using the bound
𝑓𝜇 ≪ 𝑆(𝜇∗) from (3.3.2), we may obtain an explicit bound for 𝜙(𝑧) from the
pretrace inequality by counting the number of elements 𝛾 ∈ 𝒪(𝑚) such that
𝑑(𝑧, �̃�𝑧) < 𝜌. We correspondingly define in general

𝒪(𝑚; 𝑧, 𝛿) = {𝛾 ∈ 𝒪 : nr(𝛾) = 𝑚, 𝑑(𝑧, �̃�𝑧) < 𝛿}.

Remark 3.3.3. We note that the compact support of 𝑓𝜇 can be assumed to be
small enough in terms of the degree 𝑛, i.e. 𝜌 ≪𝑛 1 with an implicit constant of
our choice, since we are allowing all implicit constants to depend on 𝑛. This
follows from a quick inspection of the technique in [BP16].

A more careful use of (3.3.2) gives us a saving in the spectral aspect, i.e. in
𝑆(𝜇∗), at least if 𝑑(𝑧, �̃�𝑧) > 𝛿 for 𝛿 > 0 large enough in terms of 𝑆(𝜇∗). For all
other 𝛾 appearing in the sum, we trivially bound 𝑓𝜇(𝑧−1�̃�𝑧) ≪ 𝑆(𝜇∗) as above.
We therefore split the sum using the parameter 𝛿 as above and obtain the
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inequality

|𝒫|2 · |𝜙(𝑧)|2 ≪ 𝑆(𝜇∗)
(
|𝒫| +

𝑛∑
𝜈=1

∑
𝑙1 ,𝑙2∈𝒫

1
𝐿(𝑛−1)𝜈 #𝒪(𝑙𝜈1 𝑙

(𝑛−1)𝜈
2 ; 𝑧, 𝛿)

+ 𝑆(𝜇∗)
−1

𝑛(𝑛−1) · 𝛿− 1
2

𝑛∑
𝜈=1

∑
𝑙1 ,𝑙2∈𝒫

1
𝐿(𝑛−1)𝜈 #𝒪(𝑙𝜈1 𝑙

(𝑛−1)𝜈
2 ; 𝑧, 𝜌)

)
. (3.3.4)

Remark 3.3.4. Note that |𝒫| ≫ 𝐿1−𝜀 · 𝐷−𝜀, at least for 𝐿 large enough. This
follows from the prime number theorem and because the number of ramified
primes we leave out is bounded by 𝜏(𝐷) ≪ 𝐷𝜀.

To obtain a hybrid bound, we need to count elements in𝒪(𝑚; 𝑧, 𝛿)uniformly
in disc(𝒪) and 𝑆(𝜇∗). To deduce anything about the sup-norm of 𝜙, the counting
must also be done uniformly in 𝑧, at least in a fundamental domain for 𝒪1.
Though compact, this fundamental domain grows with the volume.

In [Sah20], the problem of uniformity in 𝑧 was resolved by having a
counting argument that only depends on the index of 𝒪 inside a maximal
order 𝒪𝑚 . Saha was then able to conjugate 𝑧 into a fixed fundamental domain
for 𝒪𝑚 and work with a conjugated order with the same index. The implicit
constants in the bounds would then possibly depend on the particular choice
of fundamental domain for the maximal order.

Our argument does not require a choice of maximal order and the bounds
are uniform on the whole generalised upper half plane. This is done by
counting using only traces and norms, which are conjugation invariant.

More precisely, the condition 𝑑(𝑧, �̃�𝑧) ≪ 𝜌 implies that 𝑧−1�̃�𝑧 = 𝑘 + 𝑂(𝜌)
for some 𝑘 ∈ SO(𝑛), at least for 𝜌 ≪ 1 small. Indeed, using the Cartan
decomposition, we can write any 𝑔 ∈ SL𝑛(R) as 𝑔 = 𝑘1 exp(𝐶(𝑔))𝑘2, where
𝑘1 , 𝑘2 ∈ SO(𝑛) and 𝐶(𝑔) is diagonal with vanishing trace. Then 𝑑(𝑔, 1) =𝐶(𝑔)2, where we view 𝐶(𝑔) as a vector in R𝑛 . The claim follows by writing
the exponential as a power series.

On the new condition, as an example, applying the trace directly already
provides a bound on tr(�̃�) where any dependence on 𝑧 is completely removed,
noting that orthogonal matrices are bounded. This conjugation invariant
approach is used throughout the counting argument. Another example is
given in the subsection below, where we derive the so-called convexity bound
for the sup-norm automorphic forms in certain cases.

3.3.1 The baseline bound

The benchmark bound for the sup-norm of automorphic forms that one seeks
to improve can be usually obtained by using the pretrace formula without the
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amplifier. It follows easily from the properties of 𝑓𝜇 that

|𝜙(𝑧)|2 ≤
∑
𝛾∈𝒪1

𝑓𝜇(𝑧−1𝛾𝑧) ≪

𝑆(𝜇∗) · #{𝛾 ∈ 𝒪1 : 𝑧−1𝛾𝑧 = 𝑘 + 𝑂(𝜌), for some 𝑘 ∈ SO(𝑛)}.

Suppose that 𝑛 is odd. Then any degree 𝑛 special orthogonal matrix must
have 1 as an eigenvalue, meaning that det(𝑘 − 1) = 0. Thus, if 𝛾 ∈ 𝒪1 and
𝑧−1𝛾𝑧 = 𝑘 + 𝑂(𝜌), then we may subtract the identity matrix and apply the
determinant to obtain

nr(𝛾 − 1) = det(𝑘 − 1 + 𝑂(𝜌)) = 𝑂𝑛(𝜌).

As mentioned in Remark 3.3.3, we can take 𝜌 as small as we wish in terms of 𝑛.
Since 𝛾 − 1 ∈ 𝒪, it follows by integrality of the norm that nr(𝛾 − 1) = 0. Since
𝐴 is a division algebra, this implies that 𝛾 = 1. Therefore, there is only one
term appearing on the geometric side of the pretrace formula formula and
using the inequality (3.3.2) we obtain

|𝜙(𝑧)| ≪ 𝑆(𝜇∗) 1
2 ,

where the implied constant depends at most on 𝑛. This is the convexity bound
(recall also the bound 3.3.1).

This strategy cannot succeed when 𝑛 is even, if only for the simple observa-
tion that −1 lies in 𝒪1. Some ad-hoc arguments involving the classification of
motions suffice for the case 𝑛 = 2, but the author was not able to find a general
argument for all even 𝑛. This is part of the reason why this paper mainly deals
with algebras of odd degree, besides quaternion algebras.

3.4 COUNTING IN THE DISCRIMINANT ASPECT

For simplicity, we first describe the counting argument over Q and adjust
it where necessary for quaternion algebras over number fields in the next
subsection. From now on, assume that deg(𝐴) = 𝑝 ≥ 3, a prime. Let 𝛿 be
a positive real number, which we assume to be uniformly bounded, e.g. by
1. As explained in the previous section, we are interested in bounding the
cardinality of

𝒪(𝑚; 𝑧, 𝛿) = {𝛾 ∈ 𝒪 : nr(𝛾) = 𝑚, 𝑑(𝑧, �̃�𝑧) < 𝛿},

where �̃� = 𝛾/nr(𝛾)1/𝑝 . The condition 𝑑(𝑧, �̃�𝑧) < 𝛿 is equivalent to 𝑧−1�̃�𝑧 =

𝑘 + 𝑂(𝛿) for some 𝑘 ∈ SO(𝑝).
To motivate the following lemmata, we recall the tower rule (3.2.1) for

division algebras. Especially for prime degree 𝑝, this severely restricts the
possible dimensions of subalgebras in 𝐴. If one can show that the subalgebra
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generated by the elements we are counting is proper, then the tower rule
drastically reduces the dimension of the counting problem, automatically. In
our case, the subalgebra will actually be commutative, which is crucial in
our argument. To show properness in the first place, we use a version of the
determinant method, for which we need good control over a basis of a vector
space.

Lemma 3.4.1. The Q-algebra generated by
⋃

1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿) is contained in the
Q-vector space spanned by

⋃
1≤𝑚≤𝐿2𝑝−2 𝒪(𝑚; 𝑧, (2𝑝 − 2)𝛿).

Proof. By the tower rule, a subalgebra of 𝐴 is of the form Q, Q(𝑥), or Q(𝑥, 𝑦),
where 𝑥, 𝑦 ∈ 𝐴 and Q(𝑥, 𝑦) is the smallest algebra containing both 𝑥 and 𝑦.
Indeed, if a subalgebra contains a non-rational element 𝑥, then it contains
Q(𝑥), which must have dimension 𝑝 over Q (the characteristic polynomial has
degree 𝑝). If it contains another element not in Q(𝑥), say 𝑦, then it contains
Q(𝑥, 𝑦). The tower rule implies now that 𝐴 = Q(𝑥, 𝑦). The algebra Q(𝑥, 𝑦) is
generated as a vector space by monomials of degree at most 2𝑝 − 2.

Now if 𝑎 𝑗 ∈
⋃

1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿) for 𝑗 = 1, . . . , 2𝑝 − 2, then the reduced norm
of

∏
𝑎 𝑗 is at most 𝐿2𝑝−2 and, by the triangle inequality, 𝑑(𝑧,∏ 𝑎 𝑗 · 𝑧) < (2𝑝−2)𝛿.

The order structure ensures that
∏
𝑎 𝑗 lies in 𝒪.

For the next lemma denote disc(𝒪) := 𝐷.

Lemma 3.4.2. The Q-vector space spanned by
⋃

1≤𝑚≤𝐿2𝑝−2 𝒪(𝑚; 𝑧, (2𝑝 − 2)𝛿) is
proper, i.e. not equal to 𝐴, if 𝐿≪ 𝐷1/4𝑝(𝑝−1)−𝜀, where the implicit constant depends
only on 𝑝 and 𝛿.

Proof. Let 𝛾1 , . . . , 𝛾𝑝2 be elements of
⋃

1≤𝑚≤𝐿2𝑝−2 𝒪(𝑚; 𝑧, (2𝑝 − 2)𝛿). In this case
nr(𝛾𝑖𝛾𝑗) ≪ 𝐿4(𝑝−1) and we have that 𝑑(𝛾𝑖𝛾𝑗𝑧, 𝑧) ≤ 𝑑(𝛾𝑖𝑧, 𝑧) + 𝑑(𝛾𝑗𝑧, 𝑧) <
4(𝑝 − 1)𝛿, by the triangle inequality. In particular

tr(𝛾𝑖𝛾𝑗) ≪𝛿,𝑝 𝐿
4(𝑝−1)/𝑝 ,

by applying the trace to the equation 𝑧−1𝛾𝑖𝛾𝑗𝑧 = nr(𝛾𝑖𝛾𝑗)1/𝑝(𝑘 + 𝑂𝑝(𝛿)), with
some 𝑘 ∈ SO(𝑝).

Consider now 𝑠 = det(tr(𝛾𝑖𝛾𝑗)𝑖 , 𝑗). Recall that 𝐷 is the generator of the ideal
in Zgenerated by {det tr(𝑥𝑖𝑥 𝑗) | 𝑥𝑖 ∈ 𝒪 , 𝑖 = 1, . . . 𝑝2}. Since 𝛾𝑖 ∈ 𝒪 for all 𝑖, it
follows that 𝐷 | 𝑠.

On the other hand, by using the bound above, we deduce that 𝑠 ≪ 𝐿4𝑝(𝑝−1).
Thus if 𝐿 ≪ 𝐷1/4𝑝(𝑝−1)−𝜀, then 𝑠 = 0. By the non-degeneracy of the bilinear
form given by the reduced trace, it follows that 𝛾1 , . . . , 𝛾𝑝2 are not linearly
independent.

Thus, if 𝐿 is small enough, we can assume that we are counting matrices in
a proper subalgebra of 𝐴, which must be Q or a field extension 𝐸/Q of degree
𝑝. This is where the use of 𝑝 being a prime is crucial.
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We are now counting certain elements in 𝒪𝐸, the ring of integers of 𝐸,
which certainly includes 𝒪 ∩ 𝐸. We do so by counting ideals and units. Since
the units in Zare only ±1, we can concentrate on the non-trivial extensions,
which must have an infinite group of units, at least if 𝑝 > 2. It is important
to note that the reduced norm and the reduced trace in 𝐴 of an element in a
subfield 𝐸 ⊂ 𝐴 such that dimQ 𝐸 = 𝑝 are the same as the number field norm,
resp. trace of 𝐸/Q (see [Pie82, Sect. 16.2]).

Lemma 3.4.3. Let 𝐸/Q be a cyclic extension of degree 𝑝 that is a subfield of 𝐴 and let
𝒪 be an order of 𝐴. The number of units 𝜉 ∈ 𝒪× ∩ 𝐸 such that 𝑑(𝑧, �̃�𝑧) ≤ 𝛿 for a
given 𝑧 ∈ 𝔥𝑝 is ≪ 𝑝𝑝(1 + 𝛿)𝑝−1.

Proof. Let 𝜉 ∈ 𝒪× ∩ 𝐸. Then 𝜉 ∈ 𝒪×
𝐸

, where 𝒪𝐸 is the ring of integers of 𝐿, by
integrality over Z. Thus, nr(𝜉) = 𝑁𝐸/Q(𝜉) = ±1.

Next, the condition 𝑑(𝑧, �̃�𝑧) ≤ 𝛿 is equivalent to 𝜉 ∈ 𝑧𝐵(𝛿)𝑧−1, where 𝐵(𝛿)
is a union of 𝛿-balls around all elements of SO(𝑝). Applying the trace, we
find that tr(𝜉) ≪ 𝑝(1 + 𝛿). Since tr(𝜉) ∈ Zby integrality, we see that there are
≪ 𝑝(1 + 𝛿) possibilities for the value of tr(𝜉).

We may apply the same reasoning to 𝜉 𝑗 and derive that there are≪ 𝑝(1+ 𝑗𝛿)
possibilities for the value of tr(𝜉 𝑗). Indeed,

𝑑(𝑧, �̃� 𝑗𝑧) ≤ 𝑑(𝑧, �̃�𝑧) + 𝑑(𝜉𝑧, �̃� 𝑗𝑧) = 𝑑(𝑧, �̃�𝑧) + 𝑑(𝑧, �̃� 𝑗−1𝑧) ≤ 𝑗𝛿,

inductively. Note also that 𝜉 𝑗 ∈ 𝒪× ∩ 𝐸 since 𝒪 is closed under multiplication.
Now the characteristic polynomial of 𝜉 is

𝑋𝑝 − tr(𝜉)𝑋𝑝−1 + 1
2

[
tr(𝜉)2 + tr(𝜉2)

]
𝑋𝑝−2 + . . . ± det(𝜉).

By Newton’s identities, each coefficient is determined by the values of tr(𝜉 𝑗)
for certain 𝑗. By the bounds above, there are only ≪ ∏

𝑗=1,...𝑝−1 𝑝(1 + 𝑗𝛿) ≪
[𝑝(1 + 𝛿)]𝑝−1 polynomials that are satisfied by a unit 𝜉 as in the statement of
the lemma. Since each polynomial can have at most 𝑝 different roots, the proof
is finished.

Lemma 3.4.4. Let 𝐸 ⊂ 𝐴 be a field of degree 𝑝 over Q. Then for a any 𝑧 ∈ 𝔥𝑝 and
any positive integer 𝑚 we have

𝒪𝐸(𝑚; 𝑧, 𝛿) ≪𝑝 𝜏(𝑚)𝑝−1 · (1 + 𝛿)𝑝−1.

Proof. Let 𝛾 ∈ 𝒪𝐸 with nr(𝛾) = 𝑁𝐸/Q(𝛾) = 𝑚. Up to units, there are only
𝜏(𝑚)𝑝−1 elements of 𝒪𝐸 with norm 𝑚. Indeed, a principal ideal is determined
by its generator up to units and the norm of the ideal is equal to the norm of
the generator. Since ideals factorise uniquely into prime factors, we only need
to count prime ideals.

Above each rational prime, there are at most 𝑝 prime ideals of𝒪𝐸. Therefore,
if 𝑞𝑣 | 𝑚 for a prime 𝑞, then we need to choose at most 𝑝 numbers 𝑎1 , . . . , 𝑎𝑝 ∈
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Z≥0 such that 𝑎1 + . . . + 𝑎𝑝 = 𝑣 to determine an ideal of norm 𝑞𝑣 . The number
of such tuples is 𝑣 + 𝑝 − 1 choose 𝑝 − 1, that is << 𝑣𝑝−1. Thus, there are at most

≪
∏
𝑞𝑣∥𝑚

𝑣𝑝−1 = 𝜏(𝑚)𝑝−1

ideals of norm 𝑚.
Now if 𝛾 ∈ 𝒪𝐸(𝑚; 𝑧, 𝛿) and 𝜉𝛾 ∈ 𝒪𝐸(𝑚; 𝑧, 𝛿) for some unit 𝜉 ∈ 𝒪×

𝐸
, then

𝑑(𝑧, �̃�𝑧) ≤ 𝑑(𝑧, �̃��̃�𝑧) + 𝑑(�̃��̃�𝑧, 𝜉𝑧) = 𝑑(𝑧, �̃��̃�𝑧) + 𝑢(𝑧, �̃�𝑧) ≤ 2𝛿.

Thus, we finish the proof by counting such units using Lemma 3.4.3.

Putting everything together and recalling the divisor bound 𝜏(𝑚) ≪ 𝑚𝜀

we obtain the following proposition.

Proposition 3.4.5. Let 𝑚 ≪ 𝐷
1

4𝑝(𝑝−1)−𝜀 with implicit constant as in Lemma 3.4.2
and let 𝑧 ∈ 𝔥𝑝 . Then #𝒪(𝑚; 𝑧, 𝛿) ≪𝑝 𝑚

𝜀, where the implicit constant depends only
on 𝜀, 𝛿, and 𝑝.

3.5 COUNTING IN THE SPECTRAL ASPECT

Let 𝜇 be the spectral parameter of 𝜙 and denote 𝑆 ≍ 𝐷(𝜇∗) as in [BM16, (1.2)].

3.5.1 The counting argument for small distances

We are interested in bounding the cardinality of

𝒪(𝑚; 𝑧, 𝛿) = {𝛾 ∈ 𝒪 : nr(𝛾) = 𝑚, 𝑑(𝑧, �̃�𝑧) = 𝑂(𝛿)},

where �̃� = 𝛾/nr(𝛾)1/𝑝 . The condition 𝑑(𝑧, �̃�𝑧) = 𝑂(𝛿) is equivalent to 𝑧−1�̃�𝑧 =
𝑘 + 𝑂(𝛿) for some 𝑘 ∈ SO(𝑝).

As opposed to the discriminant aspect, we can now gain savings in the
pretrace inequality by using 𝛿 as a parameter. For 𝑝 ≥ 3, instead of showing
that the Q-algebra generated by the elements we are counting is a proper
algebra and then deducing commutativity, we directly show that it must be a
commutative field, at least if 𝛿 is small enough.

For the following lemma, assume that 𝑝 ≥ 3 is any odd integer, not
necessarily prime.

Lemma 3.5.1. The Q-algebra generated by
⋃

1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿) is commutative, i.e. a
field, if 𝛿 ≪ 𝐿−2−𝜀, where the implicit constant depends only on 𝑝.

Proof. Let 𝛾1 , 𝛾2 ∈ ⋃
1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿). A few applications of the triangle in-

equality, recalling that 𝑑(�̃�𝑧, 𝑧) = 𝑑(�̃�−1𝑧, 𝑧),3 show that 𝑑(𝛾−1
1 𝛾−1

2 𝛾1𝛾2𝑧, 𝑧) ≪
3For instance, 𝑑(𝛼−1𝛽𝑧, 𝑧) ≤ 𝑑(𝛼−1𝛽𝑧, 𝛼−1𝑧)+ 𝑑(𝛼−1𝑧, 𝑧) = 𝑑(𝛽𝑧, 𝑧)+ 𝑑(𝛼𝑧, 𝑧) by invariance

of the distance function.
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𝛿. This implies that
𝑧−1𝛾−1

1 𝛾−1
2 𝛾1𝛾2𝑧 = 𝑘 + 𝑂(𝛿), (3.5.1)

since nr(𝛾−1
1 𝛾−1

2 𝛾1𝛾2) = 1.
Recall that we assume 𝑝 ≥ 3 and note that det(𝑘 − 1) = 0 for all 𝑘 ∈ SO(𝑝),

since 1 is certainly an eigenvalue of orthogonal matrices in odd degree.
Therefore, subtracting 1 from (3.5.1) and taking the determinant gives

nr(𝛾−1
1 𝛾−1

2 𝛾1𝛾2 − 1) = det(𝑧−1(𝛾−1
1 𝛾−1

2 𝛾1𝛾2 − 1)𝑧)
= det(𝑘 − 1 + 𝑂(𝛿)) = 𝑂𝑝(𝛿).

Multiplying this last equation by nr(𝛾2𝛾1) implies that

nr(𝛾1𝛾2 − 𝛾2𝛾1) = nr(𝛾2𝛾1) · nr(𝛾−1
1 𝛾−1

2 𝛾1𝛾2 − 1) = 𝑂𝑝(𝛿 nr(𝛾1)nr(𝛾2)). (3.5.2)

The commutator of two elements of𝒪 is again in𝒪 and so nr(𝛾1𝛾2−𝛾2𝛾1) ∈
Z. Thus if 𝛿 ≪ 𝐿−2−𝜀, then it follows that nr(𝛾1𝛾2 − 𝛾2𝛾1) = 0, which implies
that 𝛾1𝛾2 = 𝛾2𝛾1 since 𝐴 is a division algebra.

The argument above makes crucial use of the fact that special orthogonal
matrices in odd degree necessarily have 1 as eigenvalue, which is not the case
any more in even degree. To produce an alternative argument for 𝑝 = 2, we
shall return to the strategy employed for the discriminant aspect. This is done
in Section 3.7.2.

Given the lemma above, we may assume that we are counting in a field
Q ⊂ 𝐸. This is done exactly as in Lemma 3.4.4.

Proposition 3.5.2. Let 𝐴 have odd degree 𝑝 ≥ 3 . If 𝛿 ≪ 𝑚−2−𝜀, then #𝒪(𝑚; 𝑧, 𝛿) ≪
𝑚𝜀.

3.5.2 The counting argument for large distances

If 𝛿 = 𝜌 ≫ 1 is as large as the diameter of the support of 𝑓𝜇 (see Section 3.3),
we still need to bound the cardinality of 𝒪(𝑚; 𝑧, 𝛿) by a reasonable power
of 𝑚 but with no dependence on the discriminant 𝐷. Since the amplifier is
constructed only from unramified primes, as explained in Section 3.3, we may
assume that 𝑚 is coprime to the discriminant of 𝐴.

Proposition 3.5.3. We have the bound #𝒪(𝑚; 𝑧, 𝜌) ≪ 𝑚𝑝−1+𝜀, where the implicit
constant depends only on 𝑝.

Proof. Let 𝛾 ∈ 𝒪(𝑚; 𝑧, 𝜌) and consider the principal ideal 𝛾𝒪𝑚 in a maximal
order 𝒪𝑚 containing 𝒪. We have nr(𝛾)Z= nr(𝛾𝒪𝑚) and if 𝛾𝒪𝑚 = 𝛾′𝒪𝑚 , then
𝛾𝜉 = 𝛾′ for some unit 𝜉 ∈ 𝒪×

𝑚 . It therefore suffices to count ideals with norm
𝑚 and bound the number of units 𝜉 as above.

By the local-global dictionary for ideals, it suffices to count locally. Since 𝑚
is coprime to the discriminant of 𝐴, we only need to count ideals of norm 𝑞𝑒
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in 𝑀𝑝(Z𝑞) for primes 𝑞 and positive integers 𝑒. This is done for instance as in
Lemma 26.4.1 in [Voi21] and is a well-known computation in the theory of zeta
functions of algebras. We use the fact that all ideals are principal and employ
the theory of elementary divisors to find a generator of the ideal of lower
triangular form, where the diagonal is given by (𝑞𝑎1 , . . . , 𝑞𝑎𝑝 ) for non-negative
integers 𝑎1 , . . . , 𝑎𝑝 such that 𝑎1 + . . . 𝑎𝑝 = 𝑒. All entries on the column below
𝑞𝑎 𝑗 are uniquely defined as elements of Z/𝑞𝑎 𝑗Z. An easy counting argument
thus shows that there are∑

𝑎1+...𝑎𝑝=𝑒
𝑞(𝑝−1)𝑎1+(𝑝−2)𝑎2+...𝑎𝑝−1 ≪ 𝑞𝑒(𝑝−1)(1+𝜀)

ideals of norm 𝑞𝑒 in 𝑀𝑝(Z𝑞).
This shows that there are ≪ 𝑚𝑝−1 ideals of norm 𝑚 in 𝒪𝑚 , which is

implicitly also a bound for the number of principal ideals. Now let 𝜉 ∈ 𝒪×
𝑚

be a unit as in the first paragraph of this proof. By the triangle inequality, we
find that 𝑑(𝜉𝑧, 𝑧) ≪ 𝜌. Since nr(𝜉) = 1, this implies that 𝑧−1𝜉𝑧 = 𝑘 + 𝑂(𝜌), for
some 𝑘 ∈ SO(𝑝).

Suppose 𝑝 is odd. If 𝜉1 , 𝜉2 are two such units, then the same reasoning as
before (3.5.2) provides the bound

nr(𝜉1𝜉2 − 𝜉2𝜉1) = 𝑂𝑝(𝜌).

As observed in Remark 3.3.3, we may assume that nr(𝜉1𝜉2 − 𝜉2𝜉1) < 1. By
integrality, this implies that 𝜉1𝜉2 = 𝜉2𝜉1.

Therefore, we may reduce the counting problem to counting units in the
maximal order of a field by restricting to the commutative algebra generated by
these units. As proved in Lemma 3.4.4, there are ≪𝑝 1 units with the required
properties. Putting all bounds together proves the statement.

3.6 PROOF OF THEOREM 3.1

We are now ready to insert the counting results into the pretrace inequality
(3.3.4). Let the degree 𝑛 be an odd number, at least 3.

3.6.1 The spectral aspect

We take the parameter 𝛿 as large as possible to still have control over the
counting problem, but also gain a saving in the third term of (3.3.4). Since the
largest norm coming up in the pretrace inequality is 𝑙𝑛1 𝑙

(𝑛−1)𝑛
2 ≪ 𝐿𝑛

2 , we must
take 𝛿 ≪ 𝐿−2𝑛2−𝜀 to be able to apply Proposition 3.5.2.

With such a choice of 𝛿, the second term in (3.3.4) is bounded as
𝑛∑

𝜈=1

∑
𝑙1 ,𝑙2∈𝒫

1
𝐿(𝑛−1)𝜈 #𝒪(𝑙𝜈1 𝑙

(𝑛−1)𝜈
2 ; 𝑧, 𝛿) ≪𝑛 |𝒫|2𝐿−(𝑛−1)+𝜀. (3.6.1)
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As already mentioned, to obtain a saving from the third term, we take 𝛿 as
large as possible, i.e. 𝛿 ≍ 𝐿−2𝑛2−𝜀. Together with Proposition 3.5.3, the third
term in (3.3.4) can be bounded by

𝑆(𝜇∗)
−1

𝑛(𝑛−1) · 𝛿 −1
2

𝑛∑
𝜈=1

∑
𝑙1 ,𝑙2∈𝒫

1
𝐿(𝑛−1)𝜈 #𝒪(𝑙𝜈1 𝑙

(𝑛−1)𝜈
2 ; 𝑧, 𝜌)

≪ 𝑆(𝜇∗)
−1

𝑛(𝑛−1) 𝐿𝑛
2+𝜀|𝒫|2

𝑛∑
𝜈=1

𝐿(𝑛−1)2𝜈

𝐿(𝑛−1)𝜈

≪𝑛 𝑆(𝜇∗)
−1

𝑛(𝑛−1) |𝒫|2𝐿𝑛2+𝑛(𝑛−1)(𝑛−2)+𝜀.

We introduce the two bounds above into the pretrace inequality and,
recalling that |𝒫| ≫ 𝐿1−𝜀 · 𝐷−𝜀, where 𝐷 is the discriminant, we obtain

|𝜙(𝑧)|2 ≪ 𝑆(𝜇∗)
(
𝐿−1+𝜀𝐷𝜀 + 𝐿−(𝑛−1)+𝜀𝐷𝜀 + 𝑆(𝜇∗)

−1
𝑛(𝑛−1) 𝐿𝑛

2+𝑛(𝑛−1)(𝑛−2)+𝜀
)
.

It is clear that the first term dominates the second. After solving an easy
optimisation problem for the first and third terms, we arrive at the bound

|𝜙(𝑧)|2 ≪ 𝑆(𝜇∗) · 𝑆(𝜇∗)
−1

𝑛(𝑛−1)(𝑛2+𝑛(𝑛−1)(𝑛−2)+1)+𝜀 · 𝐷𝜀 ≪ 𝑆(𝜇∗) · 𝑆(𝜇∗)
−1

𝑛4(𝑛−1)+𝜀 · 𝐷𝜀 ,

(3.6.2)
where we weaken the first bound to the last one simply for aesthetic reasons.

3.6.2 The discriminant aspect

Here we assume that 𝑛 = 𝑝 is a prime. We cannot gain any saving in the
discriminant aspect by using the 𝛿 parameter. Therefore, we set 𝛿 = 𝜌 and
ignore the last term in (3.3.4). In this case, we take 𝐿 as large as Proposition
3.4.5 allows. Taking into account the largest norms appearing in (3.3.4), we
may choose 𝐿 ≍ 𝐷

1
4𝑛3(𝑛−1) . Then the second term in the pretrace inequality can

be bounded as in (3.6.1), so that we have

|𝜙(𝑧)|2 ≪ 𝑆(𝜇∗)(𝐿−1+𝜀 + 𝐿−(𝑛−1)+𝜀) ≪ 𝑆(𝜇∗) · 𝐿−1+𝜀 ≪ 𝑆(𝜇∗)𝐷
−1

4𝑛3(𝑛−1)+𝜀. (3.6.3)

3.6.3 The hybrid bound

We interpolate between the two bounds (3.6.2) and (3.6.3) simply by multiply-
ing them, so that

|𝜙(𝑧)| ≪ |𝜙(𝑧)|1/2 · |𝜙(𝑧)|1/2 ≪ 𝑆(𝜇∗) 1
2𝑆(𝜇∗)

−1
4𝑛4(𝑛−1)+𝜀𝐷

−1
16𝑛3(𝑛−1)+𝜀.

Recalling (3.3.1), this proves Theorem 3.1.
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3.7 QUATERNION ALGEBRAS OVER NUMBER FIELDS

The full classification of cocompact arithmetic subgroups requires us to also
consider quaternion algebras over number fields and Templier [Tem10] treats
the counting problem in this more general setting (though only in the level
aspect and only for Eichler orders). This case is slightly more technical and we
treat the problem by applying the same ideas as above more carefully. We first
recall the theoretical background.

Let 𝐹 be a totally real number field of degree 𝑛. We denote by 𝔬𝐹 its ring
of integers and by 𝑁𝐹 the number field norm of 𝐹/Q. Let 𝐴 be a division
quaternion algebra over 𝐹 and assume that there is an embedding 𝜎0 ∈
hom(𝐹,R) such that 𝐴 ⊗𝜎0 R � 𝑀2(R). For all other embeddings 𝜎0 ≠ 𝜎 ∈
hom(𝐹,R) assume that𝐴⊗𝜎R � ℋ(R), whereℋ(R) is the Hamilton quaternion
algebra.

Now let 𝒪 be an 𝔬𝐹-order and let 𝔇 = disc(𝒪) ⊂ 𝔬𝐹 be its discriminant. By
abuse of notation, we also denote a generator of the discriminant ideal by 𝔇.
Let

𝐷 := |𝑁𝐹(𝔇)|.
We may view 𝐴 as embedded in 𝐴∞ � 𝑀2(R) × ℋ(R)𝑛−1. We use 𝜑0 to

denote the projection onto the first component 𝑀2(R) and 𝜑𝑖 , 𝑖 = 1, . . . , 𝑛 − 1,
to denote the projections onto the Hamiltonian components.

Note that 𝜎𝑖(tr(𝛾)) = tr(𝜑𝑖(𝛾)) for 𝜑𝑖 the projection onto the 𝜎𝑖 component.
The trace on the left hand side refers to the quaternion trace and on the right
hand side it refers to the usual matrix trace. Similarly, 𝜎𝑖(nr(𝛾)) = nr(𝜑𝑖(𝛾)).

3.7.1 Remarks on the amplifier

We consider automorphic forms on 𝔥2 invariant under the arithmetic group𝒪×,
viewed as a subgroup of PGL2(R). 4 The same consideration on the pretrace
formula as in Section 3.3 (without the amplifier) apply to this case as well.

Next, Hecke theory over number fields is best understood adelically. Given
our classical motivation and for the sake of brevity, we prefer not to introduce
the general formalism and additional notation, since it is not essential for
the main argument of this paper. We refer to the detailed description of the
classical and adelic theory given in Section 2 of [Shi78] in the related case of
Hilbert modular forms.

Instead, we note as in [Tem10], Section 5.5, that the action of a subalgebra
of the Hecke algebra suffices for our purposes. Namely, to amplify the pretrace

4This is a slightly different subgroup than in the rest of the paper, where we take norm
1 units. It is a technical assumption due to the fact that the units 𝔬×

𝐹
(or even the totally

positive units, depending on the setup) might not all be squares. This implies that the quotient
𝒪1\ SL2(R) might be larger than R×𝒪×\GL2(R). The latter is the more natural one from the
point of view of automorphic forms and Hecke theory and is also used by Templier (see (5.8) in
[Tem10]). Nevertheless, the difference consists merely of a character on 𝔬×

𝐹
/𝔬×2
𝐹

.



CHAPTER 3. THE COCOMPACT CASE 97

formula, we use only Hecke operators that are associated to principal ideals of
𝔬𝐹 , whose action is explained for instance in Templier’s article. By Chebotarev’s
density theorem (see Theorem 13.2 in [Neu92]), these ideals make up a positive
proportion of all prime ideals of 𝐹, its numerical value depending only on 𝐹.
As before, we assume that 𝒪 is locally norm-maximal for simplicity and recall
Remark 3.3.2.

Define

𝒪(𝑚; 𝑧, 𝛿) = {𝛾 ∈ 𝒪 : |𝑁𝐹(nr(𝛾))| = 𝑚, 𝑑(𝑧, 𝜑0(�̃�)𝑧) = 𝑂(𝛿)}.

Using the notation of Section 3.3 and following Sections 6.5 and 6.6 in [Tem10],
we obtain a version of (3.3.4). There is a certain sequence 𝑦𝑚 supported on
positive integers less than 𝐿4 such that

𝐿2−𝜀𝐷−𝜀|𝜙(𝑧)|2 ≪𝐹

𝑆(𝜇∗) ·
( ∑
𝑚≪𝐿4

𝑦𝑚√
𝑚

#𝒪(𝑚; 𝑧, 𝛿) + (𝑆(𝜇∗)𝛿)− 1
2

∑
𝑚≪𝐿4

𝑦𝑚√
𝑚

#𝒪(𝑚; 𝑧, 𝜌)
)
. (3.7.1)

Furthermore, 𝑦𝑚 ≪ 1 and
∑
𝑚 𝑦𝑚 ≪ 𝐿2, as in (6.17) of [Tem10].

As before, we are now faced with a counting problem. Note that we may
count elements of 𝒪(𝑚; 𝑧, 𝛿) modulo units 𝔬×

𝐹
, since 𝐹 ⊂ R is the centre of

𝐴. This remark is much more useful in the number field case than over the
rationals, given that 𝔬×

𝐹
is generally infinite.

3.7.2 The counting argument

We now follow the argument in Section 3.4. We shall therefore show that the
algebra generated by the elements we are counting is a proper algebra and
thus a field by the tower rule.

Recall that by Lemma 3.4.1, which is independent of the ground field,
it suffices to show that the Q-vector space spanned by

⋃
1≤𝑚≤𝐿2 𝒪(𝑚; 𝑧, 2𝛿)

is proper. The following is an adapted version of Lemma 3.4.2. By chance
though, this lemma now gives bounds in terms of the parameter 𝛿 as well. We
exploit the fact that SO(2) can only span a two dimensional vector space. This
behaviour is not generic since orthogonal matrices in degree larger than 2 can
span the entire algebra of matrices over R.

Lemma 3.7.1 (Lemma 3.4.2 revisited). The 𝐹-vector space spanned by⋃
1≤𝑚≤𝐿2

𝒪(𝑚; 𝑧, 2𝛿)

is proper, i.e. not equal to 𝐴, if 𝛿 ≪ 𝐷1−𝜀𝐿−6−𝜀, where the implied constant depends
only on 𝜀.
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Proof. Let 𝛾1 , 𝛾2 , 𝛾3 , 𝛾4 ∈ ⋃
1≤𝑚≤𝐿2 𝒪(𝑚; 𝑧, 2𝛿). We wish to show that these

elements are linearly dependent and we may assume without loss of generality
that 𝛾1 = 1. Since the reduced trace gives a non-degenerate bilinear form, it
suffices to show that 𝑠 := det(tr(𝛾𝑖 , 𝛾𝑗))𝑖 , 𝑗 = 0.

By assumption, we have 𝜎0(nr(𝛾))−1/2 · 𝑧−1𝜑0(𝛾𝑖)𝑧 = 𝑘𝑖 + 𝑂(𝛿), for some
𝑘𝑖 ∈ SO(2), and thus

1
𝜎0(nr(𝛾𝑖)nr(𝛾𝑗))1/2 𝑧

−1𝜑0(𝛾𝑖𝛾𝑗)𝑧 = 𝑘𝑖𝑘 𝑗 + 𝑂(𝛿).

Therefore,

1∏
𝑖 𝜎0(nr(𝛾𝑖))

𝜎0 det(tr(𝛾𝑖𝛾𝑗)𝑖 , 𝑗) = det(tr(𝑘𝑖𝑘 𝑗)𝑖 , 𝑗) + 𝑂(𝛿).

Note that SO(2) spans only a 2-dimensional vector space, which is easily
seen using the standard parametrisation. It follows that det(tr(𝑘𝑖𝑘 𝑗)𝑖 , 𝑗) = 0,
since we are considering the 4-dimensional matrix space. Therefore,

𝜎0 det(tr(𝛾𝑖𝛾𝑗)𝑖 , 𝑗) ≪ 𝛿
∏
𝑖

|𝜎0 nr(𝛾𝑖)|,

recalling that 𝛾1 = 1.
If 𝜎 ≠ 𝜎0, then 𝜎 tr(𝛾𝑖𝛾𝑗) ≤ 2|𝜎 nr(𝛾𝑖𝛾𝑗)|1/2. Indeed, for the corresponding

projections 𝜑𝑖 , 𝑖 ≠ 0, 𝜑𝑖(𝜉) is an element of the real Hamilton quaternion
algebra. For an arbitrary such element 𝑎 + 𝑖𝑏 + 𝑗𝑐 + 𝑘𝑑 in the usual notation
with 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, its trace is equal to 2𝑎 and its norm is 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2,
whence the inequality. Therefore, we deduce that

𝜎 det(tr(𝛾𝑖𝛾𝑗)𝑖 , 𝑗) ≪ 𝛿
∏
𝑖

|𝜎 nr(𝛾𝑖)|.

By the inequalities above, we have that

𝑁𝐹(𝑠) ≪ 𝛿
∏
𝑖

|𝑁𝐹(𝛾𝑖)| ≪ 𝛿𝐿6.

Recall that 𝔇 is the generator of the ideal in 𝔬𝐹 generated by {det tr(𝑥𝑖𝑥 𝑗) | 𝑥𝑖 ∈
𝒪 , 𝑖 = 1, . . . 4}. Since 𝛾𝑖 ∈ 𝒪 for all 𝑖, it follows that 𝑠 = 𝔇 · 𝑥 for some 𝑥 ∈ 𝔬𝐹

and therefore 𝐷 | 𝑁𝐹(𝑠).
In conclusion, if 𝛿 ≪ 𝐷−1−𝜀𝐿6−𝜀, then 𝑠 = 0. By the non-degeneracy of the

bilinear form given by the reduced trace, it follows that 𝛾1 , . . . , 𝛾𝑝2 are not
linearly independent.

Remark 3.7.2. We remark that for 𝑛 ≥ 3 the 𝑛 × 𝑛 orthogonal matrices span the
full space of real matrices. Thus, an application of the same proof as above
in higher rank is bound to fail since the determinant det(tr(𝑘𝑖𝑘 𝑗)𝑖 , 𝑗) might be
non-zero.
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Next, Lemma 3.4.4 goes through with the same proof if we can control
the action of units. This cannot be done directly as in Lemma 3.4.3 since
𝑁𝐸/𝐹(𝜉) ∈ 𝔬×

𝐹
for any unit 𝜉 ∈ 𝒪×

𝐸
, and the group 𝔬×

𝐹
is infinite for 𝐹 ≠ Q. We

can balance this out by recalling that we only need to count 𝜉 up to units in 𝔬×
𝐹
,

since these act trivially on the upper half plane.

Lemma 3.7.3 (Lemma 3.4.3 revisited). Let 𝐸/𝐹 be an extension of degree 2 that
is a subfield of 𝐴 and let 𝒪 be an order of 𝐴. The number of units 𝜉 ∈ 𝒪× ∩ 𝐸 up
to multiplication by units in 𝔬𝐹, such that 𝑑(𝑧, 𝜑0(𝜉)𝑧) ≤ 𝛿 for some 𝑧 ∈ 𝔥2, is
≪𝐹 (1 + 𝛿)2.

Proof. We begin by investigating the quantity (tr𝐸/𝐹 𝜉)2/𝑁𝐸/𝐹𝜉 and proving
that it can only take finitely many values. For any embedding 𝜎 ≠ 𝜎0, we have

𝜎

( (tr𝐸/𝐹 𝜉)2
𝑁𝐸/𝐹𝜉

)
∈ [0, 4],

and the condition 𝑑(𝑧, 𝜑0(𝜉)𝑧) ≤ 𝛿 implies that

𝜎0

( (tr𝐸/𝐹 𝜉)2
𝑁𝐸/𝐹𝜉

)
≪ (1 + 𝛿)2 ,

as we have seen already in the proof of Lemma 3.7.1.
Since 𝜉 ∈ 𝒪×

𝐸
, the maximal order, the quantity (tr𝐸/𝐹 𝜉)2/𝑁𝐸/𝐹𝜉 must lie in

𝔬𝐹. Recall that the image of 𝔬𝐹 inside R𝑛 under all embeddings is a discrete
lattice. Since the image of (tr𝐸/𝐹 𝜉)2/𝑁𝐸/𝐹𝜉 is bounded, it follows that the
number of possibilities for the value of this quantity is bounded by (1 + 𝛿)2,
up to a constant depending on 𝐹.

For the last step, recall Dirichlet’s unit theorem, stating that 𝔬×
𝐹

is a finitely
generated group. This implies that 𝔬×

𝐹
/(𝔬×

𝐹
)2 is finite. Now if 𝜅 ∈ 𝔬×

𝐹
, then

𝑁(𝜅𝜉) = 𝜅2𝑁(𝜉). Thus, if we are only counting 𝜉 ∈ 𝔬×
𝐹
\𝒪×

𝐸
, then the value of

𝑁(𝜉) can only lie in 𝔬×
𝐹
/(𝔬×

𝐹
)2.

Nevertheless, we have

(tr𝐸/𝐹(𝜅𝜉))2
𝑁𝐸/𝐹(𝜅𝜉)

=
(tr𝐸/𝐹 𝜉)2
𝑁𝐸/𝐹𝜉

.

Since there are only finitely many possibilities for this quantity and finitely
many for 𝑁𝐸/𝐹(𝜉), if follows that there are only finitely many possibilities for
tr𝐸/𝐹 𝜉. Finally, 𝜉 is determined up to the action of Gal(𝐸/𝐹) (which has order
2) by its minimal polynomial. This polynomial is determined by the trace and
norm of 𝜉. The lemma now follows by bookkeeping.

Remark 3.7.4. We remark that Lemma 6.4, part (i), of [Tem10], having the same
ultimate goal as Lemma 3.7.3 in this paper, might not hold in general. Indeed,
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in the proof, the condition 𝑢(𝑧, 𝜑0(𝜉)𝑧) ≤ 𝛿 is said to be equivalent to

𝜑0(𝜉)
𝜎0(𝑁𝐴(𝜉))1/2 ∈ 𝑧𝐵(𝛿)𝑧−1 ,

for a single 𝛿-ball 𝐵(𝛿) around the identity. This cannot be true in general. For
instance if 𝑧 = 𝑖, corresponding to the identity matrix, and 𝜉 =

( 0 −1
1 0

)
, then

𝑢(𝑧, 𝜑0(𝜉)𝑧) = 0, yet 𝜉 lies far from the identity.
Our proof uses the idea of Lemma 6.3 in [Tem10] and couples it with an

application of Dirichlet’s unit theorem, so as to apply the argument using
characteristic polynomials, as in the higher degree case.

Having adapted the lemmata above, we now complete the argument as in
the Section 3.4 and obtain the following counting result.

Proposition 3.7.5. Let 𝛿 ≪ 𝐷1−𝜀𝑚−6−𝜀 and let 𝑧 ∈ 𝔥2. Then #𝒪(𝑚; 𝑧, 𝛿) ≪ 𝑚𝜀,
where the implicit constant depends only on 𝜀 and 𝐹.

Compared to the counting results in Sections 3.4 and 3.5, Proposition 3.7.5
is conceptually more satisfying, since it seemingly blends together the spectral
and discriminant aspect. Nevertheless, we still need a counting results for
large 𝛿.

Proposition 3.7.6. We have the bound #𝒪(𝑚; 𝑧, 𝜌) ≪ 𝑚1+𝜀.

Proof. The proof is essentially the same as the proof of Proposition 3.5.3. Yet
again, additional care must be taken when counting units at the end. For this,
we apply the same argument as in Lemma 3.7.1, which simplifies since 𝐿 is
now equal to 1. In particular, if 𝜌 ≪ 𝐷, then the relevant units generate a
proper subalgebra, which must be a field in this case. Since 𝐷 is an integer
and 𝜌 is small enough, the condition is met. To conclude the proof, we apply
Lemma 3.7.3.

3.7.3 Proof of Theorem 3.2

Considering the range of 𝑚 in the pretrace inequality (3.7.1), in order to use
Proposition 3.7.5, we take 𝛿 ≍ 𝐷1−𝜀𝐿−24−𝜀. Then, applying Proposition 3.7.6,
we have

|𝜙(𝑧)|2 ≪𝐹 𝐷
𝜀𝐿−2+𝜀𝑆(𝜇∗)

( ∑
𝑚≪𝐿4

𝑦𝑚𝑚
−1/2+𝜀 + (𝑆(𝜇∗)𝐷1−𝜀𝐿−24−𝜀)− 1

2
∑
𝑚≪𝐿4

𝑦𝑚𝑚
1/2+𝜀

)
≪ 𝑆(𝜇∗)𝐿−2+𝜀𝐷𝜀 ©«

(∑
𝑚

𝑦2
𝑚

)1/2 (∑
𝑚

1
𝑚

)1/2

+ (𝑆(𝜇∗)𝐷)− 1
2 𝐿12 · 𝐿2

∑
𝑚

𝑦𝑚
ª®¬

≪ 𝑆(𝜇∗)𝐿𝜀𝐷𝜀
(
𝐿−1 + (𝑆(𝜇∗)𝐷)− 1

2 𝐿14
)
,
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where we make use of the properties of the sequence 𝑦𝑚 . Optimising by setting
the two terms in the last factor equal, we set 𝐿 = (𝑆(𝜇∗)𝐷) 1

30 and obtain a saving
of 𝐿−1. This implies that

|𝜙(𝑧)|2 ≪𝐹 𝑆(𝜇∗) · (𝑆(𝜇∗)𝐷)− 1
30+𝜀.

This proves Theorem 3.2.

3.8 REMARKS ON THE CASE OF COMPOSITE DEGREE

It is not clear how to generalise the counting arguments, particularly those
in the discriminant aspect (Section 3.4), to the case of algebras of general
degree 𝑛 ∈ N≥2. The main issue is the existence of non-commutative proper
subalgebras in general. Yet the ideas in this paper suffice for proving the partial
results given in Theorem 3.3 for special types of orders, which we sketch in
this section.

More precisely, let 𝑁 be a positive integer and 𝒪0(𝑁) be an order of the
division algebra 𝐴 over Q of degree 𝑛 such that, at all unramified primes 𝑝, its
completion is of the form

𝒪0(𝑁)𝑝 =
{
𝛾 ∈ 𝑀𝑛(Z𝑝) | last row of 𝛾 ≡ (0, . . . , 0, ∗)mod𝑁Z𝑝

}
,

up to conjugation. These orders are interesting from the point of view of
newform theory. If 𝑛 = 2, then these are precisely the Eichler orders, which
have generally received much attention in the theory of automorphic forms.
In higher degree, these orders form a (proper) subset of the orders that are the
intersection of two maximal orders. It is important for the proof of Theorem
3.3 to note that the level of an order of type 𝒪0(𝑁) is 𝑁𝑛−1.

Now let 𝑛 be odd and set 𝒪 := 𝒪0(𝑁) for simplicity. We can then make the
same observation as in the proof of Lemma 3.5.1, bound (3.5.2). Namely, if
𝛾1 , 𝛾2 ∈ ⋃

1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿), then

nr(𝛾1𝛾2 − 𝛾2𝛾1) ≪ 𝛿𝐿2.

The advantage of working with the family of 𝒪0(𝑁) is that 𝑁 | nr(𝛾1𝛾2 −
𝛾2𝛾1). Indeed, an easy computation shows that all commutators of 𝒪0(𝑁)𝑝 ,
where 𝑝 is unramified, have last row congruent to the zero vector modulo
𝑁Z𝑝 . The claim follows since the norm can be computed locally.

The remarks above imply that𝑁 ≪ 𝛿𝐿2 or nr(𝛾1𝛾2−𝛾2𝛾1) = 0. Thus, if 𝛿 ≪
𝑁1−𝜀𝐿−2−𝜀, then the algebra generated by

⋃
1≤𝑚≤𝐿𝒪(𝑚; 𝑧, 𝛿) is commutative.

Therefore, the same counting strategy employed in the rest of this article
(counting in commutative fields) would give a strong bound in this case as
well.
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We apply the bounds to the amplifier as follows. Let 𝛿 ≍ 𝑁1−𝜀𝐿−2−𝜀. Then
by (3.3.4) we have

|𝒫|2 · |𝜙(𝑧)|2 ≪𝑛

𝑆(𝜇∗)(𝐿𝑁)𝜀
(
|𝒫| + |𝒫|2𝐿−(𝑛−1) + 𝑆(𝜇∗)

−1
𝑛(𝑛−1) · 𝑁− 1

2 𝐿|𝒫|2 𝐿
(𝑛−1)2𝑛

𝐿(𝑛−1)𝑛

)
.

These are essentially the same computations as in Section 3.6. We deduce in
the same way that

|𝜙(𝑧)|2 ≪ 𝑆(𝜇∗)(𝐿𝑁)𝜀(𝐿−1 + 𝑆(𝜇∗)
−1

𝑛(𝑛−1) · 𝑁− 1
2 𝐿1+𝑛(𝑛−1)(𝑛−2)).

We may simplify one of the exponents of 𝐿 by noting that 1+ 𝑛(𝑛 − 1)(𝑛 − 2) ≤
𝑛3 − 1 (for 𝑛 ≥ 2). We then find an optimal value of 𝐿 ≍ 𝑆(𝜇∗)1/𝑛4(𝑛−1)𝑁1/2𝑛3 ,
so that

|𝜙(𝑧)|2 ≪ 𝑆(𝜇∗)1−
1

𝑛4(𝑛−1)+𝜀 · 𝑁− 1
2𝑛3 +𝜀.

This proves Theorem 3.3.
The sup-norm bound we obtain is unfortunately not uniform in the full

volume aspect, since we did not include the discriminant of 𝐴 in the bounds.
It is possible to include ramified primes 𝑝 where 𝐴𝑝 is a division algebra,
since then 𝑝 divides the norm of commutators. Nevertheless, in the composite
degree case considered here there is also the possibility of 𝐴𝑝 being a more
general matrix algebra over a division algebra, which we are not able to treat
using this approach. It would certainly be interesting to at least extend these
bounds to include the full discriminant, but even more so to find a more
flexible argument to treat arbitrary orders.

For example, the argument does not apply to the larger family of generalised
Eichler orders, which we define to be intersections of two maximal orders.
One example in degree 4, which is also a hereditary order, has the form

𝒪𝑝 =

©«
Z𝑝 Z𝑝 Z𝑝 Z𝑝
Z𝑝 Z𝑝 Z𝑝 Z𝑝
𝑝Z𝑝 𝑝Z𝑝 Z𝑝 Z𝑝
𝑝Z𝑝 𝑝Z𝑝 Z𝑝 Z𝑝

ª®®®¬ ,
at a prime 𝑝. In this case, the norm of a commutator need not be divisible by 𝑝.
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