
SOLUTIONS TO QUIZ 1

Question 1. If f(x) ∈ F [x] is a polynomial over a field F and 0 6= a, b ∈ F
are scalars, then f(x) is irreducible if and only if f(ax + b) is irreducible.
So to prove irreducibility it is enough to consider an appropriate linear
substitution. Let f(x) = x4− 8x3 + 17x2− 4x + 2. In an attempt to get rid
of the coefficient of x3 we substitute x+2. We get that f(x+2) = x4−7x2+14
which is irreducible by Eisenstein’s criterion with the prime 7.

Question 2. α = 5
√

7, K = Q(α).
(a) [K : Q] = 5. The degree [Q(α) : Q] is equal to the degree of the

minimal polynomial of α over Q. Consider the polynomial p(t) = t5 − 7 ∈
Q[t]. It is irreducible over Q by Eisenstein’s criterion with the prime 7, and
has α as a root. It follows that p(t) is the minimal polynomial of α over Q
and [Q(α) : Q] = deg p = 5.

(b) The extension K/Q is not normal. It is enough to find an irreducible
polynomial in Q[t] which has a root in K but does not split in K. We take
p(t) = t5− 7 which is irreducible by (a). Let ζ = e2πi/5. Then ζ5 = 1 so the
roots of p in C are α, ζα, ζ2α, ζ3α, ζ4α. Now α ∈ K but ζα 6∈ K because
α ∈ R hence K = Q(α) ⊂ R but ζ 6∈ R so that ζα 6∈ R.

Question 3. (a) Obviously
√

p +
√

q ∈ Q(
√

p,
√

q) so that Q(
√

p,
√

q) is a
field containing Q and

√
p+

√
q. Since Q(

√
p+

√
q) is the minimal field with

this property, we have Q(
√

p +
√

q) ⊆ Q(
√

p,
√

q). To prove the opposite
inclusion, note that

(
√

p +
√

q) · (√p−√q) = p− q ∈ Q
hence

√
p−√q ∈ Q(

√
p +

√
q). But

2
√

p = (
√

p +
√

q) + (
√

p−√q) ∈ Q(
√

p +
√

q)

2
√

q = (
√

p +
√

q)− (
√

p−√q) ∈ Q(
√

p +
√

q)

hence
√

p,
√

q ∈ Q(
√

p +
√

q) so that Q(
√

p,
√

q) ⊆ Q(
√

p +
√

q).

(b) A finite extension is normal if and only if it is a splitting field of a
polynomial. I claim that Q(

√
p,
√

q) is a splitting field of the polynomial
(t2−p)(t2− q) over Q. Indeed, the roots of this polynomial, ±√p,±√q, are
contained in Q(

√
p,
√

q), and this field is generated by the roots (
√

p and√
q).

(c) To compute the Galois group of Q(
√

p,
√

q)/Q, we use two facts on
automorphisms (see the Lemmas in the solution to homework 4). The first
is that an automorphism σ on an extension K(α1, . . . , αn)/K is determined
by its action on generators α1, . . . , αn. In our case these are

√
p and

√
q.

The second fact is that if L/K is an extension and α ∈ L is a root of a
polynomial in K[t], then any automorphism σ of L/K must carry α to a
root of the same polynomial. In our case, considering the polynomials t2−p
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and t2 − q we see that
√

p must go to ±√p and the same for
√

q, so there
are at most four automorphisms.

To prove that all four possibilities indeed occur, we consider the tower
Q ⊂ Q(

√
p) ⊂ Q(

√
p)(
√

q). Since
√

q,−√q are roots of the polynomial t2−q
and this polynomial is irreducible over Q(

√
p) (because it is of degree 2 and

an easy computation shows that its roots do not lie in Q(
√

p)), there exists
an automorphism σ ∈ Gal(Q(

√
p,
√

q)/Q(
√

p)) such that σ(
√

q) = −√q
(and of course, σ(

√
p) =

√
p). Using the tower Q ⊂ Q(

√
q) ⊂ Q(

√
q)(
√

p)
we deduce the existence of an automorphism τ with τ(

√
p) = −√p and

τ(
√

q) =
√

q. We thus get four automorphisms id, σ, τ, στ and the Galois
group is isomorphic to Z/2Z⊕ Z/2Z.

Question 4. (a) True. If K is a field, take L = K(t) the field of rational
functions over K. Then L/K is a nontrivial extension.

(b) True. For any integer n ≥ 1, consider the polynomial pn(t) = tn−2 ∈
Q[t]. Then pn is irreducible over Q by Eistenstein’s criterion with the prime
2. Take K = Q[t]/(pn(t)). Then K is a field and [K : Q] = deg pn = n.

(c) False. Take K = F2. The polynomial p(t) = t2 + t + 1 ∈ F2[t]
is of degree 2 and has no roots in F2, so it is irreducible over F2. Take
L = F2[t]/(t2 + t + 1). Then L is a field and [L : K] = deg p = 2. Assume
that there exists α ∈ L such that α2 = a ∈ K. Since a2 = a for all a ∈ K,
we have 0 = α2 − a = α2 − a2 = (α− a)2. It follows that α = a ∈ K so one
cannot have L = K(α) (because L 6= K).


