HOMEWORK #4
SOLUTIONS TO SELECTED PROBLEMS

Problem 4.2. The derivation D : K[t] — K[t] is defined by D(t") = nt"~!
and then extending by linearity. To prove (a), it is enough to consider the
basis elements " of K[t] over K. Indeed, one has

D(t" - t™) = (n + m)t" T = g m o™ = D)™ + "D (™)
For (b), note that for f(t) = ap + a1 + -+ + a,t”, one has (Df)(t) =

Zz’zl ia;t*"!. Hence, Df = 0 implies ia; = 0 for all i and since K has
characteristic zero, this implies a; = 0 for all 7 so that f = 0.

(c) The same reasoning gives ia; = 0 for all . Hence, if 7 is not divisible
by p, then a; = 0. We get that f(t) = ap + apt? +.... Since K is perfect,
for any j > 0 one can find b; with bf = ajp. Taking g(t) =bo+bit+..., we
see that g(t)? = bfy + bitP + - = f(¢), as required.

Problem 4.3. (a) One can write 2P —1 = (z —1)(2?~ ' +---+2+1). Since
¢ is a root of P — 1 but ¢ # 1, it follows that ( is a root of the polynomial
f(x) =2P~t + ...+ 2 + 1. But by Problem 3.3(b), f is irreducible in Q[z],
hence it is the minimal polynomial of ¢ over Q and [Q(¢) : Q] = deg f = p—1.

(b) I will give a few lemmas which relate the action of field automorphisms
to roots of polynomials.

Lemma 1. Let L/K be a field extension and o € Gal(L/K) be an auto-
morphism of L. If a € L is a root of a polynomial f € K|[t] then o(«a) is
also a root of f.
Proof. Write f(t) = co+ cit + - - - + cpt™ where ¢; € K. Since f(a) =0, one
has
0=o0(f(a)) =0(co+cra+---+cpa™)
=o0(cp) +o(c1)o(a) +...0(cp)o(a)”
=ctao(a)+-- 4 o) = floa))

where in the last line we used the fact the o acts as identity on the elements
of K. (]

Lemma 2. Let L/ K be a field extension and suppose there exist ay, . .., ap €
L such that L = K(ai,...,ap). If o,7 € Gal(L/K) satisfy o(c,;) = 7(ov)
for all 1 < i <mn, then o = 7. In other words, an automorphism of L/K is
determined by its values on axq, ..., an,.

Proof. Let M = {x € L : o(x) = 7(x)}. Then M is a subfield of L
containing K (since both ¢ and 7 are the identity on K) and ay, ..., a, (by
assumption). So by the minimality of L we have M = L. O
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Lemma 3. Let L/K be a field extension and «, 3 be algebraic over K. Then
there exists a field isomorphism o : K(a) — K(3) such that o(a) = 8 and

o = idk if and only if o and 3 have the same minimal polynomial over
K.

Proof. Assume that such o exists. Then by the proof of lemma 1 we see
that if f(a) = 0 for some f € K[t] then f(5) = 0. In particular this holds
when f is the minimal polynomial of a.. Since f is irreducible and f(3) = 0,
we get that f is also the minimal polynomial of 3.

Conversely, let f be the minimal polynomial of o (and of /). Looking at
the diagram

K[t]/(f) == KTtl/(f)
Pa J{: :J/Wﬁ
K () K(p)
where the isomorphisms ¢q, @3 take the class t + (f) to a, 3 respectively,
we see that o := @g o @ ! is the required field isomorphism. (]

Having these lemmas at our disposal, we may proceed with the solution
of the problem. Let L = Q(¢) and let ¢ € Gal(L/Q). By lemma 1, o(()
must be a root of P — 1 (because ( is), hence there exists a(o) such that
o(¢) = ¢*?). Note that (o) cannot be zero (why?).

(c) Let 0,7 € Gal(L/Q). Then

o7(¢) = o(¢*7) = (o)) = () = (el
On the other hand, o7(¢) = ¢*(7).

(d) For any 0 < i < p, the minimal polynomial of ¢’ is equal to that of
¢. Note also that Q(¢*) = L (because p is prime hence ( is a power of (*).
Therefore, by lemma 3, one can construct an automorphism in Gal(L/Q)
moving ¢ to ¢*. This shows that the mapping is onto. It is one-to-one since
the value of an automorphism in Gal(L/Q) is determined by its value on ¢
by lemma 2.

Problem 4.4. (a) Suppose that L = K[t]/(t*> — a) for some a € K. Let
a € L be a root of t> —a. Then in L[t] (t —a)? =2 —a? = t2 —a. Let
o € Gal(L/K). By lemma 1, 0 must map « to a root of t2—a, hence to itself,
so that o(a) = «). Since L = K(«), by lemma 2 we have Gal(L/K) = {idr}.

(b) Suppose now that L = K[t]/(t?—t—a) for some a € K. Let o € L be
a oot of t —t —a. Then a + 1 is another root since (a+1)2— (a+1) —a =
a?+1—a—1—-a=0. Since L = K(a), an element in Gal(L/K) is
determined by its action on a. If t2 —t — a is irreducible (otherwise L = K)
then by lemma 3 one can construct automorphisms of L taking « to itself
or to a+ 1. So Gal(L/K) is a cyclic group with 2 elements.

Problem 4.5. We already know that L = Q(v/2,v/3) and [L : Q] = 4.
Looking at the tower Q C Q(v/2) C Q(v/2)(v/3) and applying lemma 3 with
K = Q(+v/2) and a = /3, we construct an automorphism o3 of L which
is identity on Q(v/2) and takes v/3 to —/3. Similarly, using the tower
Q c Q(v3) € Q(v3)(v2) we construct an automorphism oo of L which is
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identity on Q(v/3) and takes v/2 to —v/2. It is easy to see (by considering
the action on the set {v/2,v/3}) that o9, 03 generate a four-element group
isomorphic to Z/2Z & Z/27Z. One always has |Gal(L/K)| < [L : K]. Since
[L : K] =4 and we already found 4 elements in the Galois group, we deduce
that Gal(L/K) ~7Z/27 & 7/ 2.

Problem 4.6. The extension L/K is normal since L is a splitting field of the
polynomial t" —a over K. Indeed, if « is the image of t in L = K[t]/(t" —a)
and ¢ € K is a primitive n-th root of unity then ¢t" — a splits as the product
H:‘L:_o1 (t —al’).

Let 0 € Gal(L/K). By lemma 1, since « is a root of t" — a, o(«) must
also be a root. Hence there exists 0 < i(0) < n such that o(a) = a*?).

The mapping i : Gal(L/K) — Z/nZ is a group homomorphism; if o, 7 €
Gal(L/K) then a¢'T) = o7(a) = o(a¢ ) = o(a)("") = a¢H)¢i) =
aio)+i(r) (note that powers of ¢ are in K so the automorphisms acts triv-
ially on them). It is one-to-one since an automorphism is determined by its
action on « (lemma 2). Is it onto since by lemma 3 applied to the irreducible
polynomial t" — a, one can find an automorphism of L /K mapping « to any
other root a(’.

Problem 4.7. (a) The polynomial t5—2 is irreducible in Q[t] by Eisenstein’s
criterion with the prime 2.

(b) Denote by M the splitting field of > — 2 over Q. Let ¢ € C be a
fifth root of unity. The roots of t* — 2 are ¢*v/2 for 0 < i < 5. Let’s prove
that M = Q(¥/2,¢). First M C Q(v/2,¢) because M is generated by the
roots ¢*v/2 which lie in Q(¥/2,¢). For the opposite inclusion, note that
¢ = (¢v/2)/V/2 is a ratio of two roots of t> — 2 hence lies in M.

(c) Let L = Q(+v/2). By the irreducibility of > — 2 we have [L : Q] = 5.
We also have [Q(¢) : Q] = 4 (see Problem 4.3). Since M contains both
fields, by the product formula the degree [M : Q] must be divisible by both
4 and 5, hence divisible by 20. On the other hand [L({) : L] < 4 because ¢
is a root of 2% + 3 4+ 22+ + 1 so its minimal polynomial over L is of degree
at most 4, so that [M : Q] = [L(¢) : L][L : Q] <4 -5 =20. We deduce that
(M : Q] = 20.

(d) The extension L/Q is not normal, because the polynomial > — 2 has
a root v/2 in L but its other roots are not in L (if there were in L we would
have M = L which is impossible by counting degrees).



