
HOMEWORK #4
SOLUTIONS TO SELECTED PROBLEMS

Problem 4.2. The derivation D : K[t] → K[t] is defined by D(tn) = ntn−1

and then extending by linearity. To prove (a), it is enough to consider the
basis elements tn of K[t] over K. Indeed, one has

D(tn · tm) = (n + m)tn+m−1 = ntn−1tm + mtm−1tn = D(tn)tm + tnD(tm)

For (b), note that for f(t) = a0 + a1 + · · · + antn, one has (Df)(t) =
∑

i≥1 iait
i−1. Hence, Df = 0 implies iai = 0 for all i and since K has

characteristic zero, this implies ai = 0 for all i so that f = 0.

(c) The same reasoning gives iai = 0 for all i. Hence, if i is not divisible
by p, then ai = 0. We get that f(t) = a0 + apt

p + . . . . Since K is perfect,
for any j ≥ 0 one can find bj with bp

j = ajp. Taking g(t) = b0 + b1t + . . . , we
see that g(t)p = bp

0 + bp
1t

p + · · · = f(t), as required.

Problem 4.3. (a) One can write xp−1 = (x−1)(xp−1 + · · ·+x+1). Since
ζ is a root of xp − 1 but ζ 6= 1, it follows that ζ is a root of the polynomial
f(x) = xp−1 + · · ·+ x + 1. But by Problem 3.3(b), f is irreducible in Q[x],
hence it is the minimal polynomial of ζ overQ and [Q(ζ) : Q] = deg f = p−1.

(b) I will give a few lemmas which relate the action of field automorphisms
to roots of polynomials.

Lemma 1. Let L/K be a field extension and σ ∈ Gal(L/K) be an auto-
morphism of L. If α ∈ L is a root of a polynomial f ∈ K[t] then σ(α) is
also a root of f .

Proof. Write f(t) = c0 + c1t + · · ·+ cntn where ci ∈ K. Since f(α) = 0, one
has

0 = σ(f(α)) = σ(c0 + c1α + · · ·+ cnαn)

= σ(c0) + σ(c1)σ(α) + . . . σ(cn)σ(α)n

= c0 + c1σ(α) + · · ·+ cnσ(α)n = f(σ(α))

where in the last line we used the fact the σ acts as identity on the elements
of K. ¤

Lemma 2. Let L/K be a field extension and suppose there exist α1, . . . , αn ∈
L such that L = K(α1, . . . , αn). If σ, τ ∈ Gal(L/K) satisfy σ(αi) = τ(αi)
for all 1 ≤ i ≤ n, then σ = τ . In other words, an automorphism of L/K is
determined by its values on α1, . . . , αn.

Proof. Let M = {x ∈ L : σ(x) = τ(x)}. Then M is a subfield of L
containing K (since both σ and τ are the identity on K) and α1, . . . , αn (by
assumption). So by the minimality of L we have M = L. ¤
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Lemma 3. Let L/K be a field extension and α, β be algebraic over K. Then
there exists a field isomorphism σ : K(α) → K(β) such that σ(α) = β and
σ|K = idK if and only if α and β have the same minimal polynomial over
K.

Proof. Assume that such σ exists. Then by the proof of lemma 1 we see
that if f(α) = 0 for some f ∈ K[t] then f(β) = 0. In particular this holds
when f is the minimal polynomial of α. Since f is irreducible and f(β) = 0,
we get that f is also the minimal polynomial of β.

Conversely, let f be the minimal polynomial of α (and of β). Looking at
the diagram

K[t]/(f) K[t]/(f)

ϕα

y' '
yϕβ

K(α) K(β)
where the isomorphisms ϕα, ϕβ take the class t + (f) to α, β respectively,
we see that σ := ϕβ ◦ ϕ−1

α is the required field isomorphism. ¤
Having these lemmas at our disposal, we may proceed with the solution

of the problem. Let L = Q(ζ) and let σ ∈ Gal(L/Q). By lemma 1, σ(ζ)
must be a root of xp − 1 (because ζ is), hence there exists α(σ) such that
σ(ζ) = ζα(σ). Note that α(σ) cannot be zero (why?).

(c) Let σ, τ ∈ Gal(L/Q). Then

στ(ζ) = σ(ζα(τ)) = (σ(ζ))α(τ) = (ζα(σ))α(τ) = ζα(σ)α(τ)

On the other hand, στ(ζ) = ζα(στ).

(d) For any 0 < i < p, the minimal polynomial of ζi is equal to that of
ζ. Note also that Q(ζi) = L (because p is prime hence ζ is a power of ζi).
Therefore, by lemma 3, one can construct an automorphism in Gal(L/Q)
moving ζ to ζi. This shows that the mapping is onto. It is one-to-one since
the value of an automorphism in Gal(L/Q) is determined by its value on ζ
by lemma 2.

Problem 4.4. (a) Suppose that L = K[t]/(t2 − a) for some a ∈ K. Let
α ∈ L be a root of t2 − a. Then in L[t] (t − α)2 = t2 − α2 = t2 − a. Let
σ ∈ Gal(L/K). By lemma 1, σ must map α to a root of t2−a, hence to itself,
so that σ(α) = α). Since L = K(α), by lemma 2 we have Gal(L/K) = {idL}.

(b) Suppose now that L = K[t]/(t2− t−a) for some a ∈ K. Let α ∈ L be
a root of t2− t−a. Then α+1 is another root since (α+1)2− (α+1)−a =
α2 + 1 − α − 1 − a = 0. Since L = K(α), an element in Gal(L/K) is
determined by its action on α. If t2− t− a is irreducible (otherwise L = K)
then by lemma 3 one can construct automorphisms of L taking α to itself
or to α + 1. So Gal(L/K) is a cyclic group with 2 elements.

Problem 4.5. We already know that L = Q(
√

2,
√

3) and [L : Q] = 4.
Looking at the tower Q ⊂ Q(

√
2) ⊂ Q(

√
2)(
√

3) and applying lemma 3 with
K = Q(

√
2) and α =

√
3, we construct an automorphism σ3 of L which

is identity on Q(
√

2) and takes
√

3 to −√3. Similarly, using the tower
Q ⊂ Q(

√
3) ⊂ Q(

√
3)(
√

2) we construct an automorphism σ2 of L which is
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identity on Q(
√

3) and takes
√

2 to −√2. It is easy to see (by considering
the action on the set {√2,

√
3}) that σ2, σ3 generate a four-element group

isomorphic to Z/2Z ⊕ Z/2Z. One always has |Gal(L/K)| ≤ [L : K]. Since
[L : K] = 4 and we already found 4 elements in the Galois group, we deduce
that Gal(L/K) ' Z/2Z⊕ Z/2Z.

Problem 4.6. The extension L/K is normal since L is a splitting field of the
polynomial tn−a over K. Indeed, if α is the image of t in L = K[t]/(tn−a)
and ζ ∈ K is a primitive n-th root of unity then tn− a splits as the product∏n−1

i=0 (t− αζi).
Let σ ∈ Gal(L/K). By lemma 1, since α is a root of tn − a, σ(α) must

also be a root. Hence there exists 0 ≤ i(σ) < n such that σ(α) = αζi(σ).
The mapping i : Gal(L/K) → Z/nZ is a group homomorphism; if σ, τ ∈

Gal(L/K) then αζi(στ) = στ(α) = σ(αζi(τ)) = σ(α)ζi(τ) = αζi(σ)ζi(τ) =
αζi(σ)+i(τ) (note that powers of ζ are in K so the automorphisms acts triv-
ially on them). It is one-to-one since an automorphism is determined by its
action on α (lemma 2). Is it onto since by lemma 3 applied to the irreducible
polynomial tn−a, one can find an automorphism of L/K mapping α to any
other root αζi.

Problem 4.7. (a) The polynomial t5−2 is irreducible inQ[t] by Eisenstein’s
criterion with the prime 2.

(b) Denote by M the splitting field of t5 − 2 over Q. Let ζ ∈ C be a
fifth root of unity. The roots of t5 − 2 are ζi 5

√
2 for 0 ≤ i < 5. Let’s prove

that M = Q( 5
√

2, ζ). First M ⊆ Q( 5
√

2, ζ) because M is generated by the
roots ζi 5

√
2 which lie in Q( 5

√
2, ζ). For the opposite inclusion, note that

ζ = (ζ 5
√

2)/ 5
√

2 is a ratio of two roots of t5 − 2 hence lies in M .

(c) Let L = Q( 5
√

2). By the irreducibility of t5 − 2 we have [L : Q] = 5.
We also have [Q(ζ) : Q] = 4 (see Problem 4.3). Since M contains both
fields, by the product formula the degree [M : Q] must be divisible by both
4 and 5, hence divisible by 20. On the other hand [L(ζ) : L] ≤ 4 because ζ
is a root of x4 +x3 +x2 +x+1 so its minimal polynomial over L is of degree
at most 4, so that [M : Q] = [L(ζ) : L][L : Q] ≤ 4 · 5 = 20. We deduce that
[M : Q] = 20.

(d) The extension L/Q is not normal, because the polynomial t5 − 2 has
a root 5

√
2 in L but its other roots are not in L (if there were in L we would

have M = L which is impossible by counting degrees).


