I’ll start with restatement and proofs of two result from the last
week.

Quotient rings Let A be a commutative ring, I C A an ideal. We
define an equivalence relation on A by saying ¢ = bif a — b € I and
denote by A/I the corresponding set of equivalence classes. We denote
by a — a the map A — A/I assigning to any a € A the equivalence
classa+1 € A/l

Claim. a)

i)ifa=d,b=0 then a+b=d +b" and ab = a'V,

ii) there exists operations + : A/I x A/I — A/I and x : A/I x
A/I — A/I such that for any a,b € A we have

a+b=a+bab=axb

iii) A/ with operations +: A/I x A/I — A/l and x : A/I x A/I —
A/I, unit =1 and zero = 0 has a structure of a commutative ring.

b) The quotient ring A/ is a field iff I is a maximal proper | that is
different from A] ideal of A.

The proof of a) assigned as the Problem 3.8.

Proof of b). Let o € A/I be a non-zero element. We want to prove
the existence of § € A/I such that a x = 1.

Let J C A/I be the set of elements of the form a x 8,8 € A/I. Tt
is clear that J C A/I is an ideal. We want to show that J = A/I.

Let J =: {a € Ala € J}. It is clear that .J is an ideal of A such that
J 2 1. Since I is a maximal ideal of A we see that J = A. But this
implies that J = A/1.00

Corollary. If p(t) € K]Jt] is an irreducible polynomial then the
quotient ring is a field. It is sufficient to show that for any irreducible
polynomial p(t) € K[t] the ideal (p(t)) C K[t] is maximal.

I’ll leave a proof of this result as a homework problem.

Lemma 3.1. Let L D K be field extension, «q, ..., o, € L a sequence
of elements algebraic over K. Then [K(ay, ..., o) : K] < 00.

Proof. We prove Lemma by the induction in n. We want to show
that [K (o, ...,an) 1 K] < co. Let F:= K(ay,...,a,1) C L. By the
inductive assumption we know that [F : K| < co. G := F(ay,) C L.
Since o; € G,1 < i < n we have K(ay,...,a,) C G. So it is sufficient
to show that [G : K] < oo.

Since ay, € G is algebraic over K then by Theorem 1.2 there exists
a non-zero polynomial p(t) € K[t] such that p(8) = 0. Therefore 3 is

also algebraic over F [you can use the same polynomial p(¢)] and we
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see that [G : F| < oco. It follows from the Product formula | Theorem
1.1] that [G : K] < c0.Od
Remark. It is not difficult to show that K(«q,...,a,) = G.

Definition 3.1. Let L D K be a field extension and o € L an
element algebraic over K. We denote by Irr(«, K,t) € K[t] the irre-
ducible monic polynomial p(t) such that p(a) = 0 [See Problem 1.2].
We say that p(t) is the minimal polynomial of « over K.

The splitting field.

Definition 3.2. Let K be a field, p(t) € K[t] a monic polynomial.
An extension L D K is called a splitting field of p(t) if

Dpt)=0t—a)(t—ag...)(t—ay),a;, € L,1<i<n

and

ii) L = K(ay, ..., ay)

Lemma 3.2. Any monic polynomial p(t) € K|[t] of positive degree
has a splitting field F' D K.

Proof. As you have shown [ problem 2.5] there exists a field L D K
such that p(t) can be written in the form

p(t) =t —a)(t —ag..)(t —ay),a; € L,1<i<n

So we can take F' = K(ay, ..., a,)0.

Now we show that the splitting field is essentially unique.

Definition 3.2. a) Let K, K’ be fields and n: K — K’ a map. We
say that n is a homomorphism if

n(1) = 1,n(a +b) = n(a) +n(b), n(ab) = n(a)n(b),
b) if p(t) = D1, cit' € K[t] is a polynomial we define

n(p(t)) := chti € K'[t], ¢, :== n(c)

and say that n(p(t)) is the image of p(t) in K'[t].

Theorem 3.1. Let n: K — K' be a field isomorphism, ¢(t) € K[t]
a monic polynomial of positive degree, ¢'(t) € K'[t] the image of ¢(t)
and L O K,L' O K' be splitting fields of ¢(t) and ¢'(t) respectively.
Then the isomorphism 7 : K — K’ can be extended to an isomorphism
from L to L'.

We start with two lemmas.

Lemma 3.3. Let n: K — K' be K, K’ be an isomorphism between
fields, L D K,L" D K' be field extensions and o € L an algebraic
element with the minimal polynomial p(¢). Then the extensions of 7
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to a homomorphism 7 : K(a) — L' are in one-to-one correspondence
with roots o' of p'(t) :=n(p(t)) in L.

Proof of Lemma. a) For any extension 7 : K(a) — L' we define
o/ (1) :==7(a) € L'. It is clear that o/(7)) € L' is a root of p/(?).

b) Conversely given a root o of p/(t) in L' consider a ring homomor-
phism f': K[t] — L' such that f'(t) = o/, f'(c) = n(c) € K.
As we have seen [Lemma 2.4] there exists unique ring epimorphism

f:K[t] - K(«)

such that Ker (f)=(p(t)), f(t) = e« and f(c) = c € K. Since p'(¢/) =0
we see that f'(p(t)) = 0. So f'(¢(t)) = 0 for all ¢(t) € (p(t)). Therefore
the homomorphism f’ induces a homomorphism 7(¢/) : K(a) — L’
which is an extension of 7.

It is clear that the maps o/ — 7(o/) and 7 — /() define one-
to-one correspondence between extensions of 7 to a homomorphism
i : K(a) = L' and roots o of p/(t) in L'.0

Lemma 3.4. Let L C K be a field extension, p(t) € KJt] an
irreducible polynomial of positive degree, o € L a root of p(t). Then L
is a splitting field for p(t) over K iff it is a splitting field for p(t) over
K(a).

I’ll leave a proof of Lemma 3.4 as a homework problem.

Proof of Theorem. We will prove the theorem by the induction in
the degree [L : K] over all splitting fields L D K.

Consider first the case when [L : K] = 1. In this case all roots of
p(t) are in K. Therefore

p(t) = (t— Qfl)ml X ... X (t_ as)ms’l S Z S S

where «; € K are roots of p(t), m; > 0. Since 7 is a homomorphism we
have

PA)=0t—a)™ x..x({t—a)™, 1<i<s

where of € K' are roots of p'(t), m; > 0. where o := n(a;). So K' is
the splitting field of p/(¢) and 7 = 7.

Assume now that we know the Theorem for all splitting fields LO>K
such that [L : K] < N. Let n: K — K' be an isomorphism, ¢(t) € K[t]
be a monic polynomial of positive degree, ¢'(t) € K'[t] be the image of
q(t), L D K,L' D K' be splitting fields of ¢(t) and ¢'(¢) respectively
and [L : K] = N. We want to show that isomorphism 7 : K — K' can
be extended to an isomorphism 7} between L and L'.



Consider the decomposition of ¢(t)

q(t) = p1 (&)™ ..pn ()™
where p;(t) are irreducible monic polynomials and m; > 0. Since [L :
K] > 1 there exists 4,1 < i < n such that deg p;(t) > 1. Since L is
a splitting field of ¢(t) we can find a € L such that p;(a) = 0. Let
F:= K(a) C L. Tt is clear that [F : K| =deg p;(t) > 1.

Since L' is a splitting field of ¢'(¢) any factor of ¢'(¢) decomposes in
L[t] in a product of linear factors. Therefore there exists o/ € L’ such
that p}(a) = 0 [ see Problem 3.1].

By Lemma 3.3 there exists a field homomorphism 7z : F' — L' such
that np(a) = o/, nr(c) =c,c € K. Let F' := I'm(np) C L'. By Lemma
3.4 L is a splitting field of ¢(t) over F' and L' is a splitting field of ¢'(¢)
over F'. Since [L: F]=[L: K|/[F : K] < [L: K| = N we know [ by
the inductive assumptions] that the isomorphism 7z : F' — F' can be
extended to an isomorphism 7 between L and L'.[J

Criteria for irreducibility. The first criteria is for some polyno-
mials over fields of characteristic p > 0.

Lemma 3.5. Let K be a field of characteristic p > 0,a € K.
Then either there exists § € K such that a = (P or the polynomial
p(t) =t? — a € K][t] is irreducible.

Proof. a) If @ = §? then the polynomial p(t) =t? —a =1t — P =
(t — B)? is reducible.

b) Assume that = # — « = g(t)r(t) where g(t),7(t) € K][t] are
polynomials of positive degree. We want to show the existence of 5 € K
such that o = SP.

Let L be the splitting field of p(t) = t* — « and 8 € L a root of
p(t). Then P = a and p(t) = t* — a = (t — f)P. So we see that
gty = (t=p)"r(t) = (- 5™ mn>0,m+n = p The inclusion
r(t) € K[t] implies that /™ € K Since p is a prime number and m is
prime to p there exist 1ntegers a,b such that am + bp = 1. Therefore
B = penthr = (pm)e x (BP)* € K. Since 8™, 3P € K we see that
g e KO

The second irreducibility criteria is for polynomials over Q. We start
with a couple of auxiliary results.

Definition 3.3. A polynomial ¢(t) = Y, ¢;t* € Z[t] with integer
coefficients ¢; is primitive if the greatest common divisor of integers
ci,0 <1 < nisequal to 1.

Lemma 3.6. Any non-zero polynomial 7(t) € Q[t] can be written
uniquely in the form

r(t) = (u/m)q(t)
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where ¢(t) € Z[t] is a primitive polynomial and u, m are positive
integers.

I’ll leave a proof of Lemma 3.6 as a homework problem.

Lemma 3.7 [ Gauss lemma]. Let ¢(¢t) € Z[t] be a monic poly-
nomial with integer coefficients and ¢(t) = f(¢)g(t) where f(t),g(t) €
Q[t]. Then we can find ¢ € Q, ¢ # 0 such that cf(t),c 'g(t) are monic
polynomials with integer coefficients.

Proof. By Lemma 3.6 we can write f(t) = u'/m’a(t), g(t) = u"/m"b(t)
where a(t), b(t) are primitive polynomials with integral coefficients and
u',u"”,m',m" are positive integers. Then

q(t) = f(D)g(t) = v'u" /m'm"a(t)b(t)

We can write the fraction u'u”/m'm” in the form v'v"/m'm" = u/m
where u, m are relatively prime positive integers. We see that

mq(t) = ua(t)b(t)
Claim. m =1

Proof of Claim. We show that an assumption that m > 1 leads
to a contradiction. So assume m > 1 and choose a prime divisor p of
m. We denote by ¢ — ¢ the reduction Z — F, mod p and denote by
a(t), b(t) € F,[t] the reduction of polynomials a(t), b(t) mod p.

Since the numbers u, m are relatively prime we have & # 0. On
the other hand since polynomials a(t), b(t) € Z[t] are primitive we have
a(t) # 0,b(t) # 0. The ring F,[t] is integral and therefore aa(t)b(t) # 0.
On the other hand since p|m we have m = 0. This contradiction proves
the Claim.

Now we can finish the proof of the Gauss lemma. We have

q(t) = ua(t)b(?)

Let a,b € Z be the leading coefficients of polynomials a(t), b(t) € Z[t].
Since ¢(t) € Z[t] is a monic polynomial we have 1 = uab. But this is
possible only if either when @ = b = 1 and the polynomials a(t), b(t) €
Z[t] are monic or when @ = b = —1 and the polynomials —a(t), —b(t) €
Z[t] are monic.

By the construction the polynomials a(t),b(t) € Z[t] are multiples of
f(t),9(t),a(t) = cf(2),b(t) = dg(t). Since a(t) x b(t) = cf(t) x dg(?)
we have cd = 101

Theorem 3.2 (Eisenstein’s criteria). Let

qt) =t" + ap_1t" "+ ... + ag € Z[t]
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be a monic polynomial with integer coefficients. Suppose that for some
prime p we have p|a;,0 <7 < n — 1 but aq is not divisible by p?. Then
the polynomial ¢(¢) in QJ¢] is irreducible.

Proof. Suppose that ¢(t) = a(t)b(t) where a(t),b(t) € Q[t| are
polynomials of positive degree. By the Gauss lemma we can assume
that a(t),b(t) are monic polynomials with integral coefficients. Let

q(t),a(t),b(t) € F,[t] be the reductions of polynomials ¢(t), a(t), b(t).
The condition of the Theorem imply that §(¢t) = t". Therefore all the
roots of ¢(t), a(t),b(t) are equal to 0 € F,. So

a(t) =t"b(t) =t", u+v=n
Since a(t) = t° and the polynomial a(t) € Z[t] is monic we have
a(t) = t* + pe(t), c(t) = N, eit’ € Z[t]. Analogously ba(t) = t¥ +
pd(t),d(t) = Z;;é d;t! € Z[t]. But then we have ag = p®cody. This
contradicts the assumption that ag is not divisible by p?0.



