Definition 2.1. Let K be a field. We have a natural homomorphism
7 — K. We will write n — n. We say that K is a field of characteristic
zero if this homomorphism is an imbedding. If this homomorphism is
not an imbedding then we define the characteristic of K as the smallest
positive number n such that 17 = 0.

We denote the characteristic K by ch K.

Remark. You will see that either ch K = 0 or it is a prime number .

Definition 2.2.Let L be an extension of K and {ay, ..., a,} a set of
elements in L. We denote by K(aq,...,,) C L the minimal subfield
of L containing K and {ay, ..., ap}-

Let L be a finite extension of K. We can ask whether this extension
is elementary. To analyze the case when K is a finite field we prove
the following result which has an independent interest.

Let K be a field. We denote by K* = K —0 the commutative group of
non-zero elements of K where the group product is the multiplication.

Lemma 2.1. Let G C K* be a finite subgroup. Then G is a cyclic
group.

Proof. As you know any finite commutative group G there exists
a sequence of distinct prime numbers p;, 1 < 2 < n and finite commu-
tative G* such that the group that order of G' is a power of p; and G
is isomorphic to a product G = [, G*. Moreover the the group G is
cyclic iff all the groups G* are cyclic.

You also know that a finite commutative p-group H is not cyclic
then |H(p)| > p where H(p) := {h € H|h? = 1}. So it is sufficient to
show that for any 7,1 < 4 < n we have |G*(p;)| < p;. Therefore it is
sufficient to show that for any prime number p we have |G(p)| < p.

Since G is a subgroup of K* we have G(p) C K*(p) where K*(p) =
{a € K|a? = 1}. In other words { K*(p)} is the set of roots of the poly-
nomial ¥ — 1 in K. But it follows from Problem 1.1.c) that |K*(p)| <
deg (t? — 1) = p. Therefore |G(p)| < p.0.

Corollary. Any extension L D K such that |L| < oo is elementary.

Proof. Since L is a finite field it follows from Lemma 2.1 that there
exists a € L such that and [ € L* is a power of . It is clear then that
L = K(a).

Definition 2.3. We say that a finite extension L D K satisfies the
condition x if there exists only a finite number of subfields F' C L
containing K.

Theorem 2.1. A finite extension L D K is elementary iff it satisfies
the condition *.



Proof. We have to show that

a) if L D K is a finite extension of K which satisfies the condition x
then the extension L D K is elementary

and

b) if L O K is an elementary extension then it satisfies the condition
*.

We will prove now only the part a) and will return to the proof of
the part b) later. We also show later that any finite extension L of a
field K of characteristic 0 satisfies the condition .

Proof of a). Assume that L D K is a finite extension of K such
that there exists only a finite number of subfields F' C L containing
K. Since the extension L. D K is finite there exists a finite basis
{a1, ..., an} of L over K. It is clear that K (a4, ..., a,) = L. The proof
is by the induction on the size n of a finite set {cy,...,a,} € L such
that K(ay,...,ap,) = L. If n =1 there is nothing to prove.

Consider the case n = 2. For any ¢ € K consider the subfield
K (ay + cag) C L. Since the extension L D K satisfies the condition x
there exists only a finite number of subfields F' C L containing K. On
the other hand the field K is infinite. Therefore there exists ¢; # ¢y €
K such that

K(Otl + 010[2) = K(a1 + 62012)
Let F' := K(a; + ceaz). Since F := K(aj + c1a) we see that ag +
C10, 01 + ceay € F. So (¢; — ¢3)ae € F and therefore ay € F. Since
a1+crag, an € F we see that ap € F. Since ay, ap € F and K (aq, ) =
L we have K(a; + coas) L.

Proceeding inductively, we see that if L = K(ay, ..., ;) then there
exist elements ¢, ..., ¢, € K such that L = K(a1 + coae + ... + cpap,) 0.

Constructions of fields. We will discuss two ways to construct
new fields: the construction of the fraction field and the adjoining of a
root of an irreducible polynomial.

Definition 2.3. Let A be a commutative ring. We say that A is
integral if for any a,b € A — {0} we have ab # 0 .

Let A be an integral commutative ring.
Consider the set X of pairs (a,s),a € A,s € A— {0}. We define
operations

((a,5),(a',s") = (a,8) + (', 8), ((a, 5), (', 5)) = (a, 5)(d', §)
on X by

(a,s)(d,s') := (ad', ss'), (a,8) + (', §') := (as’ + d's, s5")



Consider an equivalence relation = on X defined by

(a,s) = (d,s) ifas’' = d's

[ check that = is an equivalence relation| and denote by K(A) the
set of equivalence classes under the equivalence relation =. As you will
show the operations

((a,5), (d', ') = (a,8) + (d,5), ((a, ), (', 8)) = (a,5)(d’, &)

define operations on the set K (A) and the set K(A) acquires the struc-
ture of a field. We call this field the field of fractions of A. .

Examples. a) If A =Z then K(A) =Q,

b) if A is a field then K(A) = A,

c) if K is a field we denote the field of fraction of K[t] by K(t) and
call it the field of rational functions over K in one variable,

d) analogously K is a field we denote the field of fraction of K[t1, ..., t,]]
by K (i, ..., t,) and call it the field of rational functions over K in n vari-
ables.

To define the construction of adjoining of a root of an irreducible
polynomial we have prove some results about the ring K|t| of polyno-
mials.

Definition 2.4. a) If a non-zero polynomial p(t) divides ¢(t) we
write p(t)|q(t)-

b) A non-zero polynomial p(t) = Y i, c;t" of degree n polynomial is
monic if ¢, = 1,

c) Let g(t),r(t) € K]Jt] be non-zero polynomials. We denote by
I C K][t] be the set of polynomials s(t) of the form s(t) = a(t)q(t) +
b(t)r(t),a(t),b(t) € K[t]. It is clear that I C K]Jt] is a non-zero ideal.
As follows from Lemma 1.1 and the Problem 1.1.a) there exists unique
monic polynomial p(t) such that I = (p(¢)). We say that the polyno-
mial p(t) is the greatest common divisor of q(t),r(t) € K|t].

d) we say that ¢(t),r(t) € K][t] are relatively prime if the greatest
common divisor of ¢(t),r(t) € K[t] is equal to 1.

Lemma 2.2. If ¢(t) is irreducible and a;(?), ..., a,(t) are polynomials
such that ¢(¢) divides the product a;(t) X ... X a,(t) then there exists
i,1 <14 < n such that q(t)|a;(t).

Proof . We can assume that ¢(¢) is monic. The proof is by induction
in n. If n = 1 there is nothing to prove. Consider the case n = 2. To
prove the Lemma in the case n = 2 we have to show for any polynomials
a1(t), a2(t) € KJt] such that ¢(t) does not divide neither a,(t) nor as(t)
the polynomial ¢(t) does not divide a;(t)az(t).



Let p(t) be the greatest common divisor of ¢(¢) and a;(¢). By the
definition ¢(t) € (p(t)) and therefore p(t)|q(t). Since ¢(t) is irreducible
it is possible only either p(t) = ¢(t) or if p(t) = 1. Since ¢(t) does not
divide ay(t) we see that p(t) # q(t). So p(t) = 1.

By the definition of the greatest common divisor there exist b(t), c(t) €
K[t] such that b(t)q(t)+c(t)ai(t) = 1. Therefore as(t)b(t)q(t)+c(t)ay(t)as(t) =
as(t). Since ¢(t) does not divide as(t) but divides aq(t)b(t)q(t) we see
that ¢(t) does not divide c(t)a;(t)aq(t). If so it also does not divide
a1(t)az(t). This ends the proof of the case when n = 2.

Suppose we now the Lemma, is know for products of n—1 factors. We
want to prove it for a product a;(t), ..., a,(t) of n factors. Let b(t) :=
az(t), ..., an(t). Then ai(t),...,a,(t) = a1 (t)b(t). Since q(t)|ay(t)b(t) we
know that either q(t)|a1(¢) or ¢(¢)|)b(t). In the first case there is nothing
to prove. In the second we can apply the inductive assumption.[]

Lemma 2.3. a) Let ¢(¢) € K[t] be a polynomial of positive degree.
Then there exists a € K — 0, irreducible monic polynomials p; € K[t]
and positive numbers m;, 1 < ¢ < n such that

q(t) = ap1 ()™ ..p ()™
b) such a factorization is unique up to the order of p; € Kt].

It is clear that is is sufficient to prove Lemma in the case when
q(t) € K[t] is monic.

Proof of a). The proof is by the induction in deg ¢(¢). If deg
q(t) = 1 then ¢(t) = t + b and it is clear that ¢(¢) is an irreducible
monic polynomial.

Assume now that the part a) of Lemma is known for all polynomial
of degree < n. Let ¢(t) € KJt| be a monic polynomial of degree n.
If q(t) is irreducible then there is nothing to prove. So assume that
q(t) is reducible. Then there exists polynomials ¢'(t), ¢"(t) of positive
degrees such that ¢(t) = ¢'(t)q"(t). Since deg ¢'(t),deg ¢"(t)ideg ¢(t)
we know by the inductive assumption that ¢'(¢), ¢"(t) are products of
irreducible monic polynomials. Therefore ¢(t) = ¢'(t)¢"(t) is also a
product of irreducible monic polynomials. .

Proof of b). The proofis also by the induction in deg ¢(t). As before
the case when deg ¢(t) = 1 is clear. Assume that the part b) of Lemma
is known for all polynomial of degree < n. Let ¢(t) € K[t] be a monic
polynomial of degree n. Suppose that we have two decompositions of
¢(t) in products of irreducible monic polynomials

q(t) = pr ()™ .pp ()™ =1 (). (1)
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where p;(t),r;(t) are irreducible monic polynomials and m;,l; > 0. We
have to show that n = s and there exists a permutation o : [1,n] —
[1,n] such that p;(t) = go(i)(t), mi = l,q) for all 4,1 <4 <n.

Since p,(t)|q(t) = ri(t)"...rs(t) we see by Lemma 2.2 that there
exists j,1 < j < s such that p,(¢)|r;(t). But since r;(¢) is an irreducible
monic polynomial we have p,(t) = r;(t). By changing the order of
factors r;(t) we can assume that j = s.

Let ¢(t) := q(t)/pn(t). Then we have q(t) := q(t)/rs(t) and

qt) = p1 ()™ .p ()™ = ry () g ()T
where we omit factors p,(t) and/or r4(t) if m,, = 1 and/or I; = 1. Since
deg G(t) = n — 1 we know the uniqueness of the factorization of (¢)
into the product of irreducible monic polynomials. But this implies
immediately the uniqueness of the factorization for ¢(¢)C.

Now we can describe the construction of adjoining of a root of an
irreducible polynomial.

Let p(t) € K[t] be an irreducible polynomial, and L := K]Jt]/(p(t))
be the quotient ring.

Lemma 2.4. a) The ring L is a field,

b) the polynomial p(¢) has root in L.

Proof of a). To show that the ring L is a field we have to show
that for any [ € L — {0} there exists v € L such that [v = 1. Consider
L as a K-vector space. It is clear that dimg(L)=deg p(t) < co. Let
A: L — L be the operator of the multiplication by .

Claim. Ker (A)={0}.

Proof of the claim. Let m be an element of Ker (A). We want to
show that m = 0.

Let I(t),m(t) € K[t] be representatives of [ and m in K[t]. Then
[(t)ym(t) € K]Jt] is a representative of A(m). Since m €Ker (A) we
have [(t)m(t) € (p(t)). In other words p(t)|l(t)m(t). Since [ # 0 we
see that p(t) does not divide [(¢). It follows now from Lemma 2.3 that
p(t)|m(t). In other words m = 0.

Now we can finish the proof of Lemma 2.4. Since Ker (A)={0} and
dimg (L) < oo we see that A : L — L is onto. Therefore there exists
v € L such that A(v) = 10.

Proof of b). Let a be the image of ¢t € K[t] in L. Then («) € L is
the image of p(t) € K|t]. But by the definition of L := KJt]/(p(t)) the
image of p(t) in L is equal to 0.0

We will say that the field L := K[t]/(p(t)) is obtained from K by
adjoining a root of the polynomial p(t).



