
Let s(t) = tn +
∑n−1

i=0 ci ∈ Q[t] be an irreducible monic polynomial
with coefficients in Q. The the Galois group G of s(t) acts on the set
R ⊂ Q̄ of roots of s(t) in Q̄. In other words we have an imbedding of
the group G into the symmetric group Sn. In particular for any σ ∈ G
we can talk about the decomposition of σ into a product of cycles.

Last time we have shown that the Galois group of the polynomial
t5 − 6t + 3 over Q is equal to S5. Our computation was based on
the understanding of the structure of the decomposition of t5 − 6t +
3 ∈ R[t] in the product of irreducible factors. More precisely we have
shown that the polynomial s(t) have exactly two non-real roots in C
and therefore s(t) = (t − a1)(t − a2)(t − a3)q(t), ai ∈ R where q(t) ∈
R[t] is an irreducible quadratic polynomial and therefore there exists
σ ∈ G which is a 2-cycle.. There is an analogous approach to an
understanding of a Galois group of a polynomials s(t) ∈ Z[t] which
uses the decomposition of the reduction of s̄(t) ∈ Fp[t] of s(t) mod p.

As you remember we have already used the reduction modp in the
proof of the Eisenstein’s criterion for irreducibility. The proof was
based of the lemma of Gauss which says that an irreducible monic
polynomial with coefficients in Z is irreducible in Q[t] iff it is irre-
ducible in Z[t]. So we can talk unambiguously about irreducible monic
polynomials in Z[t].

Let s(t) = tn +
∑n−1

i=0 ci ∈ Z[t] be an irreducible monic polynomial

and s̄(t) := tn +
∑n−1

i=0 c̄i ∈ Fp[t] where c̄i is the reduction of ci mod p.
Then the Galois group G of s(t) acts on the set R ⊂ Q̄ of roots of s(t)
in Q̄. In other words we have an imbedding of the group G into the
symmetric group Sn. In particular for any σ ∈ G we can talk about
the decomposition of σ into a product of cycles.

Theorem 12.1. Assume that all the roots of s̄(t) in the algebraic
closure F̄p are simple. Let s̄(t) =

∏a
i=1 q̄i(t) be the decomposition

of s̄(t) in the product of irreducible polynomials q̄i(t) ∈ Fp[t]. Then
there exists an element σi ∈ G which is a product of cycles of lengths
deg(q̄i(t)), 1 ≤ i ≤ a.

Example. Let s(t) = t5 − t − 1 ∈ Z[t]. Let s2(t) ∈ F2[t] be the
reduction of s(t) mod 2 and s5(t) ∈ F5[t] be the reduction of s(t)
mod 5. One can check that the reduction of s5(t) is irreducible and
s2(t) = (t2 + t + 1)(t3 + t2 + 1) is the decomposition of s2(t) in the
product of irreducible factors. It follows now from Theorem 12.1 that
there exists elements σ, τ ∈ G such that τ is a 5-cycle and σ is a product
of a 2-cycle and a 3-cycle. But then σ3 is an elementary transposition

1



2

and it follows from Lemma 11.3 c) that the subgroup of S5 generated
by (σ3, τ) is equal to S5. So G = S5.

The proof of the Theorem 12.1 is based on the theory of extensions
of rings. We don’t have enough time to derive the Theorem 12.1 but
will develop some important concepts which are used in the proof of
Theorem 12.1.

We start with some results in the theory of free abelian groups.
Let Λ be a finitely generated abelian group and Λ′ ⊂ Λ a subgroup

fo finite index d. For any number m the inclusion i : Λ′ ↪→ Λ induces
the homomorphism im : Λ′/mΛ′/ → Λ/mΛ.

Lemma 12.1. a) If m > 1 is a number prime to d then the the
homomorphism im : Λ′/mΛ′/ → Λ/mΛ is an isomorphism,

b) If Λ is a finitely generated abelian group without non-trivial ele-
ments of finite order then Λ is a finitely generated free abelian group.
[That there exists e1, ...en ∈ Λ such that any element λ ∈ Λ can be
written uniquely as a sum λ =

∑n
i=1 ciei, ci ∈ Z .

I’ll leave the proof of Lemma 12.1 as a homework.

We will also need the following result from linear algebra.

Let V be a finite-dimensional Q-vector space of dimension n, (, ) :
V ×V → Q a nondegenerate symmetric bilinear form, e1, ..., en a basis
of V such that (ei, ej) ∈ Z for all 1 ≤ i, j ≤ n. Let B be an n × n
matrix with elements bij := (ei, ej) and D := Det(B).

We denote by Λ ⊂ V be the free abelian group generated by this
basis and define Λ∨ := {v ∈ V |(v, ei) ∈ Z for all 1 ≤ i ≤ n. It is clear
that Λ ⊂ Λ∨.

Lemma 12.2. a) Λ∨ is a free abelian group with n generators,
b) the factor group Λ∨/Λ is finite and |Λ∨/Λ| = |D|,
c) if A ⊂ Λ∨ be an abelian subgroup such that A ⊃ Λ the A is is a

free abelian group with n generators.

I’ll leave the proof of Lemma 12.2 as a homework.

Definition 12.1. a) Let K ⊃ Q be a finite extension. Given α ∈ K
we denote by Z[α] the subring of K generated by α. In other words
Z[α] is the set of all elements β ∈ K which can be written in the form
β =

∑n
i=0 ciα

i where ci ∈ Z.
b) We say that an element α ∈ K is integral if the ring Z[α] is finitely

generated as an abelian group. [That is there exists a set γ1, ..., γn ∈
Z[α] such that any element β ∈ Z[α] can be written in the form β =∑n

i=0 ciγi where ci ∈ Z].
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Lemma 12.3. Let K ⊃ Q be a finite extension, α ∈ K .Then the
following three conditions are equivalent.

a) α is a root of a monic polynomial s(t) with coefficients in Z ,
b) α is integral,
c) there exists a module M over the ring Z[α] such that M which is

finitely generated abelian group without non0trivial elements of finite
order.

Proof. a) ⇒ b).
Assume a). Assume that α ∈ K is a root of a monic polynomial

s(t) = tn +
∑n−1

i=0 ci with coefficients in Z. Let M be the set of elements
in K which can be written in the form

∑n
i=0 aiα

i, 0 ≤ i < n, ai ∈ Z. I
claim that M = Z[α]. Of course it is sufficient to show that

αi ∈ M for all i > 0. By the construction we have αi ∈ M for i < n.
Since p(α) := αn +

∑n−1
i=0 ciα

i = 0 we have αn = −∑n−1
i=0 ciα

i ∈ M . It
is easy now to show by induction in i that αi ∈ M for all i > 0.

b) ⇒ c). Take M := Z[α].

c) ⇒ a). As follows from Lemma 12.1 there exists elements m1, ..., mn ∈
M such that for any m ∈ M there exists unique set aj ∈ Z, 1 ≤ j ≤ n
such that m =

∑n
j=1 ajmj.

For all i, 1 ≤ i ≤ n we αmi ∈ M and therefore there exists aij ∈
Z, 1 ≤ i, j ≤ n such that αmi =

∑n
j=1 aijmj.

We denote by T : Kn → Kn the K-linear transformation given by
T (ei) =

∑n
j=1 aijej where ej, 1 ≤ j ≤ n is the standard basis in Kn.

Let p(t) := Det(tId− T ). Then [by the teorem of Hamilton-Caley] we
have p(T ) =). Therefore p(α) = 0. On the other hand it is clear that
p(t) is monic polynomial in Z[t].¤

Remark. If α ∈ K is a integral element and s(t) = Irr(α,Q, t)
then the natural homomorphism Z[t] → Z[α], t → α defines a ring
isomorphism Z[t]/(s(t)) → Z[α].

Corollary. Let K ⊃ Q be a finite extension and A ⊂ K be the set
of integral elements. Then A is a subring of K.

Proof. We have to show that for any pair a, b ∈ A the sum a + b
and the product ab are also integral. As follows from Lemma 12.3 it
is sufficient to construct a subgroup M ⊂ K which is invariant under
the multiplication by a+ b and ab and which is finitely generated as an
abelian group.

Let M ⊂ K be the abelian subgroup generated by elements of the
form xy, x ∈ Z[α], y ∈ Z[β]. It is clear that M is invariant under the
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multiplication by a and b and therefore is invariant under the multipli-
cation by a + b and ab. On the other hand if xi ∈ Z[α], yj ∈ Z[β], 1 ≤
i ≤ s, 1 ≤ j ≤ t are generators of the abelian groups Z[α] and Z[β] then
the products xiyj, , 1 ≤ i ≤ s, 1 ≤ j ≤ t generate the abelian group
M.¤

Definition 12.2. The ring A ⊂ K of integral elements of K is called
the ring of algebraic integers in K.

Lemma 12.4. Let L ⊂ Q be a finite extension, α ∈ A be an integral
element. Then TrL/Q(α), NL/Q(α) ∈ Z.

Proof. I’ll only show that TrL/Q(α) ∈ Z. Let s(t) = tn+
∑n−1

i=0 cit
i ∈

Q[t] be an irreducible monic polynomial with coefficients in Z such that
s(α) = 0. Then it follows from Lemma 9.1 that TrK(α)/Q(α) = −cn−1 ∈
Z. But than TrL/Q(α) = [L : K(α)]TrK(α)/Q(α) ∈ Z.¤

Example. Let n ∈ Z − Z2, K = Q(
√

n). Any element in K has a
form α = a + b

√
n. How to see when α ∈ A?

As follows from Lemma 12.4 if α ∈ A then TrK/Q(α)t, NK/Q(α) ∈ Z.
In other words 2a ∈ Z and a2 − nb2 ∈ Z.

Conversely if 2a ∈ Z and a2 − nb2 ∈ Z then α is a root of a monic
polynomial t2 − TrK/Q(α)t + NK/Q(α) = t2 − 2at + (a2 − nb2) with
coefficients in Z. So we see that α ∈ A iff 2a ∈ Z and a2 − nb2 ∈ Z.

Lemma 12.5. Assume that n is an odd square free number. Then
a) if n ≡ 3(mod)4 then 2a ∈ Z and a2 − nb2 ∈ Z iff a, b ∈ Z,
b) if n ≡ 1(mod)4 then 2a ∈ Z and a2 − nb2 ∈ Z iff either a, b ∈ Z

or 2a, 2b, a− b ∈ Z.

I’ll leave the proof of Lemma 12.5 as a homework.

Lemma 12.6. For any β ∈ K there exists n ∈ Z − 0 such that nβ
is an integral element of K.

I’ll leave the proof of Lemma 12.6 as a homework.

Proposition 12.1. The ring A ⊂ K of integral elements of K is a
finitely generated abelian group.

Proof. Choose any β ∈ K such that K = Q(β). By lemma 12.6
there exists n ∈ Z − 0 such that α := nβ ∈ A. Since K = Q(β) we
have K = Q(α) and therefore elements 1, α, α2, ..., αn−1, n := [K : Q]
is a basis of the Q-vector space K. We consider the Q-bilinear form
(, ) on K given by (x, y) := TrK/Q(xy). As we know from Lemma 10.4
the Q-bilinear form (, ) on K is nondegenerate.
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Let Λ ⊂ K be the free abelian group generated by this basis and
Λ∨ := {v ∈ K| := {v ∈ K|(v, αi) ∈ Z for all 1 ≤ i ≤ n. It is clear that
Λ ⊂ A ⊂ Λ∨. So Proposition 12.1 follows from Lemma 12.2.¤

Let k be a field, s̄(t) be a polynomial such that all the roots of s̄(t)
in k̄ are simple. Consider the decomposition s̄(t) ==

∏m
i=1 q̄i(t) ∈

k[t] be a product of irreducible polynomials and define fields Li :=
k[t]/(q̄i(t)). The natural homomorphisms fi : k[t] → Li, define homo-
morphisms ri := k[t]/(s̄(t))] → Li and therefore a ring homomorphism
r : k[t]/(s̄(t)) → ⊕m

i=1Li.
Lemma 12.7 . [ The Chinese reminder theorem]. The homomor-

phism r : K[t]/(s̄(t))] → ⊕m
i=1Li is an isomorphism.

I’ll leave the proof of the Chinese reminder theorem as a homework.

Let s(t) = tn +
∑n−1

i=0 ci ∈ Z[t] be an irreducible monic polynomial,
K := Q[t]/(s(t)), A ⊂ K the ring of integers in K, α ∈ A the image of
t under the natural surjection Q[t] → K.

Let p be a prime number and s̄(t) ∈ Fp[t] the reduction of s(t)
modp, Ā := Fp[t]/(s̄(t)) . We denote by ᾱ ∈ Ā the image of t under
the natural surjection Fp[t] → Fp[t]/(s̄(t)) and by ᾱ ∈ Ā the image of
t. The isomorphism Z[t]/(s(t)) → Z[α] [see the Remark after the proof
of Lemma 12.3 ] defines a ring homomorphism φ′ : Z[α]/pZ[α] → Ā.

Lemma 12.8 . If an irreducible monic polynomial s(t) = tn +∑n−1
i=0 ci ∈ Z[t] is such that all the roots of s̄(t) in F̄p are simple then

the ring homomorphism φ′ : Z[α]/pZ[α] → Ā is an isomorphism and it
extends to an isomorphism A/pA → Ā.

Proof. We will use notations introduced in the proof of Proposition
12.1. We also consider V̄ := Fp[t]/(s̄(t)) as an Fp vector space and
define an Fp-linear map tr : V̄ → Fp by tr(x̄) := TrV̄ Ax̄) where Ax̄ :
V̄ → V̄ is the operator of the multiplication by x̄ ∈ V̄ . We consider
a bilinear form (, )p : V̄ × V̄ → Fp given by (x̄, ȳ)p := tr(x̄ȳ). Let B̄
the be the matrix of the bilinear form (, )p in the basis 1, ᾱ, ..., ᾱn−1. It
is clear that B̄ is equal to the reduction modp of the matrix B of the
bilinear form (, ) in the basis 1, ᾱ, ..., ᾱn−1.

Since the finite extension of Fp is separable it follows from Lemma
12.7 that the form (, )p : V̄ × V̄ → Fp is not degenerate. So Det(B̄) 6=
0 and therefore Det(B) is prime to p. So Lemma 12.8 follows from
Lemma 12.2.¤


