Definition 1. Let K be a field.

a) We denote by Kt] the set of polynomials p(t) =, a;t’,a; € K
with coefficients in K. If p(t) is not identically zero [ we write p(t) # 0]
we assume that a, # 0 and say that the degree of p(t) to be equal to
n. We write n = deg p(t). If p(t) = 0 we define deg p(t) := —1.

b) we say that a polynomial p(t) is reducible if p(t) can be writ-
ten as a product p(t) = ¢'(t)¢"(t) where ¢'(t),q"(t) are non-constant
polynomials with coefficients in K,

c¢) we say that a polynomial p(t) is irreducible if it is not reducible,

d) a root of a polynomial p(¢) in K is an element ¢ € K such that
pla) =

e) we say that a subset I C K][t] is an ideal if

i) for any p(t), q(t) € I we have p(t) + ¢(t) € I and

ii) for any p(t) € I, a(t) € K|[t] we have a(t)p(t) € 1,

f) we say that an ideal I C K]t| is principal if there exists p(t) € I
such that I is equal to the set of all polynomials ¢(t) € K|[t] divisible
by p(?).

In this case we write I = (p(t)).

Problem 1. Show that

a) if p(t),q(t) € KJt] are two polynomials such that the corre-
sponding principal ideals (p(¢)) and (¢(t)) coincide then there exists
c € K — {0} such that p(t) = cq(t),

b) for any two non-zero polynomials p(t), ¢(t) € K|[t] we have

deg (p(t)q(t))=deg p(t)+deg q(1),

¢) if p(t) is a non-zero polynomial of degree n then it has no more
then n distinct roots,

d) Show that given p(t),q(t) € K]Jt] such that p(t) # 0 there exists
unique pair a(t), r(t) € K|[t] such that

q(t) = a(t)p(t) + r(t) and deg r(t) < deg p(t).

Remark The polynomial r(¢) is called the remainder of ¢(t) after
the division by p(t).

Lemma 1.1 Any ideal I € K][t] is principal.

Proof. If I = {0} we can take p(¢) = 0. So assume that I # {0}. Let
ny > 0 be the minimal degree of a non-zero polynomial in /. Choose
p(t) € I — {0} such that deg p(t) = n;.

I claim that I = (p(¢)). By the definition of an ideal any polynomial
q(t) € K|t] of the form a(¢)p(t) belongs to I. So (p(t)) C 1.

To show that I = (p(t)) it is sufficient to prove that any ¢(t) € I there
exist a(t) € K]|t] such that ¢(t) = a(t)p(t)). Let r(t) = q(t) — a(t)p(t)
be the remainder of ¢(t) after the division by p(t). Since I is an ideal
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and ¢(t),p(t) € I we see that r(t) = q(t) + (—a(t))p(t) € I. But | see
problem 1.1.c)] deg r(t) < deg r(t) = n;. By the definition of n; this
is possible only if r(¢) = 0O

Definition 2. Let L be a field and K C L a subset of L.

a) we say that K is a subfield of L [ or that L is an extension of K]
if for any a,b € K we have a+b,a—b,ab € K and for any ¢ € K — {0}
we have ¢! € K,

b) if L is an extension of K then we can consider L as a K-vector
space. We define the degree [K : L] of L over K as the dimension
dme(L),

c¢) we say that the extension L of K is finite if [K : L] < o0

d) given an an extension L of K and an element o € L we denote
by K(a) C L the subset of elements | € L which could be written in
the form [ = p(a)/q(c) where

p(t),q(t) € K[t] and g¢(a) #0,

e) given an an extension L of K and a subset A C L we denote by
K(A) C L the subset of elements [ € L which could be written in the
form | = p(ay, ..an)/q(a, ..ap)) where

{a1, ..a, } is any finite subset of A, p(t1, ..., t,), q(t1, ..., tn) € K[t1, ..., 5]
be polynomials in ¢y, ..., t, with coefficients in K such that q(t1, ..., t,) #
0,

f) we say that an extension L of K is elementary if there exists « € L
such that K(a) = L.

Problem 2. a) Find [C: R],

b) show that the extension Q C R is not elementary,

c) Let L be a field and K C L a subfield of L. Show that for any
a € L the set K(«) C L is a subfield of L,

d) Let L be a field and K C L a subfield of L. Show that for any
subset A C L the set K(A) C L is a subfield of L,

e) if p(t) € R[¢] is irreducible then either deg p(t) = 1 or deg p(t) = 2.

Remark. I assume that you know that any polynomial p(t) € C[t]
of positive degree has a root a € C.

Definition 3. Given an an extension L of K and an element o € L
we say that « is algebraic over K if there exists a non-zero polynomial
p(t) € K[t] such that p(«) = 0.

If « is not algebraic we say that « is transcendental over K.

Theorem 1.1. [The product formula] If L is a finite extension
of F' and F' is a finite extension of K then

a) L is a finite extension of K

and



b) [L:K|=I[L:F|F:K]|.

Proof. Let o; € L,1 < i < [L: F|] be a basis of L as an F-vector
space and 3; € F,1 < j < [F : K] be a basis of F' as a K-vector space.
Let

lz’j IZOZiﬁj}CL,l <3< [LF],lS] < [FK]

I claim that the set

{ly}c L

is a basis of L as an K-vector space. This claim consists of two parts:

a) the set {l/;;} C L generates L as an K-vector space

and

b) elements /;; € L in the K-vector space L are linearly independent.

I'll prove the part a) and leave the part b) as a homework problem.

Proof of a). Take any [ € L. We have to show the existence of
¢i; € K,1<i<[L:F|,1<j<[F:K]such that

= Zi,j ci,jlij-

Since o; € L,1 < i < [L: F]is a basis of the F-vector space L we
can find y; € F,1 <i <[L: F|such that | =), viej; 1 <i < [L: F).

On the other hand since §; € F,1 < j < [F' : K] a basis of the
K-vector space F'we can find¢;; € K,1<i<[L:F|,1<j<[F:K]
such that for any 7,,1 < i < [L : F] we have

Yi = Zj ci,jﬂj- But then [ = Zi,j Ci,jlijD-

Problem 3. Prove the part b) of the Theorem 1.1.

Problem 4. Let u € C be a solution of the equation

(Xu? — v’ +u+2=0

and £ = Q(u)
a) show that [E : Q] does not depend on a choice u of a solution of
(%),

b) express (u? +u+1)(u?> —u) and (u — 1)~! in the form
au’® 4+ bu +c
where a,b,c € Q

Let &, € C be a primitive n-th root of 1. [ That is £ = 1 but £ # 1
for all 1 <m < n].

c¢) show that the subfield L, := Q(&,) C C does not depend on a
choice of a primitive root &, € C,

d) find [L, : Q] for2<n <4

Theorem 1.2 Let L be an extension of K, « € L. Then « is algebraic
iff [ if and only if] [K(«) : K] < 0.

Proof. We have to show that



a) if [K(«) : K] < oo then « is algebraic.

and

b) if « is algebraic then [K(«a) : K| < o0

Proof of a)

For any n > 0 we define V;, := spang(1,q,...,a™ '} C L as the K-
subspace of L spanned by 1, q,...,a" ! € L. It is clear that V,, C V,,;;
and therefore dimgV,, < dimgV,, 1. On the other hand for all n > 0
we have

dimgV, < dimgK(a) = [K(a) : K] < 00

So there exists n > 0 such that dimgV,, = dimgV,11. Therefore
Vn = Vn—|—1-

Let n > 0 be the first number such that V,,,; = V,,. By the definition
we have o™ € V1. Therefore o™ € V,, and there exists a polynomial
p(t) = Z?:_ol a;t',a; € K, a, = 1 such that o™ = p(a)0.

Proof of b) Suppose that o € L is algebraic. Then there exists
non-zero polynomials ¢(¢) such that g(a) = 0. Let n be the minimal
degree of such polynomials ¢(t). Let V :== spank(1,a,...,a" 1} C L.

Since dimg (V) = n < oo it is sufficient to show that K(a) = V.
It is clear that V C K(«) is a K-subspace of L invariant under the
multiplication by a. To show that V = K(«) it is sufficient to show
that V' C L is a subfield. That is we have to show that for any g € V-0
there exists vy € V such that Svg = 1.

Since f € V — 0 there exists a non-zero polynomial 7(¢) of degree
n — 1 such that § = r(«). Consider the K-linear map B : L — L
defined by A(l) := pl. Since the subspace V C L is invariant under
the multiplication by 8 = r(a). We define a K-linear map A:V — V
by A(v) := fv. Since L is a field we see that fv # 0 for v # 0. So
Ker(A) ={0}.

Now we use the following result from Linear Algebra.

Claim. Let K be a field, V' a finite-dimensional K-vector space,
A:V — V alinear map such that Ker(A) = {0}. Then A: V — V is
onto [ and therefore is an isomorphism)].

Since dimg (V) =n < oo we see that A: V — V is an isomorphism
and there exists vy € V such that A(vy) = 1 where we consider 1 € K
as an element of V. Therefore Svy = 101.

Corollary 1 Let L be an extension of K, «, 8 € L elements algebraic
over K. the a+ 3 € L, and af8 € L are also algebraic.

Proof. I'll prove that ar+f is algebraic. The proof of the algebraicity
of a3 is completely analogous.
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Let F:= K(a) C L and G := F(8) C L. Since 8 € G is algebraic
over K then by Theorem 1.2 there exists a non-zero polynomial p(t) €
K[t] such that p(8) = 0. Therefore 3 is also algebraic over F' [you can
use the same polynomial p(¢)] and we see that [G : F] < oc.

So we see that [G : F],[F : K] < oo and therefore it follows from the
Product formula [ Theorem 1.1] that [G : K] < co. Since K(a+3) C G
we see that [K(a + ) : K] < co. Now it follows from Theorem 1.2
that o + 3 is algebraic. [

Problem 5. Let L be an extension of K, « € L an element algebraic
over K. show that [K(«) : K] is the minimal degree of a non-zero
polynomial p(t) € K|[t] such that p(a) = 0 and that the polynomial is
irreducible.



