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Abstract. We give bounds on the global dimension of a finite length,
piecewise hereditary category in terms of quantitative connectivity prop-
erties of its graph of indecomposables.

We use this to show that the global dimension of a finite dimensional,
piecewise hereditary algebra A cannot exceed 3 if A is an incidence
algebra of a finite poset or more generally, a sincere algebra. This bound
is tight.

1. Introduction

Let A be an abelian category and denote by Db(A) its bounded derived
category. A is called piecewise hereditary if there exist an abelian heredi-
tary category H and a triangulated equivalence Db(A) ' Db(H). Piecewise
hereditary categories of modules over finite dimensional algebras have been
studied in the past, especially in the context of tilting theory, see [1, 2, 3].

It is known [2, (1.2)] that if A is a finite length, piecewise hereditary
category with n non-isomorphic simple objects, then its global dimension
satisfies gl.dimA ≤ n. Moreover, this bound is almost sharp, as there are
examples [5] where A has n simples and gl.dimA = n− 1.

In this note we show how rather simple arguments can yield effective
bounds on the global dimension of such a categoryA, in terms of quantitative
connectivity conditions on the graph of its indecomposables, regardless of
the number of simple objects.

Let G(A) be the directed graph whose vertices are the isomorphism classes
of indecomposables of A, where two vertices Q,Q′ are joined by an edge
Q→ Q′ if HomA(Q,Q′) 6= 0.

Let r ≥ 1 and let ε = (ε0, . . . , εr−1) be a sequence in {+1,−1}r. An
ε-path from Q to Q′ is a sequence of vertices Q0 = Q,Q1, . . . , Qr = Q′ such
that Qi → Qi+1 in G(A) if εi = +1 and Qi+1 → Qi if εi = −1.

For an object Q of A, let pdAQ = sup{d : Extd
A(Q,Q′) 6= 0 for some Q′}

and idAQ = sup{d : Extd
A(Q′, Q) 6= 0 for some Q′} be the projective and

injective dimensions of Q, so that gl.dimA = supQ pdAQ.

Theorem 1.1. Let A be a finite length, piecewise hereditary category. As-
sume that there exist r ≥ 1, ε ∈ {1,−1}r and an indecomposable Q0 such
that for any indecomposable Q there exists an ε-path from Q0 to Q.

Then gl.dimA ≤ r+1 and pdAQ+idAQ ≤ r+2 for any indecomposable
Q.

We give two applications of this result for finite dimensional algebras.
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Let A be a finite dimensional algebra over a field k, and denote by mod A
the category of finite dimensional right A-modules. Recall that a module M
in modA is sincere if all the simple modules occur as composition factors of
M . The algebra A is called sincere if there exists a sincere indecomposable
module.

Corollary 1.2. Let A be a finite dimensional, piecewise hereditary, sincere
algebra. Then gl.dim A ≤ 3 and pd Q + idQ ≤ 4 for any indecomposable
module Q in modA.

Let X be a finite partially ordered set (poset) and let k be a field. The
incidence algebra kX is the k-algebra spanned by the elements exy for the
pairs x ≤ y in X, with the multiplication defined by setting exyey′z = exz

when y = y′ and zero otherwise.

Corollary 1.3. Let X be a finite poset. If the incidence algebra kX is
piecewise hereditary, then gl.dim kX ≤ 3 and pd Q + idQ ≤ 4 for any
indecomposable kX-module Q.

The bounds in Corollaries 1.2 and 1.3 are sharp, see Examples 3.2 and 3.3.
The paper is organized as follows. In Section 2 we give the proofs of the

above results. Examples demonstrating various aspects of these results are
given in Section 3.

2. The proofs

2.1. Preliminaries. Let A be an abelian category. If X is an object of
A, denote by X[n] the complex in Db(A) with X at position −n and 0
elsewhere. Denote by indA, indDb(A) the sets of isomorphism classes of
indecomposable objects of A and Db(A), respectively. The map X 7→ X[0]
is a fully faithful functor A → Db(A) which induces an embedding indA ↪→
indDb(A).

Assume that there exists a triangulated equivalence F : Db(A)→ Db(H)
with H hereditary. Then F induces a bijection indDb(A) ' indDb(H), and
we denote by ϕF : indA → indH× Z the composition

indA ↪→ indDb(A) ∼−→ indDb(H) = indH× Z
where the last equality follows from [4, (2.5)].

If Q is an indecomposable of A, write ϕF (Q) = (fF (Q), nF (Q)) where
fF (Q) ∈ indH and nF (Q) ∈ Z, so that F (Q[0]) ' fF (Q)[nF (Q)] in Db(H).
From now on we fix the equivalence F , and omit the subscript F .

Lemma 2.1. The map f : indA → indH is one-to-one.

Proof. If Q,Q′ are two indecomposables of A such that f(Q), f(Q′) are
isomorphic in H, then Q[n(Q′) − n(Q)] ' Q′[0] in Db(A), hence n(Q) =
n(Q′), and Q ' Q′ in A. �

As a corollary, note that if A and H are two finite dimensional algebras
such that Db(modA) ' Db(modH) and H is hereditary, then the represen-
tation type of H dominates that of A.

We recall the following three results, which were introduced in [1, (IV,1)]
when H is the category of representations of a quiver.
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Lemma 2.2. Let Q,Q′ be two indecomposables of A, Then

Exti
A(Q,Q′) ' Exti+n(Q′)−n(Q)

H (f(Q), f(Q′))

Corollary 2.3. Let Q,Q′ be two indecomposables of A with HomA(Q,Q′) 6=
0. Then n(Q′)− n(Q) ∈ {0, 1}.

Lemma 2.4. Assume that A is of finite length and there exist integers n0, d
such that n0 ≤ n(P ) < n0 + d for every indecomposable P of A.

If Q is indecomposable, then pdAQ ≤ n(Q) − n0 + 1 and idAQ ≤ n0 +
d− n(Q). In particular, gl.dimA ≤ d.

Proof. See [1, IV, p.158] or [2, (1.2)]. �

2.2. Proof of Theorem 1.1. Let r ≥ 1, ε = (ε0, . . . , εr−1) and Q0 be as in
the Theorem. Denote by r+ the number of positive εi, and by r− the number
of negative ones. Let F : Db(A)→ Db(H) be a triangulated equivalence and
write f = fF , n = nF .

Let Q be any indecomposable of A. By assumption, there exists an ε-path
Q0, Q1, . . . , Qr = Q, so by Corollary 2.3, n(Qi+1) − n(Qi) ∈ {0, εi} for all
0 ≤ i < r. It follows that n(Q) − n(Q0) =

∑r−1
i=0 αiεi for some αi ∈ {0, 1},

hence
n(Q0)− r− ≤ n(Q) ≤ n(Q0) + r+

and the result follows from Lemma 2.4 with d = r +1 and n0 = n(Q0)− r−.

2.3. Variations and comments.

Remark 2.5. The assumption in Theorem 1.1 that any indecomposable Q
is the end of an ε-path from Q0 can replaced by the weaker assumption that
any simple object is the end of such a path.

Proof. Assume that εr−1 = 1 and let Q be indecomposable. Since Q
has finite length, we can find a simple object S with g : S ↪→ Q. Let
Q0, Q1, . . . , Qr−1, S be an ε-path from Q0 to S with fr−1 : Qr−1 � S.
Replacing S by Q and fr−1 by gfr−1 6= 0 gives an ε-path from Q0 to Q.

The case εr−1 = −1 is similar. �

Remark 2.6. Let G̃(A) be the undirected graph obtained from G(A) by
forgetting the directions of the edges. The distance between two indecom-
posables Q and Q′, denoted d(Q,Q′), is defined as the length of the shortest
path in G̃(A) between them (or +∞ if there is no such path).

The same proof gives that |n(Q) − n(Q′)| ≤ d(Q,Q′) for any two in-
decomposables Q and Q′. Let d = supQ,Q′ d(Q,Q′) be the diameter of
G̃(A). When d <∞, infQ n(Q) and supQ n(Q) are finite, and by Lemma 2.4
gl.dimA ≤ d + 1 and pdAQ + idAQ ≤ d + 2 for any indecomposable Q.

Remark 2.7. The conclusion of Theorem 1.1 (or Remark 2.6) is still true
under the slightly weaker assumption that A is a finite length, piecewise
hereditary category and A = ⊕r

i=1Ai is a direct sum of abelian full subcat-
egories such that each graph G(Ai) satisfies the corresponding connectivity
condition.
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2.4. Proof of Corollary 1.2. Let A be sincere, and let S1, . . . , Sn be the
representatives of the isomorphism classes of simple modules in modA. Let
P1, . . . , Pn be the corresponding indecomposable projectives and finally let
M be an indecomposable, sincere module.

Take r = 2 and ε = (−1,+1). Now observe that any simple Si is the end
of an ε-path from M , as we have a path of nonzero morphisms M ← Pi � Si

since M is sincere. The result now follows by Theorem 1.1 and Remark 2.5.

2.5. Proof of Corollary 1.3. Let X be a poset and k a field. A k-diagram
F is the data consisting of finite dimensional k-vector spaces F(x) for x ∈ X,
together with linear transformations rxx′ : F(x) → F(x′) for all x ≤ x′,
satisfying the conditions rxx = 1F(x) and rxx′′ = rx′x′′rxx′ for all x ≤ x′ ≤ x′′.

The category of finite dimensional right modules over kX can be iden-
tified with the category of k-diagrams over X, see [6]. A complete set of
representatives of isomorphism classes of simple modules over kX is given
by the diagrams Sx for x ∈ X, defined by

Sx(y) =

{
k if y = x

0 otherwise

with ryy′ = 0 for all y < y′. A module F is sincere if and only if F(x) 6= 0
for all x ∈ X.

The poset X is connected if for any x, y ∈ X there exists a sequence
x = x0, x1, . . . , xn = y such that for all 0 ≤ i < n either xi ≤ xi+1 or
xi ≥ xi+1.

Lemma 2.8. If X is connected then the incidence algebra kX is sincere.

Proof. Let kX be the diagram defined by kX(x) = k for all x ∈ X and
rxx′ = 1k for all x ≤ x′. Obviously kX is sincere. Moreover, kX is inde-
composable by a standard connectivity argument; if kX = F ⊕ F ′, write
V = {x ∈ X : F(x) 6= 0} and assume that V not empty. If x ∈ V and
x < y, then y ∈ V , otherwise we would get a zero map k ⊕ 0 → 0 ⊕ k
and not an identity map. Similarly, if y < x then y ∈ V . By connectivity,
V = X and F = kX . �

If X is connected, Corollary 1.3 now follows from Corollary 1.2 and
Lemma 2.8. For general X, observe that if {Xi}ri=1 are the connected com-
ponents of X, then the category mod kX decomposes as the direct sum of
the categories mod kXi, and the result follows from Remark 2.7.

Corollary 2.9. Let X and Y be posets such that Db(kX) ' Db(kY ) and
gl.dim kY > 3. Then kX is not piecewise hereditary.

3. Examples

We give a few examples that demonstrate various aspects of global di-
mensions of piecewise hereditary algebras. In these examples, k denotes a
field and all posets are represented by their Hasse diagrams.

Example 3.1 ([5]). Let n ≥ 2, Q(n) the quiver

0 α1−→ 1 α2−→ 2 α3−→ . . .
αn−−→ n
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and I(n) be the ideal (in the path algebra kQ(n)) generated by the paths
αiαi+1 for 1 ≤ i < n. By [1, (IV, 6.7)], the algebra A(n) = kQ(n)/I(n) is
piecewise hereditary of Dynkin type An+1.

For a vertex 0 ≤ i ≤ n, let Si, Pi, Ii be the simple, indecomposable
projective and indecomposable injective corresponding to i. Then one has
Pn = Sn, I0 = S0 and for 0 ≤ i < n, Pi = Ii+1 with a short exact sequence
0→ Si+1 → Pi → Si → 0.

The graph G(modA(n)) is shown below (ignoring the self loops around
each vertex).
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Regarding dimensions, we have pdSi = n− i, idSi = i for 0 ≤ i ≤ n, and
pd Pi = id Pi = 0 for 0 ≤ i < n, so that gl.dim A(n) = n and pdQ+id Q ≤ n

for every indecomposable Q. The diameter of G̃(modA(n)) is n + 1.

The following two examples show that the bounds given in Corollary 1.3
are sharp.

Example 3.2. A poset X with kX piecewise hereditary and gl.dim kX = 3.
Let X, Y be the two posets:
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Then Db(kX) ' Db(kY ), gl.dim kX = 3, gl.dim kY = 1.

Example 3.3. A poset X with kX piecewise hereditary and an indecom-
posable F such that pdkX F + idkX F = 4.

Let X, Y be the following two posets:
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Then Db(kX) ' Db(kY ), gl.dim kX = 2, gl.dim kY = 1 and for the simple
Sx we have pdkX Sx = idkX Sx = 2.

We conclude by giving two examples of posets whose incidence algebras
are not piecewise hereditary.

Example 3.4. A product of two trees whose incidence algebra is not piece-
wise hereditary.
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By specifying an orientation ω on the edges of a (finite) tree T , one gets
a finite quiver without oriented cycles whose path algebra is isomorphic to
the incidence algebra of the poset XT,ω defined on the set of vertices of T
by saying that x ≤ y for two vertices x and y if there is an oriented path
from x to y.

A poset of the form XT,ω is called a tree. Equivalently, a poset is a tree if
and only if the underlying graph of its Hasse diagram is a tree. Obviously,
gl.dim kXT,ω = 1, so that kXT,ω is trivially piecewise hereditary. Moreover,
while the poset XT,ω may depend on the orientation ω chosen, its derived
equivalence class depends only on T .

Given two posets X and Y , their product, denoted X × Y , is the poset
whose underlying set is X × Y and (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′

where x, x′ ∈ X and y, y′ ∈ Y . It may happen that the incidence algebra of
a product of two trees, although not being hereditary, is piecewise hereditary.
Two notable examples are the product of the Dynkin types A2×A2, which is
piecewise hereditary of type D4, and the product A2×A3 which is piecewise
hereditary of type E6.

Consider X = A2 ×A2 and Y = D4 with the orientations given below.
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Then gl.dim kX = 2, gl.dim kY = 1 and Db(kX) ' Db(kY ), hence Db(k(X×
X)) ' Db(k(Y × Y )). But gl.dim k(X ×X) = 4, so by Corollary 2.9, Y × Y
is a product of two trees of type D4 whose incidence algebra is not piecewise
hereditary.

Example 3.5. The converse to Corollary 1.3 is false.
Let X be the poset

• //
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??~~~~~~~
• //
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•

Then gl.dim kX = 2, hence pdkX F ≤ 2, idkX F ≤ 2 for any indecompos-
able F , so that X satisfies the conclusion of Corollary 1.3. However, kX
is not piecewise hereditary since Ext2X(kX , kX) = k does not vanish (see [1,
(IV, 1.9)]). Note that X is the smallest poset whose incidence algebra is not
piecewise hereditary.
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