Universal Symmetries: Global-Equivariant Homotopy Theory

Stefan Schwede

Mathematisches Institut, Universität Bonn

July 18, 2024 / 9ECM Seville

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Aim of algebraic topology: classify spaces/manifolds up to deformation/homotopy equivalence

K ロ ト K 何 ト K ヨ ト K ヨ ト

 \equiv

 2990

Aim of algebraic topology: classify spaces/manifolds up to deformation/homotopy equivalence

K ロ ト K 何 ト K ヨ ト K ヨ ト

 \equiv

 2990

Major tool: cohomology theories

▶ singular cohomology *H* ∗ (*X*; Z)

Aim of algebraic topology: classify spaces/manifolds up to deformation/homotopy equivalence

Major tool: cohomology theories

▶ singular cohomology *H* ∗ (*X*; Z)

vector bundles: topological K-theory

 2990

Aim of algebraic topology: classify spaces/manifolds up to deformation/homotopy equivalence

Major tool: cohomology theories

▶ singular cohomology *H* ∗ (*X*; Z)

vector bundles: topological K-theory

(ロトイ団) → イ君 → イ君 →

 2990

Aim of algebraic topology: classify spaces/manifolds up to deformation/homotopy equivalence

Major tool: cohomology theories

▶ singular cohomology *H* ∗ (*X*; Z)

vector bundles: topological K-theory

Milestone in algebraic topology (1950/60s): cohomology theories are represented by s[pe](#page-4-0)[ctr](#page-6-0)[a](#page-0-0)

▶ informally: force suspension to become an invertible operation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

KEL KALEY KEY E NAG

▶ modern approach: higher categorical stabilization of ∞-category of spaces / homotopy types

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

KEL KALEY KEY E NAG

 \triangleright modern approach: higher categorical stabilization of ∞-category of spaces / homotopy types

Examples

▶ singular cohomology: Eilenberg-MacLane spectrum $H\mathbb{Z}$

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

KEL KALEY KEY E NAG

 \triangleright modern approach: higher categorical stabilization of ∞ -category of spaces / homotopy types

Examples

- ▶ singular cohomology: Eilenberg-MacLane spectrum $H\mathbb{Z}$
- ▶ K-theory spectrum *KU* (Bott periodicity)

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

KEL KALEY KEY E NAG

 \triangleright modern approach: higher categorical stabilization of ∞ -category of spaces / homotopy types

Examples

- ▶ singular cohomology: Eilenberg-MacLane spectrum $H\mathbb{Z}$
- ▶ K-theory spectrum *KU* (Bott periodicity)
- ▶ bordism: Thom spectra *MO*, *MSO*, *MU*,...

ectra

- ▶ informally: force suspension to become an invertible operation
- ▶ classical implementation: Spanier-Whitehead category

KORK ERKER ADAM ADA

 \triangleright modern approach: higher categorical stabilization of ∞ -category of spaces / homotopy types

Examples

- ▶ singular cohomology: Eilenberg-MacLane spectrum $H\mathbb{Z}$
- ▶ K-theory spectrum *KU* (Bott periodicity)
- ▶ bordism: Thom spectra *MO*, *MSO*, *MU*,...

Advantage: vastly more flexible for manipulating and constructing cohomology theories

 \blacktriangleright interesting mathematical objects have symmetries

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

 \blacktriangleright interesting mathematical objects have symmetries

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

 \blacktriangleright embracing the symmetries is beneficial

 \blacktriangleright interesting mathematical objects have symmetries \blacktriangleright embracing the symmetries is beneficial

Symmetric group

Octahedral group

Icosahedral group

for my story: finite groups or compact Lie groups *G*

Symmetric group

 \blacktriangleright interesting mathematical objects have symmetries embracing the symmetries is beneficial

Octahedral group

for my story: finite groups or compact Lie groups *G*

モニマイボメイミメイロメ

 2990

Aim of equivariant algebraic topology: classify equivariant spaces/manifolds up to symmetry preserving deformation

Icosahedral group

Symmetric group

 \blacktriangleright interesting mathematical objects have symmetries embracing the symmetries is beneficial

Octahedral group

for my story: finite groups or compact Lie groups *G*

KORK ERKER ADAM ADA

Aim of equivariant algebraic topology: classify equivariant spaces/manifolds up to symmetry preserving deformation

Icosahedral group

Major tool: *G*-equivariant cohomology theories

Symmetric group

 \blacktriangleright interesting mathematical objects have symmetries embracing the symmetries is beneficial

Octahedral group

for my story: finite groups or compact Lie groups *G*

KORK EXTERNED ARA

Aim of equivariant algebraic topology: classify equivariant spaces/manifolds up to symmetry preserving deformation

Icosahedral group

Major tool: *G*-equivariant cohomology theories

▶ *G*-cohomology theories are represented by *G*-spectra

Symmetric group

 \blacktriangleright interesting mathematical objects have symmetries embracing the symmetries is beneficial

Octahedral group

for my story: finite groups or compact Lie groups *G*

 2990

Aim of equivariant algebraic topology: classify equivariant spaces/manifolds up to symmetry preserving deformation

Major tool: *G*-equivariant cohomology theories

Icosahedral group

- ▶ *G*-cohomology theories are represented by *G*-spectra
- \triangleright informally: make suspension with all representation spheres invertible, for all *G*-represent[atio](#page-18-0)[ns](#page-20-0) *[V](#page-13-0)*

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

KORK EXTERNED ARA

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

KORK EXTERNED ARA

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

- ▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)
- \triangleright $G = C_2$ acts on unit circle in $\mathbb C$ by complex conjugation

KEL KALEY KEY E NAG

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

- ▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)
- \triangleright $G = C_2$ acts on unit circle in $\mathbb C$ by complex conjugation
- \blacktriangleright The natural representation of Σ_3 on \mathbb{R}^3 by permuting the coordinates

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

- ▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)
- \triangleright $G = C_2$ acts on unit circle in $\mathbb C$ by complex conjugation
- \blacktriangleright The natural representation of Σ_3 on \mathbb{R}^3 by permuting the coordinates

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

- ▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)
- \triangleright $G = C_2$ acts on unit circle in $\mathbb C$ by complex conjugation
- \blacktriangleright The natural representation of Σ_3 on \mathbb{R}^3 by permuting the coordinates

A *G*-representation is a finite-dimensional R-vector space *V* on which *G* acts by linear isometries.

Unit sphere: $S(V) = \{v \in V : ||v|| = 1\}$

Examples

- ▶ trivial *G*-representation on any *V* (all $q \in G$ act as the identity)
- \triangleright $G = C_2$ acts on unit circle in $\mathbb C$ by complex conjugation
- \blacktriangleright The natural representation of Σ_3 on \mathbb{R}^3 by permuting the coordinates

K ロ X × 伊 X × ミ X × ミ X → ミ ミ …

 2990

 \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum

KOD KOD KED KED E VAN

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum
- ▶ equivariant vector bundles / equivariant K-theory: **KU***^G*

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum
- ▶ equivariant vector bundles / equivariant K-theory: **KU**_{*G*}
- ▶ geometric equivariant bordism: Thom spectrum **mU**^{*G*}

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum
- ▶ equivariant vector bundles / equivariant K-theory: **KU**_{*G*}
- ▶ geometric equivariant bordism: Thom spectrum **mU**^{*G*}
- ▶ homotopical equivariant bordism: Thom spectrum **MU***^G*

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum
- ▶ equivariant vector bundles / equivariant K-theory: **KU**_{*G*}
- ▶ geometric equivariant bordism: Thom spectrum **mU**^{*G*}
- ▶ homotopical equivariant bordism: Thom spectrum **MU***^G*

KORK EXTERNED ARA

often several useful equivariant forms of a classical theory;

- \triangleright Borel equivariant cohomology = cohomology of the Borel construction (homotopy orbit space): cofree *G*-spectra
- ▶ equivariant singular cohomology ('Bredon cohomology'): Eilenberg-MacLane *G*-spectrum
- ▶ equivariant vector bundles / equivariant K-theory: **KU**_{*G*}
- ▶ geometric equivariant bordism: Thom spectrum **mU**^{*G*}
- ▶ homotopical equivariant bordism: Thom spectrum **MU***^G*

often several useful equivariant forms of a classical theory; finding the 'best' equivariant form is more an art than a science the above equivariant theories occur 'uniformly for all groups' \implies globally-equivariant theories embracing the global symmetries is beneficial

K □ K K 레 K K 레 K X H X X X K K X X X X X X X X
KORK ERKER ADAM ADA

Global equivariant spectra...

▶ ... are coherent systems of *G*-equivariant spectra, for all compact Lie groups *G*

Global equivariant spectra...

- ▶ ... are coherent systems of *G*-equivariant spectra, for all compact Lie groups *G*
- ▶ ... define compatible *G*-equivariant cohomology theories

Global equivariant spectra...

- ▶ ... are coherent systems of *G*-equivariant spectra, for all compact Lie groups *G*
- ▶ ... define compatible *G*-equivariant cohomology theories
- ▶ ... define cohomology theories on orbifolds and orbispaces (aka topological stacks / separated stacks)

Global equivariant spectra...

- ▶ ... are coherent systems of *G*-equivariant spectra, for all compact Lie groups *G*
- ▶ ... define compatible *G*-equivariant cohomology theories
- ▶ ... define cohomology theories on orbifolds and orbispaces (aka topological stacks / separated stacks)

KORK ERKEY EL POLO

▶ ... come with rich algebraic structure

Algebraic Structure: Global Mackey functors

Definition A global Mackey functor *M* consists of:

Algebraic Structure: Global Mackey functors

Definition A global Mackey functor *M* consists of:

▶ an abelian group *M*(*G*) for every compact Lie group *G*,

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,

KORKARA KERKER DAGA

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,
- ▶ a transfer homomorphism tr_H^G : $M(H)$ → $M(G)$ for every closed subgroup *H* of *G*.

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,
- ▶ a transfer homomorphism tr^G_H : $M(H)$ → $M(G)$ for every closed subgroup *H* of *G*.

KORK ERKER ADAM ADA

This data must satisfy a finite list of explicit relations. . .

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,
- ▶ a transfer homomorphism tr^G_H : $M(H)$ → $M(G)$ for every closed subgroup *H* of *G*.

This data must satisfy a finite list of explicit relations. including the double coset formula:

$$
\operatorname{res}^G_K\circ \operatorname{tr}^G_H \,=\, \sum_{[M]\in K\backslash G/H} \chi^\sharp(M) \cdot \operatorname{tr}^K_{K\cap^g H}\circ g_{\star}\circ \operatorname{res}^H_{K^g\cap H}
$$

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,
- ▶ a transfer homomorphism tr^G_H : $M(H)$ → $M(G)$ for every closed subgroup *H* of *G*.

This data must satisfy a finite list of explicit relations. including the double coset formula:

$$
\operatorname{res}^G_K\circ \operatorname{tr}_H^G \,=\, \sum_{[M]\in K\backslash G/H} \chi^\sharp(M) \cdot \operatorname{tr}_{K\cap^gH}^K\circ g_\star \circ \operatorname{res}^H_{K^g\cap H}
$$

▶ a global Mackey functor has underlying *G*-Mackey functors

A global Mackey functor *M* consists of:

- ▶ an abelian group *M*(*G*) for every compact Lie group *G*,
- ▶ a restriction homomorphism $\alpha^* : M(G) \longrightarrow M(K)$ for every continuous group homomorphism $\alpha : K \longrightarrow G$,
- ▶ a transfer homomorphism tr^G_H : $M(H)$ → $M(G)$ for every closed subgroup *H* of *G*.

This data must satisfy a finite list of explicit relations. including the double coset formula:

$$
\operatorname{res}^G_K\circ \operatorname{tr}_H^G \,=\, \sum_{[M]\in K\backslash G/H} \chi^\sharp(M) \cdot \operatorname{tr}_{K\cap^gH}^K\circ g_\star \circ \operatorname{res}^H_{K^g\cap H}
$$

▶ a global Mackey functor has underlying *G*-Mackey functors

[a g](#page-48-0)enera[l](#page-39-0) *G*-Mackey does not extend [to](#page-46-0) a gl[o](#page-40-0)[b](#page-47-0)[a](#page-48-0)[l](#page-0-0) [on](#page-97-0)[e](#page-0-0)
All the second to a global one

Global cohomology theories / spectra / Mackey functors

KORK ERKER ADAM ADA

▶ Borel equivariant cohomology / global Borel spectrum *b*(*H*Z) / group cohomology

H k (*G*; *A*)

Global cohomology theories / spectra / Mackey functors

- ▶ Borel equivariant cohomology / global Borel spectrum *b*(*H*Z) / group cohomology
- ▶ equivariant cohomotopy / global sphere spectrum S / Burnside rings

A(*G*)

H k (*G*; *A*)

Extra global structure can be put to good use:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

Extra global structure can be put to good use:

▶ Equivariant 0-stems of symmetric product spectra (S., J Amer Math Soc, 2017)

KOD KOD KED KED E VAN

Extra global structure can be put to good use:

- ▶ Equivariant 0-stems of symmetric product spectra (S., J Amer Math Soc, 2017)
- ▶ Homotopical equivariant bordism **MU**[∗] *A* carries the universal *A*-equivariant formal group, for abelian *A* (Hausmann, Annals Math, 2022)

Extra global structure can be put to good use:

- ▶ Equivariant 0-stems of symmetric product spectra (S., J Amer Math Soc, 2017)
- ▶ Homotopical equivariant bordism **MU**[∗] *A* carries the universal *A*-equivariant formal group, for abelian *A* (Hausmann, Annals Math, 2022)

KORK ERKER ADAM ADA

▶ Regularity of *U*(*n*)-equivariant Euler classes (S., Proc London Math Soc, 2022)

Extra global structure can be put to good use:

- ▶ Equivariant 0-stems of symmetric product spectra (S., J Amer Math Soc, 2017)
- ▶ Homotopical equivariant bordism **MU**[∗] *A* carries the universal *A*-equivariant formal group, for abelian *A* (Hausmann, Annals Math, 2022)
- ▶ Regularity of *U*(*n*)-equivariant Euler classes (S., Proc London Math Soc, 2022)
- \triangleright Chern classes in homotopical equivariant bordism (S., Forum Math Sigma, 2024)

Extra global structure can be put to good use:

- ▶ Equivariant 0-stems of symmetric product spectra (S., J Amer Math Soc, 2017)
- ▶ Homotopical equivariant bordism MU^{*}_A carries the universal *A*-equivariant formal group (Hausmann, Annals Math, 2022)

Regularity of $U(n)$ -equivariant Euler classes (S., Proc London Math Soc, 2022) Chern classes in homotopical equivariant bordism

 $(S,$ Forum Math Sig $/m₂$, 2024)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

G: compact Lie group

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

モニマイボメイミメイロメ

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

 \blacktriangleright \mathbb{F}_2 -vector space under disjoint union

K ロ ト K 何 ト K ヨ ト K ヨ ト …

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

- \blacktriangleright \mathbb{F}_2 -vector space under disjoint union
- ▶ graded commutative ring under cartesian product

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

KOD KOD KED KED E VOOR

- \blacktriangleright \mathbb{F}_2 -vector space under disjoint union
- ▶ graded commutative ring under cartesian product
- **▶** restriction along a continuous homomorphism α : K → G yields restriction homomorphism $\alpha^*: \mathcal{N}_n^G \longrightarrow \mathcal{N}_n^K$

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

- \blacktriangleright \mathbb{F}_2 -vector space under disjoint union
- ▶ graded commutative ring under cartesian product
- **▶** restriction along a continuous homomorphism α : K → G yields restriction homomorphism $\alpha^*: \mathcal{N}_n^{\pmb{G}} \longrightarrow \mathcal{N}_n^{\pmb{K}}$
- ▶ for $H < G$, induction $M \mapsto G \times_H M$ yields induction/transfer homomorphism

$$
\mathrm{tr}_H^G : \mathcal{N}_n^H \longrightarrow \mathcal{N}_{n+\dim(G/H)}^G
$$

KOD KOD KED KED E VOOR

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

- \blacktriangleright \mathbb{F}_2 -vector space under disjoint union
- ▶ graded commutative ring under cartesian product
- **▶** restriction along a continuous homomorphism α : K → G yields restriction homomorphism $\alpha^*: \mathcal{N}_n^G \longrightarrow \mathcal{N}_n^K$
- ▶ for $H < G$, induction $M \mapsto G \times_H M$ yields induction/transfer homomorphism

$$
\mathrm{tr}_H^G:\mathcal{N}_n^H\longrightarrow \mathcal{N}_{n+\dim(G/H)}^G
$$

KOD KOD KED KED E VOOR

 \Longrightarrow multiplicative global Mackey functor $\{\mathcal{N}_{*}^{G}\}_{G}$

G: compact Lie group $\mathcal{N}_n^G=n$ -th geometric G -bordism group = *n*-dimen'l smooth closed *G*-manifolds, up to equivariant bordism

- \blacktriangleright \mathbb{F}_2 -vector space under disjoint union
- ▶ graded commutative ring under cartesian product
- **▶** restriction along a continuous homomorphism α : K → G yields restriction homomorphism $\alpha^*: \mathcal{N}_n^G \longrightarrow \mathcal{N}_n^K$
- ▶ for $H < G$, induction $M \mapsto G \times_H M$ yields induction/transfer homomorphism

$$
\mathrm{tr}_H^G:\mathcal{N}_n^H\longrightarrow \mathcal{N}_{n+\dim(G/H)}^G
$$

 \Longrightarrow multiplicative global Mackey functor $\{\mathcal{N}_{*}^{G}\}_{G}$

Variations with equivariant normal structures; particularly popular: (stably almost) compl[ex](#page-64-0) [st](#page-66-0)[ru](#page-57-0)[ct](#page-65-0)[u](#page-66-0)[re](#page-0-0)[s](#page-97-0)

▶ Thom (1954): \mathcal{N}_* is a polynomial \mathbb{F}_2 -algebra

▶ Thom (1954): \mathcal{N}_* is a polynomial \mathbb{F}_2 -algebra ▶ Generators: $\mathbb{R}P^n$ for $n \ge 2$ even, 'Dold manifolds' for $n \neq 2^i-1$ odd

KOD KOD KED KED E VAN

▶ Thom (1954): \mathcal{N}_* is a polynomial \mathbb{F}_2 -algebra ▶ Generators: $\mathbb{R}P^n$ for $n \ge 2$ even, 'Dold manifolds' for $n \neq 2^i-1$ odd

Bordism of manifolds with involution $(G = \{\pm 1\})$:

▶ Thom (1954): \mathcal{N}_* is a polynomial \mathbb{F}_2 -algebra ▶ Generators: $\mathbb{R}P^n$ for $n \ge 2$ even, 'Dold manifolds' for $n \neq 2^i-1$ odd

Bordism of manifolds with involution $(G = \{\pm 1\})$:

KORK ERKER ADAM ADA

▶ Conner-Floyd (1964):

 $\mathcal{N}^{\mathcal{C}_2}_*$ is a free module over \mathcal{N}_*

▶ Thom (1954): \mathcal{N}_* is a polynomial \mathbb{F}_2 -algebra ▶ Generators: R*P n* for $n > 2$ even. 'Dold manifolds' for $n \neq 2^i-1$ odd

Bordism of manifolds with involution $(G = \{\pm 1\})$:

- ▶ Conner-Floyd (1964): $\mathcal{N}^{\mathcal{C}_2}_*$ is a free module over \mathcal{N}_*
- \blacktriangleright Alexander (1972): explicit geometric basis constructed from the R*P n* 's with involution $[x_0 : x_1 : \ldots : x_n] \longmapsto [-x_0 : x_1 : \ldots : x_n]$
- ▶ ring structure partially understood

 $\mathbb{R}P^2$, involution =? **KOD KOD KED KED E VOOR** tom Dieck (1972): homotopical equivariant bordism **MU***^G* ∗

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*
K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ defined from equivariant Thom spaces

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- \blacktriangleright defined from equivariant Thom spaces
- \blacktriangleright universal equivariantly complex oriented theory

- \blacktriangleright defined from equivariant Thom spaces
- ▶ universal equivariantly complex oriented theory
- \triangleright not connective (i.e., nontrivial groups in negative degrees)

KORK ERKER ADAM ADA

- \blacktriangleright defined from equivariant Thom spaces
- \blacktriangleright universal equivariantly complex oriented theory
- \triangleright not connective (i.e., nontrivial groups in negative degrees)

KORK ERKER ADAM ADA

▶ correct version for equivariant formal group law theory

- \blacktriangleright defined from equivariant Thom spaces
- \blacktriangleright universal equivariantly complex oriented theory
- \triangleright not connective (i.e., nontrivial groups in negative degrees)
- \triangleright correct version for equivariant formal group law theory
- ▶ well understood for abelian *G*; mysterious for nonabelian *G*

KORK ERKER ADAM ADA

- \blacktriangleright defined from equivariant Thom spaces
- \blacktriangleright universal equivariantly complex oriented theory
- \triangleright not connective (i.e., nontrivial groups in negative degrees)
- \triangleright correct version for equivariant formal group law theory
- ▶ well understood for abelian *G*; mysterious for nonabelian *G*

Failure of equivariant transversality: for $G \neq \{1\}$

geometric bordism \neq homotopical bordism

KID K@ KKEX KEX E 1090

- \blacktriangleright defined from equivariant Thom spaces
- \blacktriangleright universal equivariantly complex oriented theory
- \triangleright not connective (i.e., nontrivial groups in negative degrees)
- \triangleright correct version for equivariant formal group law theory
- ▶ well understood for abelian *G*; mysterious for nonabelian *G*

Failure of equivariant transversality: for $G \neq \{1\}$ geometric bordism \neq homotopical bordism The theories $\{ {\bf MU}_{G}^{*} \}_{G\, {\rm cpt \, Lie}}$ form a global ring spectrum

Key player: the Euler class

 $e_n \in \mathsf{MU}_{U(n)}^{2n}$

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

of the tautological $U(n)$ -representations on \mathbb{C}^n

Key player: the Euler class

$$
e_n\in MU^{2n}_{U(n)}
$$

of the tautological $U(n)$ -representations on \mathbb{C}^n

Classical long exact sequence ('Gysin sequence'):

$$
\ldots \longrightarrow \textbf{MU}_{U(n)}^{*-2n} \xrightarrow{e_n} \textbf{MU}_{U(n)}^* \xrightarrow{\text{res}_{U(n-1)}^{U(n)}} \textbf{MU}_{U(n-1)}^* \longrightarrow \ldots
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Key player: the Euler class

$$
e_n\in\text{MU}_{U(n)}^{2n}
$$

of the tautological $U(n)$ -representations on \mathbb{C}^n

Classical long exact sequence ('Gysin sequence'):

$$
\ldots \longrightarrow \textbf{MU}_{U(n)}^{*-2n} \xrightarrow{e_n} \textbf{MU}_{U(n)}^* \xrightarrow{\text{res}_{U(n-1)}^{U(n)}} \textbf{MU}_{U(n-1)}^* \longrightarrow \ldots
$$

Theorem (S., Proc LMS 2022)

- ▶ The global structure provides a natural section to res $U(n)$ *U*(*n*−1) *.*
- ▶ The Euler class e_n is a non zero-divisior in the ring $MU^*_{U(n)}$.

KORK ERKER ADAM ADA

Key player: the Euler class

$$
e_n\in MU^{2n}_{U(n)}
$$

of the tautological $U(n)$ -representations on \mathbb{C}^n

Classical long exact sequence ('Gysin sequence'):

$$
\ldots \longrightarrow \textbf{MU}_{U(n)}^{*-2n} \xrightarrow{e_n} \textbf{MU}_{U(n)}^* \xrightarrow{\text{res}_{U(n-1)}^{U(n)}} \textbf{MU}_{U(n-1)}^* \longrightarrow \ldots
$$

Theorem (S., Proc LMS 2022)

 \triangleright The global structure provides a natural section to resultion *U*(*n*−1) *.* ▶ The Euler class e_n is a non zero-divisior in the ring $MU^*_{U(n)}$.

inflation/restriction + transfers + double coset formula

Key player: the Euler class

$$
e_n\in MU^{2n}_{U(n)}
$$

of the tautological $U(n)$ -representations on \mathbb{C}^n

Classical long exact sequence ('Gysin sequence'):

$$
\ldots \longrightarrow \textbf{MU}_{U(n)}^{*-2n} \xrightarrow{e_n} \textbf{MU}_{U(n)}^* \xrightarrow{\text{res}_{U(n-1)}^{U(n)}} \textbf{MU}_{U(n-1)}^* \longrightarrow \ldots
$$

Theorem (S., Proc LMS 2022)

 \triangleright The global structure provides a natural section to resultion *U*(*n*−1) *.* ▶ The Euler class e_n is a non zero-divisior in the ring $MU^*_{U(n)}$.

$$
\text{MU}^*_{U(n-1)} \xrightarrow[U(n-1)\times U(1) \to U(n-1) \to \text{MU}^*_{U(n-1)\times U(1)} \longrightarrow \text{MU}^*_{U(n)} \longrightarrow \text{NU}^*_{U(n)} \longrightarrow \text{
$$

Chern classes are classically defined via the splitting principle: for complex oriented cohomology theories, restriction from *U*(*n*) to its maximal torus $\mathcal{T} = U(1)^n$ is injective.

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Chern classes are classically defined via the splitting principle: for complex oriented cohomology theories, restriction from *U*(*n*) to its maximal torus $\mathcal{T} = U(1)^n$ is injective.

This fails in homotopical equivariant bordism:

$$
\operatorname{res}^{{\textstyle U}(n)}_{\textstyle \mathcal{T}}: {\textstyle\mathsf{MU}^*_{\textstyle U(n)}}\ \longrightarrow\ {\textstyle\mathsf{MU}^*_{\textstyle \mathcal{T}}}
$$

KORK ERKER ADAM ADA

is not injective for $n \geq 2$.

Chern classes are classically defined via the splitting principle: for complex oriented cohomology theories, restriction from *U*(*n*) to its maximal torus $\mathcal{T} = U(1)^n$ is injective.

This fails in homotopical equivariant bordism:

$$
\operatorname{res}_{\mathcal T}^{U(n)} : \textbf{MU}_{U(n)}^* \; \longrightarrow \; \textbf{MU}_{\mathcal T}^*
$$

is not injective for $n \geq 2$.

The global structure comes to aid:

Definition The *k*-th Chern class is

$$
c_k = \mathop{\sf tr}\nolimits_{U(k)\times U(n-k)}^{U(n)}(e_k\times 1) \in \mathbf{MU}_{U(n)}^{2k}
$$

KORK ERKER ADAM ADA

Chern classes are classically defined via the splitting principle: for complex oriented cohomology theories, restriction from *U*(*n*) to its maximal torus $\mathcal{T} = U(1)^n$ is injective.

This fails in homotopical equivariant bordism:

$$
\operatorname{res}_{\mathcal T}^{U(n)} : \textbf{MU}_{U(n)}^* \; \longrightarrow \; \textbf{MU}_{\mathcal T}^*
$$

is not injective for $n \geq 2$.

The global structure comes to aid:

Definition

The *k*-th Chern class is

$$
c_k = \mathop{\sf tr}\nolimits_{U(k)\times U(n-k)}^{U(n)}(e_k\times 1) \in \mathbf{MU}_{U(n)}^{2k}
$$

KORKAR KERKER E VOOR

Unexpected features:

- ▶ the Chern classes do not generate **MU**[∗] *U*(*n*)
- some c_k are zero-divisors

Familiar properties of the **MU**-Chern classes:

 \triangleright compatible under restriction to smaller unitary groups

KORK ERKER ADAM ADA

- ▶ Whitney sum formula
- \blacktriangleright restrict to elementary symmetric polynomials on the maximal torus of *U*(*n*)

Familiar properties of the **MU**-Chern classes:

- \triangleright compatible under restriction to smaller unitary groups
- ▶ Whitney sum formula
- \blacktriangleright restrict to elementary symmetric polynomials on the maximal torus of *U*(*n*)

Theorem (S., Forum Math Sigma 2024)

▶ *The Chern classes cn*, *^cn*−1, . . . , *^c*¹ *form a regular* sequence in MU $^*_{U(n)}$ that generates the augmentation ideal.

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Familiar properties of the **MU**-Chern classes:

- \triangleright compatible under restriction to smaller unitary groups
- ▶ Whitney sum formula
- \blacktriangleright restrict to elementary symmetric polynomials on the maximal torus of *U*(*n*)

Theorem (S., Forum Math Sigma 2024)

▶ *The Chern classes cn*, *^cn*−1, . . . , *^c*¹ *form a regular* sequence in MU $^*_{U(n)}$ that generates the augmentation ideal.

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

▶ *The completion of* **MU**[∗] *U*(*n*) *at the augmentation ideal* i s a power series MU[∗]-algebra on $c_n, c_{n-1}, \ldots, c_1$.

Familiar properties of the **MU**-Chern classes:

- \triangleright compatible under restriction to smaller unitary groups
- ▶ Whitney sum formula
- \blacktriangleright restrict to elementary symmetric polynomials on the maximal torus of *U*(*n*)

Theorem (S., Forum Math Sigma 2024)

- ▶ *The Chern classes cn*, *^cn*−1, . . . , *^c*¹ *form a regular* sequence in MU $^*_{U(n)}$ that generates the augmentation ideal.
- ▶ *The completion of* **MU**[∗] *U*(*n*) *at the augmentation ideal* i s a power series MU[∗]-algebra on $c_n, c_{n-1}, \ldots, c_1$.
- ▶ *Completion theorem: Tom Dieck's bundling homomorphism extends to an isomorphism*

$$
(\mathbf{MU}^*_{U(n)})^\wedge \cong \mathbf{MU}^*(BU(n)).
$$

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

 \blacktriangleright Global homotopy theory is the home of equivariant phenomena with 'universal symmetry'

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

 \blacktriangleright Global homotopy theory is the home of equivariant phenomena with 'universal symmetry'

KOD KARD KED KED BE YOUR

 \blacktriangleright Many interesting equivariant theories are global

 \blacktriangleright Global homotopy theory is the home of equivariant phenomena with 'universal symmetry'

KOD KARD KED KED BE YOUR

- \triangleright Many interesting equivariant theories are global
- \triangleright Recognizing cohomology theories as global provides rich algebraic structure

 \blacktriangleright Global homotopy theory is the home of equivariant phenomena with 'universal symmetry'

KOD KARD KED KED BE YOUR

- \triangleright Many interesting equivariant theories are global
- \triangleright Recognizing cohomology theories as global provides rich algebraic structure
- \triangleright Geometric and homotopical equivariant bordism witness the calculational impact of global equivariant structures

 \blacktriangleright Global homotopy theory is the home of equivariant phenomena with 'universal symmetry'

KORK ERKER ADAM ADA

- \triangleright Many interesting equivariant theories are global
- \triangleright Recognizing cohomology theories as global provides rich algebraic structure
- \triangleright Geometric and homotopical equivariant bordism witness the calculational impact of global equivariant structures

Picture credits:

- ▷ mug-to-donut (p.2+4): public domain, © Lucas Vieira ▷ singular simplex (p.2): CC BY 4.0, © Paolo Rossi ▷ möbius strip (p.2): CC BY-SA 4.0, © IkamusumeFan
- ▷ bordism (p.2): CC BY 4.0, © M Ludewig, S Roos
- ▷ suspension (p.3): CC BY-SA 3.0, © Melchior
- ▷ platonic solids (p.4): CC BY-SA 3.0,
	- © Kjell André / Stannered / DTR
- ▷ representation spheres (p.5): © Stefan Schwede
- ▷ magnifying glass (p.9): public domain, © everystockphoto.com
- ▷ nested bands (p.11), MaTiE logo (p.18): CC BY-SA 4.0, © Bianca Violet
- ▷ boy surface (p.12): CC BY-SA 4.0, © A13ean