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Cohomology theories

Aim of algebraic topology: classify spaces/manifolds
up to deformation/homotopy equivalence

Major tool: cohomology theories
▶ singular cohomology H∗(X ;Z)
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▶ vector bundles:
topological K-theory

Milestone in algebraic topology (1950/60s):
cohomology theories are represented by spectra
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Spectra

▶ informally: force suspension to become
an invertible operation

▶ classical implementation:
Spanier-Whitehead category

▶ modern approach: higher categorical stabilization
of ∞-category of spaces / homotopy types

Examples
▶ singular cohomology: Eilenberg-MacLane spectrum HZ
▶ K-theory spectrum KU (Bott periodicity)
▶ bordism: Thom spectra MO, MSO, MU,. . .

Advantage: vastly more flexible for manipulating
and constructing cohomology theories
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Symmetries
▶ interesting mathematical objects have symmetries

▶ embracing the symmetries is beneficial

for my story: finite groups
or compact Lie groups G

Aim of equivariant algebraic topology: classify equivariant
spaces/manifolds up to symmetry preserving deformation

Major tool: G-equivariant cohomology theories
▶ G-cohomology theories are represented by G-spectra
▶ informally: make suspension with all representation

spheres invertible, for all G-representations V
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Symmetries: linear representations

Definition
A G-representation is a finite-dimensional R-vector space V
on which G acts by linear isometries.

Unit sphere: S(V ) = {v ∈ V : ||v || = 1}

Examples
▶ trivial G-representation on any V

(all g ∈ G act as the identity)
▶ G = C2 acts on unit circle in C

by complex conjugation
▶ The natural representation of Σ3

on R3 by permuting the coordinates
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Equivariant spectra

Examples
▶ Borel equivariant cohomology = cohomology of the Borel

construction (homotopy orbit space): cofree G-spectra

▶ equivariant singular cohomology (‘Bredon cohomology’):
Eilenberg-MacLane G-spectrum

▶ equivariant vector bundles / equivariant K-theory: KUG

▶ geometric equivariant bordism: Thom spectrum mUG

▶ homotopical equivariant bordism: Thom spectrum MUG

often several useful equivariant forms of a classical theory;
finding the ‘best’ equivariant form is more an art than a science
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Univeral symmetries: global homotopy theory

the above equivariant theories occur ‘uniformly for all groups’
=⇒ globally-equivariant theories
embracing the global symmetries is beneficial

Global equivariant spectra...
▶ ... are coherent systems of G-equivariant spectra,

for all compact Lie groups G
▶ ... define compatible G-equivariant cohomology theories
▶ ... define cohomology theories on orbifolds and orbispaces

(aka topological stacks / separated stacks)
▶ ... come with rich algebraic structure
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Algebraic Structure: Global Mackey functors

Definition
A global Mackey functor M consists of:

▶ an abelian group M(G) for every compact Lie group G,
▶ a restriction homomorphism α∗ : M(G) −→ M(K ) for every

continuous group homomorphism α : K −→ G,
▶ a transfer homomorphism trGH : M(H) −→ M(G) for every

closed subgroup H of G.

This data must satisfy a finite list of explicit relations. . .
. . . including the double coset formula:

resG
K ◦ trGH =

∑
[M]∈K\G/H

χ♯(M) · trKK∩gH ◦g⋆ ◦ resH
K g∩H

▶ a global Mackey functor has underlying G-Mackey functors
▶ a general G-Mackey does not extend to a global one
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Examples of global equivariant theories

Global cohomology theories / spectra / Mackey functors

▶ Borel equivariant cohomology /
global Borel spectrum b(HZ) /
group cohomology

▶ equivariant cohomotopy /
global sphere spectrum S /
Burnside rings

▶ equivariant K-theory /
global K-theory spectrum KU /
complex representation rings

▶ equivariant singular (’Bredon’) cohom /
global Eilenberg-MacLane spectrum HZ /
constant global Mackey functor

Hk (G;A)

A(G)

R(G)

Z
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Why global spectra?

Extra global structure can be put to good use:

▶ Equivariant 0-stems of symmetric product spectra
(S., J Amer Math Soc, 2017)

▶ Homotopical equivariant bordism MU∗
A carries

the universal A-equivariant formal group, for abelian A
(Hausmann, Annals Math, 2022)
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Case study: equivariant bordism

G: compact Lie group

NG
n = n-th geometric G-bordism group

= n-dimen’l smooth closed G-manifolds,
up to equivariant bordism

▶ F2-vector space under disjoint union
▶ graded commutative ring under cartesian product
▶ restriction along a continuous homomorphism α : K −→ G

yields restriction homomorphism α∗ : NG
n −→ N K

n

▶ for H ≤ G, induction M 7→ G ×H M yields
induction/transfer homomorphism

trGH : NH
n −→ NG

n+dim(G/H)

=⇒ multiplicative global Mackey functor {NG
∗ }G

Variations with equivariant normal structures;
particularly popular: (stably almost) complex structures
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Examples

Non-equivariant bordism (G = {1}):

▶ Thom (1954): N∗ is a polynomial F2-algebra

▶ Generators: RPn for n ≥ 2 even,
‘Dold manifolds’ for n ̸= 2i − 1 odd

Bordism of manifolds with involution (G = {±1}):
▶ Conner-Floyd (1964):

NC2
∗ is a free module over N∗

▶ Alexander (1972): explicit geometric basis
constructed from the RPn’s with involution
[x0 : x1 : . . . : xn] 7−→ [−x0 : x1 : . . . : xn]

▶ ring structure partially understood

RP2, involution =?
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Homotopical equivariant bordism

tom Dieck (1972): homotopical equivariant bordism MUG
∗

▶ defined from equivariant Thom spaces
▶ universal equivariantly complex oriented theory
▶ not connective (i.e., nontrivial groups in negative degrees)
▶ correct version for equivariant formal group law theory
▶ well understood for abelian G; mysterious for nonabelian G

Failure of equivariant transversality: for G ̸= {1}

geometric bordism ̸= homotopical bordism

The theories {MU∗
G}G cpt Lie form a global ring spectrum
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Regularity of equivariant Euler classes

Key player: the Euler class
en ∈ MU2n

U(n)

of the tautological U(n)-representations on Cn

Classical long exact sequence (’Gysin sequence’):

. . . −→ MU∗−2n
U(n)

en·−−−−→ MU∗
U(n)

res
U(n)
U(n−1)−−−−−→ MU∗

U(n−1) −→ . . .

Theorem (S., Proc LMS 2022)
▶ The global structure provides a natural section to res

U(n)
U(n−1).

▶ The Euler class en is a non zero-divisior in the ring MU∗
U(n).

inflation/restriction + transfers + double coset formula
MU∗

U(n−1)
inflation along−−−−−−−−−−−−−−−−→

U(n − 1)×U(1) → U(n − 1)
MU∗

U(n−1)×U(1)

transfer−−−−−−−−−−−−−−−−→
tr

U(n)
U(n−1)×U(1)

MU∗
U(n)
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Chern classes in equivariant bordism

Chern classes are classically defined via the splitting principle:
for complex oriented cohomology theories, restriction from U(n)
to its maximal torus T = U(1)n is injective.

This fails in homotopical equivariant bordism:

res
U(n)
T : MU∗

U(n) −→ MU∗
T

is not injective for n ≥ 2.

The global structure comes to aid:

Definition
The k -th Chern class is

ck = tr
U(n)
U(k)×U(n−k)(ek × 1) ∈ MU2k

U(n)

Unexpected features:
▶ the Chern classes do not generate MU∗

U(n)
▶ some ck are zero-divisors
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Chern classes in equivariant bordism

Familiar properties of the MU-Chern classes:
▶ compatible under restriction to smaller unitary groups
▶ Whitney sum formula
▶ restrict to elementary symmetric polynomials

on the maximal torus of U(n)

Theorem (S., Forum Math Sigma 2024)
▶ The Chern classes cn, cn−1, . . . , c1 form a regular

sequence in MU∗
U(n) that generates the augmentation ideal.

▶ The completion of MU∗
U(n) at the augmentation ideal

is a power series MU∗-algebra on cn, cn−1, . . . , c1.
▶ Completion theorem: Tom Dieck’s bundling

homomorphism extends to an isomorphism

(MU∗
U(n))

∧
I

∼= MU∗(BU(n)).
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Summary

What to take home:

▶ Global homotopy theory is the home
of equivariant phenomena
with ‘universal symmetry’

▶ Many interesting equivariant theories are global
▶ Recognizing cohomology theories as global

provides rich algebraic structure
▶ Geometric and homotopical equivariant bordism witness

the calculational impact of global equivariant structures
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▶ Geometric and homotopical equivariant bordism witness

the calculational impact of global equivariant structures
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