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A few years ago there were no constructions of the stable homotopy category that
began from a category of spectra with an associative and commutative smash
product. Now there are several very different such constructions. These allow
many new directions in stable homotopy theory, and they are being actively
exploited by many people. We refer the reader to papers on particular categories
[10, 11, 15, 21, 22, 24, 35, 39] and to [30] for discussions of the history,
philosophy, advantages and disadvantages of the various approaches.

To avoid chaos, it is important to have comparison theorems relating the
different constructions, so that the working mathematician can choose whichever
category is most convenient for any particular application and can then transport
the conclusions to any other such modern category of spectra. This is one of
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several papers that together show that all of the known approaches to highly
structured ring and module spectra are essentially equivalent.

Several of the new categories are constructed from ‘diagram categories’, by
which we understand categories of functors from some fixed category & to some
chosen ground category. We concentrate on such examples in this paper. In [36]
and [24], the approach to stable homotopy theory based on diagram categories is
compared to the approach based on coordinate-free spectra with additional
structure of [11]. The categories of diagram spectra to be studied here are
displayed in the following ‘Main Diagram’:
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We have the dictionary:
2 is the category of ./ -spectra, or prespectra;
Y& is the category of X-spectra, or symmetric spectra;
4% is the category of .#-spectra, or orthogonal spectra;
F7 1is the category of Z -spaces, or I'-spaces;
W7 is the category of ¥ -spaces.

As will be made precise, ./ is the category of non-negative integers, X is the
category of symmetric groups, .# is the category of orthogonal groups, & is the
category of finite based sets, and ¥  is the category of based spaces
homeomorphic to finite CW complexes. We often use & generically to denote
such a domain category for diagram spectra. When ¥ =% or & = ¥, there is
no distinction between Z-spaces and Z-spectra, 47 = 2. The functors U are
forgetful functors, the functors P are prolongation functors, and in each case P is
left adjoint to U. All of these categories except & are symmetric monoidal. The
functors U between symmetric monoidal categories are lax symmetric monoidal,
the functors P between symmetric monoidal categories are strong symmetric
monoidal, and these functors [P and U restrict to adjoint pairs relating the various
categories of rings, commutative rings, and modules over rings.

Symmetric spectra were introduced by Smith, and their homotopy theory was
developed by Hovey, Shipley, and Smith [15]. Symmetric ring spectra were further
studied in [39] and [37]. Under the name of ./ -prespectra, orthogonal spectra
were defined by May [27, §5], but their serious study begins here. They are
further studied in [24]. Related but different notions defined in terms of .# were
introduced for use in infinite loop space theory by Boardman and Vogt [5]. Under
the name of I'-spaces, #-spaces were introduced by Segal [38], and their
homotopy theory was developed by Anderson [2] and Bousfield and Friedlander
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[7]. Under the name of Gamma-rings, Lydakis [21] and Schwede [35] introduced
and studied % -ring spaces. A version of ¥ -spaces was introduced by Anderson
[3], and a simplicial analogue of ¥ -spaces has been studied by Lydakis [22].
There are few comparisons among these categories in the literature.

We develop the formal theory of diagram spectra in Part I, deferring categorical
proofs and explanations to Part III. In particular, we explain the relationship
between diagram ring spectra and diagram FSPs (functors with smash product)
there. Our model-theoretic work is in the central Part II. We define and compare
model structures on categories of diagram spaces and on their categories of rings
and modules. The most highly structured and satisfactory kind of comparison
between model categories is specified by the notion of a Quillen equivalence, and
most of our equivalences are of this form. The brief Appendix A records what we
need about this notion. Each Part has its own introduction.

We define ‘stable model structures’ simultaneously on the categories of
-spectra for ¥ = A", X, 4, and # . In the case of symmetric spectra, our
model structure is the same as that in the preprint version of [15]; the published
version restricts attention to symmetric spectra of simplicial sets. Although that
work inspired and provided a model for ours, our treatment of symmetric spectra
is logically independent and makes no use of simplicial techniques. As one would
expect, the categories of symmetric spectra of spaces and symmetric spectra of
simplicial sets are Quillen equivalent; see § 18.

Curiously, in all cases except that of symmetric spectra, whose homotopy theory
is intrinsically more subtle, the stable equivalences are just the w,-isomorphisms,
namely the maps whose underlying maps of prespectra induce isomorphisms of
homotopy groups. Using these stable model structures, we prove the following
comparison theorem.

THEOREM 0.1. The categories of N -spectra, symmetric spectra, orthogonal
spectra, and W -spaces are Quillen equivalent.

In fact, we prove that the categories of ./ -spectra and orthogonal spectra are
Quillen equivalent and that the categories of symmetric spectra, orthogonal
spectra, and ¥ -spaces are Quillen equivalent. These comparisons between
A -spectra and orthogonal spectra and between symmetric spectra and orthogonal
spectra imply that the categories of ./ -spectra and symmetric spectra are
Quillen equivalent. This reproves a result of Hovey, Shipley, and Smith
[15, 4.2.5]. The new proof leads to a new perspective on the stable equivalences
of symmetric spectra.

CoROLLARY 0.2. A map [ of cofibrant symmetric spectra is a stable
equivalence if and only if Pf is a w, -isomorphism of orthogonal spectra.

A similar characterization of the stable equivalences in terms of an interesting
endofunctor D on the category of symmetric spectra is given in [39, 3.1.2].
Generalizations of that functor gave the starting point for a now obsolete approach
to our comparison theorems; see [30].

Of course, the point of introducing categories of diagram spectra is to obtain
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point-set level models for the classical stable homotopy category that are
symmetric monoidal under their smash product. On passage to homotopy
categories, the derived smash product must agree with the classical (naive)
smash product of prespectra. That is the content of the following addendum to
Theorem 0.1.

THEOREM 0.3. The equivalences of homotopy categories induced by the
Quillen equivalences of Theorem 0.1 preserve smash products.

Here again, we compare ./ -spectra and symmetric spectra to orthogonal spectra
and then deduce the comparison between ./ -spectra and symmetric spectra; a
partial result in this direction was given in [15, 4.2.16].

Following the model of [37], we prove that, when & =X, 4, or ¥/ , the
category of Z-ring spectra and the category of modules over a Z-ring spectrum
inherit model structures from the underlying category of Z-spectra. Using these
model structures, we obtain the following comparison theorems for categories of
diagram ring and module spectra.

THEOREM 0.4. The categories of symmetric ring spectra, orthogonal ring
spectra, and W -ring spaces are Quillen equivalent model categories.

THEOREM 0.5. For a cofibrant symmetric ring spectrum R, the categories of
R-modules and of PR-modules (of orthogonal spectra) are Quillen equivlaent
model categories. For a cofibrant orthogonal ring spectrum R, the categories
of R-modules and of PR-modules (of W -spaces) are Quillen equivalent
model categories.

Here and in the analogous Theorems 0.8 and 0.12 below, the cofibrancy
hypothesis results in no loss of generality (see Theorem 12.1).

CoOROLLARY 0.6. For an orthogonal ring spectrum R, the categories of R-
modules and of UR-modules (of symmetric spectra) are Quillen equivalent model
categories. For a W '-ring spectrum R, the categories of R-modules and of UR-
modules (of orthogonal spectra) are Quillen equivalent model categories.

We would like the category of commutative Z-ring spectra to inherit a model
structure from the underlying category of &-spectra. However, because the sphere
Z-spectrum is cofibrant in the stable model structure, a familiar argument due to
Lewis [19] shows that this fails. In the context of symmetric spectra, Jeff Smith
explained (in a private communication) the mechanism of this failure: if
the zeroth term of a symmetric spectrum X is non-trivial, the symmetric powers
of X do not behave well homotopically. As Smith saw, one can get around this by
replacing the stable model structure by a Quillen equivalent ‘positive stable
model structure’.

In fact, we have such positive stable model categories of &-spectra for all four
of the categories considered so far, and all of the results above work equally well
starting from these model structures. In the cases of symmetric and orthogonal
spectra, we show that the categories of commutative ring spectra inherit positive
stable model structures. The proof is closely analogous to the proof of the
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corresponding result in the context of the S-modules of Elmendorf, Kriz, Mandell,
and May [11, VII§§3, 5]. More generally, we show that the categories of
modules, algebras and commutative algebras over a commutative S-algebra R are
model categories. With these positive stable model structures, we prove the
following comparison theorems.

THEOREM 0.7. The categories of commutative symmetric ring spectra and
commutative orthogonal ring spectra are Quillen equivalent.

THEOREM 0.8. Let R be a cofibrant commutative symmetric ring spectrum. The
categories of R-modules, R-algebras, and commutative R-algebras are Quillen
equivalent to the categories of PR-modules, PR-algebras, and commutative
PR-algebras (of orthogonal spectra).

CorOLLARY 0.9. Let R be a commutative orthogonal ring spectrum. The
categories of R-modules, R-algebras, and commutative R-algebras are Quillen
equivalent to the categories of UR-modules, UR-algebras, and commutative
UR-algebras (of symmetric spectra).

We do not know whether or not the category of commutative ¥ -ring spaces
admits a model category structure; some of us suspect that it does not.

We now bring % -spaces into the picture. Most of the previous work with them
has been done simplicially. The category of Z-spaces has a stable model
structure, and it is Quillen equivalent to the category of % -simplicial sets; see
§18. Since Z#-spaces only give rise to connective (that is, (—1)-connected)
prespectra and the category of connective ¥ -spaces is not a model category (it
fails to have limits), we cannot expect a Quillen equivalence between the
categories of % -spaces and connective ¥ -spaces. However, we have nearly that
much. A Quillen equivalence is a Quillen adjoint pair that induces an equivalence
of homotopy categories. We define a connective Quillen equivalence to be a
Quillen adjoint pair that induces an equivalence between the respective homotopy
categories of connective objects.

THEOREM 0.10. The functors P and U between # and WT are a
connective Quillen equivalence. The induced equivalence of homotopy categories
preserves smash products.

THEOREM 0.11. The categories of F-ring spaces and W -ring spaces are
connectively Quillen equivalent.

THEOREM 0.12. For a cofibrant F -ring space R, the categories of R-modules
and PR-modules are connectively Quillen equivalent.

CoroLLARY 0.13. For a connective W -ring space R, the categories of
R-modules and UR-modules are connectively Quillen equivalent.

The model structure on ¥ -spaces relevant to the last four results is not the
stable model structure but rather a Quillen equivalent ‘absolute stable model
structure’. Lydakis [22] has studied a simplicial analogue of this model category,
and we prove that ¥#".7 is Quillen equivalent to his category.
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We do not know whether or not the homotopy categories of commutative % -ring
spaces and connective commutative ¥ -ring spaces are equivalent. The following
remark provides a stop-gap for the study of commutativity in these cases.

REMARK 0.14. There is a definition of an action of an operad on a
Z-spectrum. Restricting to an E-operad, this gives the notion of an E-Z-ring
spectrum. See [30, §5]. It is an easy consequence of results in this paper
(especially Lemma 15.5) that the homotopy categories of E,-symmetric ring
spectra and commutative symmetric ring spectra are equivalent, as was first noted
by Smith in the simplicial context, and that the homotopy categories of E,-
orthogonal ring spectra and commutative orthogonal ring spectra are equivalent.
We do not know whether or not the analogues for # -spaces and % -spaces hold,
and here the homotopy theory of E,-rings seems more tractable than that of
commutative rings. It is also an easy consequence of the methods of this paper
that the homotopy categories of E.-symmetric ring spectra, Ey-orthogonal ring
spectra, and E.-# -ring spaces are equivalent and that the homotopy categories of
E-Z -ring spaces and connective E,-#-ring spaces are equivalent.

PART I. DIAGRAM SPACES AND DIAGRAM SPECTRA

We introduce functor categories .7 of Z-spaces in § 1. When & is symmetric
monoidal, so is 2.7 . If R is a monoid in ¥, we have a category 25, of
R-modules, or ‘@-spectra over R’. It is symmetric monoidal if R is commutative.
In §2, we define a new category &y such that the categories of Z-spaces and
Z-spectra over R are isomorphic. This reduces the study of diagram spectra to a
special case of the conceptually simpler study of diagram spaces.

Our focus is on comparisons between such categories as & varies. In § 3, we consider
adjoint forgetful and prolongation functors U: 99 — ¥ and P: 49 — 97
associated to a functor t: ¥ — Z. The main point is to understand the specialization
of these functors to categories of diagram spectra.

Finally, in §4, we specialize to the examples that we are most interested in. For
particular domain categories &, we fix a canonical Z-monoid S that is related to
spheres and obtain the category 2% of &-spectra over S. It is symmetric monoidal
when S is commutative. This fails for ./ but holds for X, .#, %, and ¥ .

We have chosen to work with functors that take values in based spaces because
some of our motivating examples make little sense simplicially. However,
everything in Parts I and III can be adapted without difficulty to functors that
take values in the category of based simplicial sets. The simplicially minded
reader may understand ‘spaces’ to mean ‘simplicial sets’ and ‘continuous’ to mean
‘simplicial’. In fact, the categorical constructions apply verbatim to functors that
take values in any symmetric monoidal category that is tensored and cotensored
over either topological spaces or simplicial sets. Examples of such symmetric
monoidal functor categories arise in other fields, such as algebraic geometry.

1. Categories of &-spaces

Spaces will mean compactly generated spaces (that is, weak Hausdorff
k-spaces). One reference is [32]; a thorough treatment is given in [18, Appendix].
We let .7 denote the resulting category of based spaces. All of our categories are
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topological, meaning that they have spaces of morphisms and continuous
composition. The category 7 is a closed symmetric monoidal topological
category under the smash product and function space functors A AB and
F(A, B); its unit is S°. We emphasize that the internal hom spaces F(A, B) and
the categorical hom spaces .7 (A, B) coincide.

Let & be a topological category. We assume that & is based, in the sense that
it has a given initial and terminal object x. Thus the space Z(d, ¢) of maps d — e
is based with basepoint d — * — e. When & is given as an unbased category, we
implicitly adjoin a base object *; in other words, we then understand Z(d, e) to mean
the union of the unbased space of maps d — ¢ in & and a disjoint basepoint. The
base object of 7 is a one-point space. By a functor between based categories, we
always understand a functor that carries base objects to base objects; that is, we take
this as part of our definition of ‘functor’. A functor F: & — %' between topological
categories is continuous if F: %(d, e) — &'(Fd, Fe) is a continuous map for all
d and e.

DerFINITION 1.1. A Z-space is a continuous functor X: ¥4 — 7. Let 99
denote the category of Z-spaces and natural maps between them.

We think of a &-space as a diagram of spaces whose shape is specified by Z.
The category 7 is complete and cocomplete, with limits and colimits
constructed level-wise (one object at a time). It is also tensored and cotensored.
For a -space X and based space A, the tensor X A A is given by the level-wise
smash product and the cotensor F(A,X) is given by the level-wise function
space. Thus

(1.2) GT(XAAY)=T(A, 9T (X.Y)) = 9T (X, F(A, Y)).

We define homotopies between maps of Z-spaces by use of the cylinders X A7, .
Spaces and Z-spaces are related by a system of adjoint pairs of functors.

DerFiNiTION 1.3. For an object d of &, define the evaluation functor
Ev;: 97 — 7 by Ev;X =X(d) and define the shift desuspension functor
F;: T — 97 by (F;A)(e) = 2(d, e) A A. The functors F,; and Ev, are left and
right adjoint,

(1.4) 97 (F;A,X) =T (A, EvgX).

Moreover, Ev, is covariantly functorial in d and F is contravariantly functorial in
. 9 9 . .
d. We write Ev; and F; when necessary to avoid confusion.

NoTaTION 1.5. We use the alternative notation d* =F,;S % Thus
d*(e) =9(d,e) and F;A =d” AA;d" is the D-space represented by the object d.

Recall that a skeleton sk of a category & is a full subcategory with one
object in each isomorphism class. The inclusion sk ¥ — & is an equivalence of
categories. When & is topological and has a small skeleton sk%, 27 is a
topological category. The set 2.7 (X, Y) of maps X — Y is the equalizer in the
category of based spaces displayed in the diagram

27 (X, Y) — [[ FX(d). Y(d)) R [1 Fx@). x(e)),
d

14 ard—e
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where the products run over the objects and morphisms of sk Z. For f = ( f;), the
ath component of u(f) is Y(a) o f; and the ath component of »(f) is f, o X(«).
By a comparison of represented functors, this implies that any &-space X can be
written as the coend of the contravariant functor d* and the covariant functor X.

LEMMA 1.6. Let & have a small skeleton sk < and let X be a 9-space. Then
the evaluation maps €: d* A X(d) — X induce a natural isomorphism

desky
/ d*/\X(d)—>X.

Explicitly, X is isomorphic to the coequalizer of the parallel arrows in the diagram
" e AN ld " e
\ e"AD(d. e) AX(d) ——=\/d" AX(d) — X,
d,e idAe 4
where the wedges run over pairs of objects and objects of sk % and the parallel
arrows are wedges of smash products of identity and evaluation maps.

We will explain the, by now, quite standard proof of the following fundamental
result in § 21, after fixing language about symmetric monoidal categories in § 20.
For the rest of this section, let & be a skeletally small symmetric monoidal
category with unit # and product [].

THEOREM 1.7. The category 9 has a smash product A and internal hom
functor F under which it is a closed symmetric monoidal category with unit u”.

We often use the following addendum, which is also proven in §21.

LEmMMA 1.8. For objects d and e of & and based spaces A and B, there is a
natural isomorphism

FdA/\FeB—>Fd|:|e<A/\B)

Monoids and commutative monoids are defined in any symmetric monoidal
category, as are (right) R-modules M over monoids R: there is a map M AR — R
such that the evident unit and associativity diagrams commute. The following
definition and proposition give a more direct and explicit description of R-modules.
The proof of the proposition is immediate from the definition of A in §21.

DErFINITION 1.9. Let R be a monoid in ¥ with unit A and product ¢. A
D-spectrum over R is a Z-space X: 9 — 7 together with continuous maps
0: X(d) AR(e) — X(d Oe), natural in d and e, such that the composite

X(d) = X(d) A $° 9SAN x4y A R)

X(dOu)=X(d)
is the identity and the following diagram commutes:

X(d) AR() AR(F) L2 x(aTe) AR(H)

ans| o

X(d)AR(eOf) X(dOeOy)
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(Here and below, we suppress implicit use of the associativity isomorphisms for A
and [.) Let 2.%% denote the category of &-spectra over R.

ProposITION 1.10. Let R be a monoid in 29 . The categories of R-modules
and of D-spectra over R are isomorphic.

We use R-modules and Z-spectra over R interchangeably throughout. As we
will explain in §22, we can construct functors Ap and Fy exactly as in algebra,
and we have the following extension of Theorem 1.7.

THEOREM 1.11. Let R be a commutative monoid in 97 . Then the category
9S% of R-modules has a smash product Ay and internal hom functor Fp under
which it is a closed symmetric monoidal category with unit R.

For a commutative monoid R in .7, we define a (commutative) R-algebra to
be a (commutative) monoid in Z.%%. As we will also explain in § 22, this notion
is equivalent to the more elementary notion of a (commutative) Z-FSP over R.

2. An interpretation of diagram spectra as diagram spaces

Let & be symmetric monoidal and fix a monoid R: 4 — 7 in 4. We do
not require R to be commutative, although that is the case of greatest interest. We
reinterpret the category 2., of Z-spectra over R, alias the category of right
R-modules, as the category Zp9 of Dg-spaces, where %y is a category
constructed from & and R. If R is commutative, then Z; is a symmetric
monoidal category. In this case, we can reinterpret the smash product Ay of
R-modules as the smash product in the category of Zy-spaces. This reduces the
study of diagram spectra to the study of diagram spaces.

Just as in algebra, for a &-space X, X A R is the free R-module generated by X.
Recall the represented functors d* from Notation 1.5 and remember that they
behave contravariantly with respect to d.

CONSTRUCTION 2.1. We construct a category % and a functor 6: ¥ — .
When R is commutative, we construct a product [J on %y such that & is a
symmetric monoidal category and 6 is a strong symmetric monoidal functor. The
objects of &y are the objects of &, and ¢ is the identity on objects. For objects d
and e of &, the space of morphisms d — e in Py is

@R(d, e) = @yR(E* /\R,d* /\R),

and composition is inherited from composition in 2.%%. Thus Zx may be identified
with the full subcategory of 2.#z" whose objects are the free R-modules d* A R.
Observe that %(d,e) =27 (e*,d”). We specify 6 on morphisms by smashing
maps of Z-spaces with R. When R is commutative, [, is defined on objects as
the product [] of . Its unit object is the unit object u of Z. The product f (g f’
of morphisms f: e* AR —d* AR and f": ¢/ AR —d'* AR is

fArRSf (ede )Y AR=(e*AR) Ag(e'" AR)
— (d*"AR)Ag(d""AR)=(d1d')" AR;
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the isomorphisms are implied by the isomorphisms (d[Je)" =d" Ae" of
Lemma 1.8.

We shall prove the following result in § 23.

THEOREM 2.2. Let R be a monoid in 29 . Then the categories DSy of
9-spectra over R and DI of Yr-spaces are isomorphic. If R is commutative,
then the isomorphism 95, = 9xJ is an isomorphism of symmetric monoidal
categories.

REMARK 2.3. If R = (ugy)", then 6:  — Py is an identification. That is, as
in any symmetric monoidal category, Z-spaces admit a unique structure of
module over the unit for the smash product.

3. Forgetful and prolongation functors

We wish to compare the categories 2.7 as & varies. Thus let «: ¥ — & be a
continuous functor between (based) topological categories. In practice, ¢ is faithful.
We often regard it as an inclusion of categories and omit it from the notation.

DEerFINITION 3.1. Define the forgetful functor U: 99 — ¥ on Z-spaces Y
by letting (UY)(c) = Y(wc).

The following result is standard category theory; we recall the proof in §23.

ProPOSITION 3.2. If € is skeletally small, then U: 99 — €T has a left
adjoint prolongation functor P: 9 — 927 . For an object ¢ of ¢, PF.X is
naturally isomorphic to F,.X. If . € — 2 is fully faithful, then the unit
n: Id — UP of the adjunction is a natural isomorphism.

The isomorphism PF.X = F,. X follows formally from the evident relation
Ev . UY = Y(ic) = Ev,. Y. The last statement means that, when ¢ is fully faithful,
P prolongs a %-space X to a &-space that restricts to X on %.

When & is skeletally small, U also has a right adjoint, but we shall make no
use of that fact. We are especially interested in the multiplicative properties of U
and P, and we prove the following basic result in §23. In the rest of this section,
let ©: ¥ — 2 be a strong symmetric monoidal functor between skeletally small
symmetric monoidal categories.

ProrosITION 3.3.  The functor P: €9 — 97 is strong symmetric monoidal.
The functor U: 9T — €T is lax symmetric monoidal, but with ug = Uuy,. The
unit : Id — UP and counit e: PU — 1d are monoidal natural transformations.

The notion of a monoidal natural transformation is recalled in Definition 20.3.

We use the categories Y, to reduce comparisons of categories of diagram
spectra to comparisons of categories of diagram spaces. By Proposition 3.3, if R is
a monoid in 2.7, then UR is a monoid in 4, and UR is commutative if R is.
We prove the first two statements of the following result in §23. The last two
statements then follow from Propositions 3.2 and 3.3.
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ProposiTioN 3.4. If R is a monoid in 9.9, then 1. ¢ — & extends to a
Sfunctor k: €yr — Y. If R is commutative, then k is strong symmetric monoidal.
Therefore, the forgetful functor U: 95 — € yr 7 has a left adjoint prolonga-
tion functor P: € g7 — D7 . If R is commutative, then U is lax symmetric
monoidal and P is strong symmetric monoidal.

Using two observations of independent interest, we give an alternative
description of [P that makes no use of the categories %z and Zy.

ProrosITION 3.5. Consider P: €7 — 27 . Let Q be a monoid in €7 . Then
PQ is a monoid in 9.7, P restricts to a functor €5y — Y pgy, and the
adjunction (P, U) restricts to an adjunction

(3.6) DS po(PT, Y) = %,(T,UY).

Proof. The first two statements are immediate from Proposition 3.3. For the
last statement, we must show that if X is a Q-module and Y is a PQ-module, then
amap f: PX — Y of &-spaces is a map of PQ-modules if and only if its adjoint
f: X — UY is a map of Q-modules. The proof is a pair of diagram chases that
boil down to use of the fact that y and & are monoidal natural transformations.

O

PROPOSITION 3.7. Let f: R— R’ be a map of monoids in 9. By pullback
of the action along f, an R'-module Y gives rise to an R-module f*Y. By
extension of scalars, an R-module X gives rise to an R'-module X Ax R'. These
functors give an adjunction

DS (X AR, Y)= 925X, 7).

When R and R' are commutative, the functor f* is lax symmetric monoidal and
the functor (—) Ag R' is strong symmetric monoidal.

Proof. The proof is formally the same as for extension of scalars in algebra.
O

Applying these results to Q =UR and the counit map &: PUR — R, we
obtain the following proposition by the uniqueness of adjoints.

ProposITION 3.8. Let R be a monoid in 2.7 . Then P: € g T — D T agrees
under the isomorphisms of its source and target with the composite of the functor
P: S yr — S pur and the extension of scalars functor S pyr — DS k.

4. Examples of diagram spectra

We now specialize the general abstract theory to the examples of interest in
stable homotopy theory. Here we change our point of view. So far, we have
considered general monoids R in £, usually commutative. Now we focus on a
particular, canonical, choice, which we denote by S, or S; when necessary for
clarity, to suggest spheres. It is a faithful functor in all of our examples. In this
context, we call S-algebras Z-ring spectra. These diagram ring spectra and their
modules are our main focus of interest.
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We take S" to be the one-point compactification of R"; the one-point
compactification of {0} is S° and it is convenient to let S" =% if n<O0.
Similarly, for a finite-dimensional real inner product space V, we take SV to be
the one-point compactification of V. Our first example is elementary, but crucial
to the theory.

ExamPLE 4.1 (Prespectra). Let .4~ be the (unbased) category of non-negative
integers, with only identity morphisms between them. The symmetric monoidal
structure is given by addition, with O as unit. An ./ -space is a sequence of based
spaces. The canonical functor S =S - sends n to S”. It is strong monoidal, but it
is not symmetric since permutations of spheres are not identity maps. This is the
source of difficulty in defining the smash product in the stable homotopy category.
A prespectrum is an ./ -spectrum over S. Let £, or alternatively 4%, denote the
category of prespectra. Since S" is canonically isomorphic to the n-fold smash
power of S!, the category of prespectra defined in this way is isomorphic to the
usual category of prespectra, whose objects are sequences of based spaces X, and
based maps XX, — X, 1.

The shift desuspension functors to ./ "-spectra are given by (F,A), =AAS"™".
The smash product of ./ -spaces (not ./ -spectra) is given by

n
XAY),=\/ X,AY,_,.
p=0
The category ./ such that an .4 -spectrum is an ./g-space has morphism spaces

Ns(m,n) =8""".

Because S, is not symmetric, the category of ./"-spectra does not have a
smash product that makes it a symmetric monoidal category. For all other & that
we consider, the functor S, is a strong symmetric monoidal embedding ¥ — 7.
Therefore the category of Z-spectra over S is symmetric monoidal.

ExaMmPLE 4.2 (Symmetric spectra). Let ¥ be the (unbased) category of finite
sets n = {1,...,n}, where n =0, and their permutations; thus there are no maps
m — n for m # n, and the set of maps n — n is the symmetric group X,. The
symmetric monoidal structure is given by concatenation of sets and block sum of
permutations, with 0 as unit. The canonical functor S =Sy sends n to S". A
symmetric spectrum is a X-spectrum over S. Let X.% denote the category of
symmetric spectra. Define a strong symmetric monoidal faithful functor ¢: A4~ — X
by sending n to n and observe that S, = Sy o:. In effect, we have made Sy
symmetric by adding permutations to the morphisms of .4". The idea of doing this
is due to Jeff Smith.

The shift desuspension functors to symmetric spectra are given by

(FnA)m) =E,; Ag, , (AAS"TT).
The smash product of L-spaces is given by
XAY)m)=\/Z, Ay vz, X(P)AY(—p)
p=0

as a X,-space. Implicitly, we are considering the set of partitions of the set n. If
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we were considering the category of all finite sets k£, we could rewrite this as

(X AY)(k)=\/ X(j) A Y(k—j),

jck

and this reinterpretation explains the associativity and commutativity of A. The
category L such that a X-spectrum is a X g-space has morphism spaces

Lgm,n) =L, Ay S"7"

ExaMPLE 4.3. The functor Sy is the case A =S' of the strong symmetric
monoidal functor S4: ¥ — 7 that sends n to the n-fold smash power A" for a
based space A. Moreover, the S, give all strong symmetric monoidal functors
Y — 7. Applied to S,, our theory constructs a symmetric monoidal category of ‘S-
modules’. The homotopy theory of these categories is relevant to localization theory.

ExaMPLE 4.4 (Orthogonal spectra). Let .# be the (unbased) category of finite-
dimensional real inner product spaces and linear isometric isomorphisms; there are
no maps V — W unless dimV = dim W = n for some n = 0, when the space of
morphisms V — W is homeomorphic to the orthogonal group O(n). The
symmetric monoidal structure is given by direct sums, with {0} as unit. The
canonical functor S=S, sends V to § V. An orthogonal spectrum is an /-
spectrum over S. Let .#.% denote the category of orthogonal spectra. Define a
strong symmetric monoidal faithful functor ¢: £ — .# by sending n to R" and
using the standard inclusions I, — O(n). Observe that Sy =S, o ¢.

The shift desuspension functors to orthogonal spectra are given on W > V by

(FyA)(W)=0(W), Agw—v) (AASY™Y),

where W — V is the orthogonal complement of V in W; an analogous description
applies whenever dimW =dimV, and (FyA)(W) =% if dimW <dimV. Note
that we can restrict attention to the skeleton {R"} of .#. For an inner product
space V of dimension n, choose a subspace V, of dimension p for each p <n.
The smash product of .#-spaces is given by

XAVYV) =\ OV). Aoty v, X(Vy) A YV = V))
p=0

as an O(V)-space. This describes the topology correctly, but to see the
associativity and commutativity of A, we can rewrite this set-theoretically as

XAY)V)= "\ X(W)AY(V - W).
Wcv
The category .45 such that an .#-spectrum is an .#s-space has morphism spaces
Is(V, W) =0(W), Aow—v)S" "
for VcWw.

This example admits several variants. For instance, we can use real vector
spaces and their isomorphisms, without insisting on inner product structures and
isometries, or we can use complex vector spaces.
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ExampLE 4.5. Let V have dimension n and let TO(V) be the Thom space of
the tautological n-plane bundle over the Grassmannian of n-planes in V@ V. As
observed in [28, § V.2], which gives many other examples, TO is a commutative
#-FSP (called an .# -prefunctor there). Therefore TO is a commutative S-algebra
by Proposition 22.4 below.

Our formal theory applies to examples like R =TO, but we focus on the
canonical functors Sg.

ExXAMPLE 4.6 (# -spaces). It is tempting to take & = 7, but that does not
have a small skeleton. Instead, we can take & to be the category ¥  of based
spaces homeomorphic to finite CW complexes. The theory works equally well if
we redefine ¥ in terms of countable rather than finite CW complexes or indeed
in terms of any sufficiently large but skeletally small full subcategory of 7 that is
closed under smash products. We have evident strong symmetric monoidal faithful
functors ¥ — #" and .¥ — ¥ under which S, restricts to Sy and S .

The shift desuspension functors to # -spaces are given by

(FAB)(C) = F(A, C) A B.

This example suggests an alternative way of viewing X and /.

REMARK 4.7. It is sometimes convenient, and sometimes inconvenient, to
change point of view and think of the objects of ¥ and .# as the spheres S” and
sV, thus thinking of ¥ and .# as subcategories of . With this point of view, []
is a subfunctor of A and § is the inclusion of a monoidal subcategory.

All of our examples so far are categories under ./". However, our last example
is not of this type.

ExaMPLE 4.8 (& -spaces, or I'-spaces). Let & be the category of finite based
sets n* = {0, 1,...,n} and all based maps, where O is the basepoint. This is the
opposite of Segal’s category I' [38]. This category is based with base object the
one point set 07. Take [J to be the smash product of finite based sets; to be
precise, we order the non-zero elements of m™ An" lexicographically. The unit
object is 1*. The canonical functor S, sends n* to n' regarded as a discrete
based space; it is the restriction to # of the functor S, .

In contrast to the cases of symmetric spectra and orthogonal spectra, the action
of Sy required of Z-spectra gives no additional data when & =% or & =W .
Moreover, since the functor & c W  is fully faithful, P: 9 — #'7 is a
‘prolongation’ in the strong sense described in Proposition 3.2.

LEMMA 49. Let Sy: 9 — J be an embedding of & as a full symmetric
monoidal subcategory of 7. Then a Z-space X admits a unique structure of
D-spectrum, and the categories of Z-spaces and D-spectra are isomorphic. In
particular, this applies to 9 =% and & = W'.

Proof. This is an instance of Remark 2.3, but it is worthwhile to explain it
explicitly. Omit the embedding S, from the notation and write A for [J. For
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spaces A, B € 2, the action map o¢: X(A) AB— X(A AB) is the adjoint of
the composite

B—2 7(A,AAB) = Z(A, A A B) —— 7 (X(A), X(A A B)),

where «(b)(a) = a A b. The equality holds because Z is a full subcategory of 7,
and X is continuous by our definition of a &-space. 0

PART II. MODEL CATEGORIES OF DIAGRAM SPECTRA AND THEIR COMPARISON

We give some preliminaries about ‘compactly generated’ topological model
categories in §5. We show in § 6 that, for any domain category &, the category of
9-spaces has a ‘level model structure’ in which the weak equivalences and
fibrations are the maps that evaluate to weak equivalences or fibrations at each
object of &. This structure has been studied in more detail by Piacenza [33; 29,
Chapter VI] and others. There is a relative variant in which we restrict attention to
those objects in some subcategory 4§ of Z.

In preparation for the study of stable model structures, we recall some
homotopical facts about prespectra in §7; we use the terms ‘prespectrum’ and
‘A -spectrum’ interchangeably, using the former when we are thinking in classical
homotopical terms and using the latter when thinking about the relationship with
other categories of diagram spectra.

We define and study ‘stable equivalences’ in § 8, and we give the categories of
A -spectra, symmetric spectra, orthogonal spectra, and # -spaces a ‘stable model
structure’ in § 9. The cofibrations are those of the level model structure relative to
A7, and the weak equivalences are the stable equivalences. We give a single self-
contained proof of the model axioms that applies to all four of these categories.
We prove Theorem 0.1 and Corollary 0.2 in § 10. We relate this theory to the
classical theory of CW prespectra and handicrafted smash products and prove
Theorem 0.3 in §11.

In § 12, we prove that the categories of symmetric spectra, orthogonal spectra,
and ¥ -spaces satisfy the pushout-product and monoid axioms of [37]. This
answers the question of whether or not the monoid axiom holds for (topological)
symmetric spectra, which was posed in the preprint version of [15]. This implies
that the categories of Z-ring spectra and of modules over a Z-ring spectrum
inherit model structures from the underlying category of Z-spectra in these cases.
We prove Theorems 0.4-0.6 in § 13.

We show in § 14 that replacing the level model structure relative to A4~ by the
relative model structure relative to 4" — {0} leads to a ‘positive stable model
structure’ that is Quillen equivalent to the stable model structure but has fewer
cofibrations. Its cofibrant objects have trivial zeroth spaces. In § 15, we use these
model structures to construct model structures on the categories of commutative
symmetric ring spectra and commutative orthogonal ring spectra. We prove
Theorems 0.7 and 0.8 comparing these and related model categories in § 16.

We return to ¥ -spaces in § 17. We prove that the category of ¥ -spaces has a
second, ‘absolute’, stable model structure that also satisfies the pushout-product
and monoid axioms. In the first stable model structure, we start from the level
model structure relative to V. In the second, we start from the absolute level
model structure. The weak equivalences in both stable model structures are the
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w,-isomorphisms. The cofibrations in the absolute stable structure are the same as
those in the absolute level model structure, and there are more of them.

We prove Theorems 0.10-0.12 and Corollary 0.13 comparing % -spaces and
W -spaces in § 18. The stable model category of % -spaces that we use is the one
studied in [35]. Its cofibrations are those of the level model structure and its weak
equivalences between cofibrant objects are the w,-isomorphisms. It has fewer
cofibrations and more fibrations than the simplicial analogue that was originally
studied by Bousfield and Friedlander [7].

We compare diagram categories of spaces and diagram categories of simplicial
sets in § 19. The comparison between % -spaces and % -simplicial sets is used in
the proofs of Theorems 0.10-0.12.

5. Preliminaries about topological model categories

We first construct model structures on categories of diagram spectra and then
use a general procedure to lift them to model structures on categories of
structured diagram spectra. The weak equivalences and fibrations in the lifted
model structures are created in the underlying category of diagram spaces. That
is, the underlying diagram spectrum functor preserves and reflects the weak
equivalences and fibrations: a map of structured diagram spectra is a weak
equivalence or fibration if and only if its underlying map of diagram spectra is a
weak equivalence or fibration. We here describe the kind of model structures that
we will encounter and explain the lifting procedure.

While we have the example of diagram spectra in mind, the considerations of
this section apply more generally. Thus let ¥ be any topologically complete and
cocomplete category with tensors denoted X A A and homotopies defined in terms
of X AI,. We let o/ be a topological category with a continuous and faithful
forgetful functor .o/ — %. We assume that .o/ is topologically complete and
cocomplete. This holds in all of the categories that occur in our work by the
following pair of results. The first is [11, VII.2.10] and the second is [11, 1.7.2].

PrOPOSITION 5.1.  Let € be a topologically complete and cocomplete category
and let T: € — € be a continuous monad that preserves reflexive coequalizers.
Then the category €[T] of T-algebras is topologically complete and cocomplete,
with limits created in 6.

The hypothesis on T holds trivially when & is closed symmetric monoidal with
product A and T is the monad TX = R A X that defines left modules over some
monoid R in ¥, since T: ¥ — ¥ is then a left adjoint. The following analogue is
more substantial.

PROPOSITION 5.2. Let € be a cocomplete closed symmetric monoidal category.
Then the monads that define monoids and commutative monoids in € preserve
reflexive coequalizers.

As in [11], we write g-cofibration and g-fibration for model cofibrations and
fibrations, but we write cofibrant and fibrant rather than g-cofibrant and g-fibrant.
The (usually weaker) notion of an A-cofibration plays an important role in model
theory in topology. A map i: A — X in % is an h-cofibration if it satisfies the
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Homotopy Extension Property (HEP) in 4. That is, for every map f: X — Y and
homotopy h: AAI, — Y such that hy=foi, there is a homotopy
h: X NI, — Y such that hy =f and h o (i Aid) = h. The universal test case is
the mapping cylinder ¥ = Mi = X U, (A AL, ), with the evident f and A, in which
case h is a retraction X A I, — Mi.

In particular, an h-cofibration of Z-spaces is a level h-cofibration and therefore
a level closed inclusion. For some purposes, we could just as well use level A-
cofibrations where we use h-cofibrations, but the stronger condition plays a key
role in some of our model-theoretic work and is the most natural condition to
verify. The theory of cofibration sequences works in exactly the same way for A-
cofibrations of Z-spaces as for h-cofibrations of based spaces; we will be more
explicit later. The various functors Ev,;, F;, U and P defined in Part I all
preserve colimits and smash products with spaces. By the retract of mapping
cylinders criterion, they also preserve h-cofibrations. This elementary observation
is crucial to our work, one point being that right adjoints, such as U, do not
preserve g-cofibrations.

Most work on model categories has been done simplicially rather than
topologically. As observed in [11], it is convenient in topological contexts to
require some form of ‘Cofibration Hypothesis’. We shall incorporate this in our
definition of what it means for .o/ to be a ‘compactly generated model category’.

CoFIBRATION HYPOTHESIS 5.3. Let I be a set of maps in .o/. We say that [/
satisfies the Cofibration Hypothesis if it satisfies the following two conditions.

(i) Let i: A— B be a coproduct of maps in /. In any pushout

A——FE

]

in .o/, the cobase change j is an h-cofibration in %.

(ii) Viewed as an object of €, the colimit of a sequence of maps in .o/ that are
h-cofibrations in % is their colimit as a sequence of maps in %.

We can use the maps in such a set / as the analogues of (cell, sphere) pairs in
the theory of cell complexes, and the following definition and result imply that
g-cofibrations are h-cofibrations in compactly generated model categories.

DEFINITION 5.4. Let I be a set of maps in .o/. A map f: X — Y is a relative
I-cell complex if Y is the colimit of a sequence of maps Y, — Y, .| such that
Yo=X and Y, — Y, is obtained by cobase change from a coproduct of maps
in I.

LEMMA 5.5. Let I satisfy the Cofibration Hypothesis. Then any retract of a
relative I-cell complex is an h-cofibration in 6.

We will define compactly generated model categories in terms of
compact objects.
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DEFINITION 5.6. An object X of .« is compact if
o/ (X,Y)=colim./(X, Y,)

whenever Y is the colimit of a sequence of maps Y, — Y, | in .o/ that are
h-cofibrations in €.

Of course, for spaces, we understand compactness in the usual sense. Since
points are closed in compactly generated spaces, an elementary argument shows
that 7 (A,Y) =colim 7 (A, Y,) if A is compact and Y is the union of a sequence
of inclusions ¥, — Y, ;.

LEMMA 5.7. If A is a compact space, then F;A is a compact &-space. If X is
a compact Z-space and A is a compact space, then X A A is a compact Z-space.
If YUxZ is the pushout of a level closed inclusion i: X — Y and a map
f:X—Z, where X, Y, and Z are compact %-spaces, then Y UxZ is a
compact Z-space.

Proofs of the model axioms generally use some version of Quillen’s small
object argument [34, II, p.3.4]. The following version, details of a special case of
which are given in [11, VIL5.2], suffices for most of our work. Abbreviate the
right lifting property and left lifting property to RLP and LLP.

LEMMA 5.8 (The small object argument). Let I be a set of maps of o/ such
that each map in I has compact domain and I satisfies the Cofibration Hypothesis.
Then maps f: X — Y in o/ factor functorially as composites

x—tox' L.y
such that p satisfies the RLP with respect to any map in I and i satisfies the LLP
with respect to any map that satisfies the RLP with respect to each map in I
Moreover, i: X — X' is a relative I-cell complex.

This motivates the following definition.

DErFINITION 5.9. Let .o/ be a model category. We say that .o/ is compactly
generated if there are sets / and J of maps in ./ such that the domain of each
map in / and each map in J is compact, I and J satisfy the Cofibration
Hypothesis, the g-fibrations are the maps that satisfy the RLP with respect to the
maps in J and the acyclic g-fibrations are the maps that satisfy the RLP with
respect to the maps in /. Note that the maps in / must be g-cofibrations and
h-cofibrations and the maps in J must be acyclic g-cofibrations and h-cofibrations.
We call the maps in I the generating gq-cofibrations and the maps in J the
generating acyclic q-cofibrations.

REMARK 5.10. There is a definition in terms of transfinite colimits of what it
means for a set of maps to be small relative to a subcategory of .o/. The more
general notion of a cofibrantly generated model category .o/ replaces the
compactness condition with the requirement that I/ be small relative to the
g-cofibrations and J be small relative to the acyclic g-cofibrations. See, for
example, [13, § 12.4] or [14, §2.1]. The Cofibration Hypothesis does not appear
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in the model-theoretic literature, but it is almost always appropriate in
topological settings.

All of our model categories are ‘topological’, in the following sense. For maps
i:A— X and p: E— B in ./, let

(511) M(l*, p*) &{(X, E) — %(A, E) X,Q](A,B) &f(X, B)

be the map of spaces induced by .7(i,id) and ./(id, p) by passage to
pullbacks. Observe that the pair (i, p) has the lifting property if and only if
o/ (i*, p,) is surjective.

DEFINITION 5.12. A model category .o/ is topological provided that </(i*, p,)
is a Serre fibration if i is a g-cofibration and p is a g-fibration and is a weak
equivalence if, in addition, either i or p is a weak equivalence.

The following result on lifting model structures is immediate by inspection of
the proofs in [11, VII, § 5] or by combination of our version of the small object
argument with the proof of [37, 2.3] or [13, 14.3.2]. Of course, viewed as a
functor ¥ — %[T], a monad T is the free functor left adjoint to the forgetful
functor €[T] — %. Since the forgetful functor preserves sequential colimits, T
preserves compact objects.

PROPOSITION 5.13.  Let € be a topologically complete and cocomplete category
and let T: € — € be a continuous monad that preserves reflexive coequalizers.
Assume that € is a compactly generated topological model category with
generating sets I of cofibrations and J of acyclic cofibrations. Then €[T] is a
compactly generated topological model category with weak equivalences and
fibrations created in € and generating sets TI of cofibrations and TJ of acyclic
cofibrations provided that

(1) TI and TJ satisfy the Cofibration Hypothesis and
(ii) every relative TJ-cell complex is a weak equivalence.

We need two pairs of analogues of the maps .<7(i", p,). For a map i: A— B
of based spaces and a map j: X — Y in ./, passage to pushouts gives a map

(5.14) i0j: (AANY)Uyuax (BAX)— BAY
and passage to pullbacks gives a map
(5.15) Fr(i, j): F(B,X) — F(A, X) Xpa,y) F(B, Y),
where A and F denote the tensor and cotensor in .o7.
Inspection of definitions gives adjunctions relating (5.11), (5.14) and (5.15).

Formally, these imply that the category of maps in ./ is tensored and cotensored
over the category of maps in 7.

LEMMA 5.16. Let i: A — B be a map of based spaces and let j: X — Y and
p: E— F be maps in /. Then there are natural isomorphisms of maps

(0 ) p) =T A" p.).) =A% Foli, p)).
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Therefore (i [J j, p) has the lifting property in </ if and only if (i, o/(j*, p.)) has
the lifting property in 7.

Now assume that .o/ is a closed symmetric monoidal category with product A ,
and internal function objects functor F,,. For maps i: X — Y and j: W — Z in
o/, passage to pushouts gives a map

(5.17) i0j: YAy W)oxa,w XAy Z)—YA,Z,

and passage to pullbacks gives a map

(5.18) Fro(i, j): Fy(Y, W) — F (X, W) Xp,x.2) Fy (Y, Z).

For maps i, j, and k in o7, these are related by a natural isomorphism of maps
(5.19) A (IO ) k) =", Fo(J, k).)-

6. The level model structure on Z-spaces

We give the category of Z-spaces a ‘level model structure’. We shall be brief,
since this material is well known. An exposition that makes clear just how close
this theory is to CW-theory in the category of spaces has been given by Piacenza
[33; 29, Chapter VI]. Since the category .9, of Z-spectra over a monoid R is
isomorphic to the category of Zg-spaces, the category &.%% obtains a level model
structure by specialization. Recall that 5 has the same objects as &. We assume
that & is skeletally small and fix a selection sk Z.

DEFINITION 6.1. We define five properties of maps f: X — Y of Z-spaces:
(i) fisalevel equivalence if each f(d): X(d) — Y(d) is a weak equivalence;
(ii) f is a level fibration if each f(d): X(d) — Y(d) is a Serre fibration;

(iii) f is a level acyclic fibration if it is both a level equivalence and a
level fibration;

(iv) f is a g-cofibration if it satisfies the LLP with respect to the level
acyclic fibrations;

(v) f is a level acyclic q-cofibration if it is both a level equivalence and
a g-cofibration.

Of course, there is also a notion of a level cofibration, defined as in Definition
6.1(i1), but we shall make no use of it.

DEFINITION 6.2. Let I be the set of h-cofibrations S” ' — D", where n=0
(interpreted as *x — S O when n= 0). Let J be the set of h-cofibrations
io: DI — (D" xI), and observe that each such map is the inclusion of a
deformation retract. Define FI to be the set of all maps F,;i with d € sk and
i€l. Define FJ to be the set of all maps F,;j with de€skZ and j&€J, and
observe that each map in FJ is the inclusion of a deformation retract. Note that
the domains and codomains of all maps in F/ and FJ are compact.

We recall the following result of Quillen [34, II, § 3]; see also [14, Chapter 2,
§2.4]. Recall that a model category is left proper if a pushout of a weak
equivalence along a g-cofibration is a weak equivalence, right proper if a pullback
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of a weak equivalence along a g-fibration is a weak equivalence, and proper if it
is left and right proper. All of our model categories are right proper, and many of
them are proper.

PropoSITION 6.3. The category I is a compactly generated proper topo-
logical model category with respect to the weak equivalences, Serre fibrations,
and retracts of relative I-cell complexes. The sets I and J are the gemerating
g-cofibrations and the generating acyclic g-cofibrations.

Note that every space is fibrant. The model structure requires use of all based
spaces, but weak equivalences only behave well with respect to standard
constructions when we restrict to spaces with non-degenerate basepoints, meaning
that the inclusion of the basepoint is an unbased A-cofibration. Recall that a based
h-cofibration between non-degenerately based spaces is an unbased h-cofibration
(satisfies the HEP in unbased spaces) [40, Proposition 9].

DEFINITION 6.4. The category & is non-degenerately based if each of its
morphism spaces is non-degenerately based. For any &%, a Z-space X is
non-degenerately based if each X(d) is non-degenerately based.

All of the categories & that we consider are non-degenerately based.

THEOREM 6.5. The category of &-spaces is a compactly generated topological
model category with respect to the level equivalences, level fibrations, and
g-cofibrations. It is right proper, and it is left proper if & is non-degenerately
based. The sets FI and FJ are the generating gq-cofibrations and generating
acyclic g-cofibrations, and the following identifications hold.

(1) The level fibrations are the maps that satisfy the RLP with respect to FJ
or, equivalently, with respect to retracts of relative FJ-cell complexes, and
all 9-spaces are level fibrant.

(i1) The level acyclic fibrations are the maps that satisfy the RLP with respect
to FI or, equivalently, with respect to retracts of relative Fl-cell
complexes.

(iii) The g-cofibrations are the retracts of relative Fl-cell complexes.

@iv) The level acyclic q-cofibrations are the retracts of relative FJ-cell
complexes.

V) If @ is non-degenerately based, then any cofibrant Z-space is non-
degenerately based.

Proof. The only model axioms that are not obvious from the definitions are
the lifting property that is not given by the definition of a g-cofibration and the
two factorization properties. The latter are obtained by applying the small object
argument of Lemma 5.8 to FJ and FI. The detailed statement of that lemma and
adjunction arguments show that (i) through (iv) follow from their space level
analogues; (ii) and (iii) give the remaining lifting property; see for example,
[14, 5.1.3].

To show that 27 is topological, we must show that if itA— X is a
g-cofibration and p: E— B is a level fibration, then the map 27 (i*, p,) of
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(5.11) is a Serre fibration which is a weak equivalence if i or p is a level
equivalence. As in [34, SM7(a), p.11.2.3] or [14, 4.2.5], this reduces to showing
that 27 (i*, p,) is a Serre fibration when i is in FI and an acyclic Serre
fibration when i is in FJ. By adjunction, these conclusions follow from their space
level analogues.

Right properness also follows directly from its space level analogue. To show
that 27 is left proper, we must show that the pushout of a level equivalence
along a g-cofibration is a level equivalence. The functors F;: I — 29 preserve
h-cofibrations. Since & is non-degenerately based, F;A is non-degenerately based
for any based CW complex A. Moreover, wedges of non-degenerately based
spaces are non-degenerately based. Thus a relative FI-cell complex i: X — Y is
obtained by passage to pushouts and sequential colimits from based maps that are
unbased h-cofibrations. Although X need not be non-degenerately based, i is a
level unbased h-cofibration since pushouts and sequential colimits of unbased
h-cofibrations are unbased h-cofibrations. Therefore any g-cofibration is a level
unbased A-cofibration. The conclusion follows from the space level analogue that
the pushout of a weak equivalence along an unbased h-cofibration is a weak
equivalence. Part (v) also follows from this discussion. ]

Now assume for a moment that & and therefore 7 are symmetric monoidal
categories. We then have the following observation about the maps i [] j of (5.17).

LEMMA 6.6. Ifi and j are g-cofibrations, then i[] j is a g-cofibration which is
level acyclic if either i or j is level acyclic. In particular, if Y is cofibrant, then
iNid: ANY — X AY is a g-cofibration, and the smash product of cofibrant
9-spaces is cofibrant.

Proof. Writing i,: S"~' — D", we see that Lemma 1.8 implies that
Fui, OF, i, =Fiq0(imin)

From here, an easy formal argument using the adjunction (5.19) and the defining
lifting property of g-cofibrations shows that i[Jj is a g-cofibration; see [15,
5.3.4]. The acyclicity in the first statement follows by adjointness arguments from
the fact that 2.7 is topological; compare [34, p.11.2.3]. U

REMARK 6.7. The monoid axiom of [37] would require that any map obtained
by cobase change and composition from maps of the form i A Y, where i is a
level acyclic g-cofibration and Y is arbitrary, be a level equivalence. Without non-
degenerate basepoint hypotheses, this fails in general. Nevertheless, we shall later
prove the monoid axiom for some of our stable model structures.

Let Ho, 27 denote the homotopy category obtained from the level model
structure. Let [X, Y] denote the set of maps X — Y in Ho, 27 and = (X,Y)
denote the set of homotopy classes of maps X — Y. Then [X,Y]|==n(T'X,Y),
where I'X — X is a cofibrant approximation of X. Piacenza [33] has shown that
we can refine the notion of an FI-cell complex to the notion of an FI-CW
complex, just as for based spaces. The cellular approximation theorem holds and
any cofibrant &-space is homotopy equivalent to an FI-CW complex. Similarly,
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fiber and cofiber sequences of Z-spaces behave the same way as for based spaces,
starting from the usual definitions of homotopy cofibers and fibers.

DEeFINITION 6.8. Let f: X — Y be a map of Z-spaces. The homotopy cofiber
Cf =Y Uy CX of f is the pushout along f of the cone h-cofibration i: X — CX;
here CX = X A I, where [ has basepoint 1. The homotopy fiber Ff = X X; PY of f
is the pullback along f of the path fibration p: PY — Y; here PY =F(I,Y),
where I has basepoint 0. Equivalently, these are the levelwise homotopy cofiber
and fiber of f.

We record the following basic properties of the level homotopy category. They
are elementary precursors of more sophisticated analogues that appear later.

THEOREM 6.9. Assume that & is non-degenerately based.
(1) Let A be a based CW complex. If X is a non-degenerately based &-space,
then X A A is non-degenerately based and
XAA Y]|=[X,F(A,Y)]
for any Y. If f: X—Y is a level equivalence of non-degenerately based
9-spaces, then f Aid: X AA — Y A A is a level equivalence.
(ii) For non-degenerately based P-spaces X;, \/; X; is non-degenerately

based and
{\i/x,-, Y} =1 x:. 7]

i
for any Y. A wedge of level equivalences of non-degenerately based &-spaces is a
level equivalence.
(i) If i: A— X is an h-cofibration and f: A — Y is any map of Z-spaces,
where A, X, and Y are non-degenerately based, then X \U, Y is non-degenerately

based and the cobase change j: Y — X U, Y is an h-cofibration. If i is a level
equivalence, then j is a level equivalence.

(Gv) If i and i’ are h-cofibrations and the wvertical arrows are level
equivalences in the following commutative diagram of non-degenerately based
9-spaces, then the induced map of pushouts is a level equivalence:

X—t A— .y

L]

X e—A ——Y'
./
i
(v) If X is the colimit of a sequence of h-cofibrations i,: X, — X, .| of non-
degenerately based %-spaces, then X is non-degenerately based and there is a
lim' exact sequence of pointed sets

x — lim'[LX,, Y] — [X, Y] — lim[X,,, Y] — *

for any Y. If each i, is a level equivalence, then the map from the initial term X,
into X is a level equivalence.
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(vi) Let f: X — Y be a map of non-degenerately based &-spaces. Then Cf is
non-degenerately based and, for any Z, there is a long exact sequence

- — [T"MX, Z] — [X"Cf, Z] — [£"Y, Z] — [£"X, Z] — --- — [X, Z].

Proof. The statements about level equivalences are immediate from their
analogues for weak equivalences of based spaces. Using Theorem 6.5(v), we
see that the statements about [—, Y] follow by first passing to cofibrant
approximations and then applying the analogue with [—, Y] replaced by 7 (—, ¥).
The latter results are proven exactly as on the space level. For example, by the
naturality of the space level argument, cofiber sequences give rise to long exact
sequences upon application of the functor 7w (—, Y). The essential point is that if
i: A— X is an h-cofibration, then the canonical map Ci — X /A is a homotopy
equivalence. Again, in (v), X is homotopy equivalent to the telescope of the X,,
and there results a lim' exact sequence for the computation of «(X, ). 0

We shall need several relative variants of the absolute level model structure that
we have been discussing.

VARIANT 6.10. Let ¥ be a subcategory of &. We define the level model
structure relative to ¥ on the category of Z-spaces by restricting attention to
those levels in %. That is, we define the level equivalences and level fibrations
relative to ¥ to be those maps of Z-spaces that are level equivalences or level
fibrations when regarded as maps of %-spaces. We restrict to maps F.(—) with
c €% when defining the generating g-cofibrations and generating acyclic g-
cofibrations. The proofs of the model axioms and of all other results in this
section go through equally well in the relative context. Clearly, when % contains
all objects of a skeleton of &, the relative level model structure coincides with the
absolute level model structure.

7. Preliminaries about w.-isomorphisms of prespectra

We record some results about homotopy groups and m,-isomorphisms of
prespectra that are needed in our study of stable model structures. Recall that we
are using the terms prespectrum and .4 -spectrum interchangeably. We are
following [4, 11, 20] in calling a sequence of spaces X, and maps
o: XX, — X, | a ‘prespectrum’, reserving the term ‘spectrum’ for a prespectrum
whose adjoint structure maps o: X, — ©X,, | are homeomorphisms. However,
we make no use of such spectra in this paper. In fact, the following remark shows
that, in a sense, the theory of such spectra is disjoint from the present theory of
diagram spectra.

REMARK 7.1. If the underlying prespectrum of a symmetric spectrum X is a
spectrum, then X is trivial, and similarly for orthogonal spectra and ¥ -spaces.
Indeed, the iterated adjoint structure map X(n) — Q2X(n + 2) takes image in the
subspace of points fixed under the conjugation action of ¥,, where X, acts on S 2
by permuting coordinates and acts on X(n + 2) through the embedding of £, in
Y, ., as the subgroup fixing the first n coordinates. This is a proper subspace
unless Q*X(n+2) is a point.
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DEeFINITION 7.2.  The homotopy groups of a prespectrum X are defined by
7,(X) = colim 7, ,(X,).

A map of prespectra is called a w,-isomorphism if it induces an isomorphism
on homotopy groups. A prespectrum X is an Q-spectrum (more logically,
Q-prespectrum) if its adjoint structure maps a: X, — QX,,, | are weak equivalences.

The following observation is trivial, but important.

LEMMA 7.3. A level equivalence of prespectra is a ,-isomorphism. A
w,-isomorphism between Q-spectra is a level equivalence.

The following results are significantly stronger technically than their analogues
in the previous section in that no hypotheses about non-degenerate basepoints are
required. There is no contradiction since the suspension prespectrum functor
does not convert weak equivalences of spaces to w,-isomorphisms of prespectra
in general.

THEOREM 7.4. (1) If f: X — Y is a w,-isomorphism of prespectra and A is a
based CW complex, then f Aid: X AA — Y ANA is a w,-isomorphism.

(i) A map of prespectra is a w,-isomorphism if and only if its suspension is a
w,-isomorphism, and the natural map n: X — QXX is a w.-isomorphism for all
prespectra X.

(i1) The homotopy groups of a wedge of prespectra are the direct sums of the
homotopy groups of the wedge summands, hence a wedge of w,-isomorphisms of
prespectra is a T,-isomorphism.

(i) If i: A— X is an h-cofibration and a w.-isomorphism of prespectra and
f:A—Y is any map of prespectra, then the cobase change j: Y — XU, Y is a
m,-isomorphism.

(iv) If i and i' are h-cofibrations and the vertical arrows are T,-isomorphisms
in the comparison of pushouts diagram of Theorem 6.9(iv), then the induced map
of pushouts is a ,-isomorphism.

(v) If X is the colimit of a sequence of h-cofibrations X, — X, |, each
of which is a w.-isomorphism, then the map from the initial term X, into X is
a m,-isomorphism.

(vi) For any map f: X — Y of prespectra, there are natural long exact
sequences

'_>7rq(Ff)—>7rq(X)—>7rq(Y)—>7rq71(Ff)_)""

F—= my(X) — (V) — 7 (Cf) — g (X) — -,
and the natural map n: Ff — QCf is a w,-isomorphism.
Proof. This is standard but hard to find in the literature in this generality. We
sketch the proofs. Part (i’) is clear since an inspection of colimits shows that

7,(X) is naturally isomorphic to 7, (XX, with the isomorphism realized by 7..
Part (v) is also clear. The first long exact sequence of (vi) results by passage to
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colimits from the level long exact sequences of homotopy groups. For the second, we
see from (i) that it suffices to prove the exactness of 7, (X) — ,(Y) — ,(Cf),
and this composite is clearly zero. For an element « in the kernel of
7,(Y) — 7w,(Cf), we may represent o by a map g: §"T4 'y, with n large
enough that there is a null homotopy h: CS""9 — Cf,. We then compare the
cofiber sequences starting with the inclusions $""? — CS""? and Y, — Cf, to
obtain a map k: S9T" "' — £X, such that Lf, o k is homotopic to Lg. The map
k represents a preimage of «. See for example, [20, III.2.1] or [11, 1.3.4] for
details of the spectrum level argument. The last statement in (vi) follows from the
last statement of (i’) by comparing the two long exact sequences in (vi); see for
example, [20, p. 130]. For finite wedges, (ii) holds by inductive use of split cofiber
sequences, and passage to colimits gives the general case. Part (iii) holds by a
comparison of cofiber sequences, and part (iv) follows from (vi) and a diagram
chase; see for example, [11, 1.3.5]. Part (i) follows from (ii), (iv), and (v). [l

8. Stable equivalences of 9-spectra

In this section and the next, let & be a non-degenerately based symmetric
monoidal domain category with a faithful strong symmetric monoidal functor
i N — P and a sphere Z-monoid S = S, that restricts along ¢ to the sphere
prespectrum S ,-. We think of ¢ as an inclusion of categories. We let 2% be the
category of Z-spectra over S, or right S-modules in 2. We are thinking of
NS, LS, £F, and #" T, but there are surely other examples of interest. We
have strong symmetric monoidal inclusions of categories

(8.1) NcZcIcHW

that send n to m, n to R"” and R" to S". The sphere spectra for the smaller
categories are the restrictions of the sphere spectra for the larger categories. To
mesh notations, we write n for its image in any of the &, and we let F, = F./
denote the left adjoint to the nth space evaluation functor Ev,; for a &-spectrum
X, we write X(n) = Ev, X = X,, interchangeably.

ConNvVENTION 8.2. Until § 17, we understand the level model structure on Z-
spectra to mean the level model structure relative to 4", as defined in Variant
6.10. Since A" contains all of the objects of a skeleton of X or ., this is the
same as the absolute level model structure in all cases above except the case of
W -spaces. We let [X,Y] denote the set of maps X — Y in the homotopy
category with respect to the level model structure relative to ./". Recall that all of
the results of § 6 apply to this relative model structure.

DeriNiTION  8.3. Consider Z-spectra E and maps of Z-spectra
f: X — Y. Then:

(1) E is a Z2-Q-spectrum if UX is an Q-spectrum;
(ii) fis a w,-isomorphism if Uf is a w,-isomorphism;
(iii) f is a stable equivalence if f*:[Y,E]| — [X,E] is a bijection for all
2-Q-spectra E.

Observe that a level equivalence is a stable equivalence. Certain stable
equivalences play a central role in the theory.
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DEeFINITION 8.4. Define N\,: F, 1S ! —>F,,S0 to be the map adjoint to the
canonical inclusion §' — (F,,S°), . ;, namely n: S' = (F,;" 8°),.1 — (F,/S"), 11

LEmMMA 8.5. For any Z-spectrum X,
Ny 9 (F,S°, X) — 929 (F, 1S, X)
coincides with o: X, — QX,, | under the canonical homeomorphisms
X,=7(8°X,)=2%(F,S° X)
and
X, 1 =7 (S), X, 1) = 2S(F, 1S, X).

Proof. With X = F, $°, & may be identified with a map
5 99 (F,S°, F,8°) — 9% (F,.,S',F,S°),
and A,: F,HIS1 — FnS0 is the image of the identity map under o. O

The following lemma is crucial. Because of it, the homotopy theory of symmetric
spectra is significantly different from, and considerably less intuitive at first sight
than, the homotopy theories of .4 -spectra, orthogonal spectra, and ¥ -spaces.

LEMMA 8.6. In all cases, the maps N, are stable equivalences. In P, 9%,
and W7, the N\, are w,-isomorphisms. In ¥.%, the N\, are not w.-isomorphisms.

Proof. The first statement is immediate from Lemma 8.5 and the definition of
a stable equivalence. We prove that the A, are or are not m,-isomorphisms
separately in the four cases. Let $" = x if n <0.

N -spectra. Here (F,A)(q) =AAS?". Thus F,A is essentially a reindexing
of the suspension ./"-spectrum of A. The map \,(gq) is the identity unless g = n,
when it is the inclusion * — S°. Thus A, is a m,-isomorphism.

Orthogonal spectra. We have
(FrA)(g) = O(q)4 Aog-m ANST".
For ¢g=n+ 1, \,(q) is the canonical quotient map
0(q)+ Aog—n-1S' AST" 1 =0(q)4 Aog_n—1)S*™"
— 0(g): Aoggn) ST

By Theorem 7.4(i"), it suffices to prove that the map X"\, is a 7,-isomorphism,
and (X"N,)(g) takes the form

0<q)+ /\O(q—n—l) §9— O(q)+ /\O(q—n) AR
Since O(g) acts on S?, this is isomorphic to the map
7 Aid: O(q)/O0(g—n—1). AST— 0(q)/O(q—n). ASY,

where 7 is the evident quotient map. This map is (2¢ —n — 1)-connected; hence
X"\, is a m,-isomorphism.

Symmetric spectra. The description of the maps A, is the same as for
orthogonal spectra, except that orthogonal groups are replaced by symmetric
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groups. However, in contrast to the quotients O(q)/O(q —n), the quotients
L, / L, , do not become highly connected as g increases. In fact, for n=1,
7, (F,S") is the sum of countably many copies of the stable homotopy groups of
SO; compare [15, 3.1.10].

W -spaces. The gth map of A, can be identified with the evaluation map
rQQ"s?) — Q"s.

Applying m,,, and passing to colimits over g, we see that these maps induce an
isomorphism with target the stable homotopy groups of spheres, reindexed by n. [

We shall prove the following result at the end of the next section.

ProposITION 8.7. A map of N -spectra, orthogonal spectra, or W -spaces is a
w.-isomorphism if and only if it is a stable equivalence.

For this reason, there is no need to mention stable equivalences when setting up
the stable model structures in 2, #.% and % 7 : everything can be done more
simply in terms of w,-isomorphisms. At the price of introducing an unnecessary
additional level of complexity in these cases, we have chosen to work with stable
equivalences in order to give a uniform general treatment. As suggested by
Lemma 8.6, the forward implication of Proposition 8.7 does hold in all cases.

PROPOSITION 8.8. A mw,-isomorphism in 2% is a stable equivalence.

Proof. Following the analogous argument in [15], define RX = Fy(F,S"', X),
where Fg is the function Z-spectrum functor. Since F,S" is isomorphic to the nth
smash power of FS g by Lemma 1.8, the n-fold iterate R"X is isomorphic to
F4(F,S",X). The map A= \;: F;§' — F,S° = § induces a map \*: X — RX
and thus a map R"\*: R"X — R""'X. Define QX to be the homotopy colimit (or
telescope) of the R"X and let i: X — QX be the natural map. The defining
adjunctions of the functors Fg and F,, together with the isomorphism

F,AANsF,B=F, ,(AAB)
for based spaces A and B, imply that
T (A, Ev, Fs(F,S",X)) =T (A, Q"X(m+ n)).

Therefore (R"X)(m) = Q"X(m + n). Since \ corresponds to ¢ under adjunction, a
quick inspection of colimits shows that

T, ((QX)(m)) = mg_w(X).

Nevertheless, QX need not be a Z-Q-spectrum in general. However, if E is a
2-Q-spectrum, then \*: E — RE is a level equivalence; hence so is v: E — QE,
and QF is a Z-Q-spectrum. Moreover, t,: [X, E] — [X, QF] is an isomorphism
for any X. By the naturality of «, ¢, is the composite of Q: [X, E] — [QX, QF]
and ": [0X, QE] — [X, QE]. Since [QX, E] = [0X, QF], this shows that [X, E]
is naturally a retract of [QX,E]|. If f: X—Y is a m,-isomorphism, then
Qf: QX — QY is a level equivalence. Thus f*: [V, E| — [X, E] is a retract of
the isomorphism (Qf)": [QY, E] — [QX, E] and is therefore an isomorphism. [
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The proof has the following useful corollary.

COROLLARY 89. If E is a Z-Q-spectrum, then E'=Fg¢(F\S°,E) is a
Z-Q-spectrum such that E is level equivalent to QE' (which is isomorphic to RE).

Colimits, h-fibrations, smash products with spaces, and fiber and cofiber sequences
are preserved by U, since they are specified in terms of levelwise constructions.
This implies the following result about the 7,-isomorphisms of Z-spectra.

ProrosiTION 8.10. Lemma 7.3 and Theorem 7.4 hold with P replaced by 2.
We have the following analogues of these results for stable equivalences.
LEMMA 8.11. A stable equivalence between Z-Q-spectra is a level equivalence.

Proof. This is formal. If f: E— E' is a stable equivalence of Z-Q-spectra,
then f*: [E',E] — [E,E] is an isomorphism. A map g: E' — E such that
gof=f"g=id is an inverse isomorphism to f in the level homotopy category.

THEOREM 8.12. (i) If f: X — Y is a stable equivalence of Z-spectra and A is
a based CW complex, then f ANid: X ANA — Y A A is a stable equivalence.

(') A map of Z-spectra is a stable equivalence if and only if its suspension is
a stable equivalence.

(i1) A wedge of stable equivalences of &-spectra is a stable equivalence.

(i) If i: A— X is an h-cofibration and stable equivalence of %-spectra and
f:A—Y is any map of &-spectra, then the cobase change j: Y — X U, Y is a
stable equivalence.

(iv) If i and i’ are h-cofibrations and the wvertical arrows are stable
equivalences in the comparison of pushouts diagram of Theorem 6.9(iv), then the
induced map of pushouts is a stable equivalence.

(v) If X is the colimit of a sequence of h-cofibrations X, — X, |, each of
which is a stable equivalence, then the map from the initial term X into X is a
stable equivalence.

i) If f: X—Y is a map of ZD-spectra and E is an Q-spectrum, there are
natural long exact sequences

-+ — [EX,E] — [Cf,E] — [Y,E] — [X,E] — [QCf,E] — - - -,
-+ — [EX,E] — [EFf,E]| — [Y,E]| — [X,E] — [Ff,E] — - --.

Proof. Under non-degenerate basepoint hypotheses, most of these results
follow directly from the elementary results about the level homotopy category in
Theorem 6.9. To obtain them in full generality, we make use of Proposition 8.8
and the results on 7,-isomorphisms of Theorem 7.4. Cofibrant &-spectra are non-
degenerately based by Theorem 6.5(v), and cofibrant approximations of general
9-spectra are level equivalences, hence . -isomorphisms, and hence stable
equivalences. Thus we can first use cofibrant approximation and Theorem 7.4 to
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reduce each statement to a statement about cofibrant Z-spectra and then quote
Theorem 6.9. The upshot is that statements about [X,Y] that hold for
non-degenerately based X and general Y also hold for general X and &-Q-spectra Y.

For (i), we see from Theorems 6.9(i) and 7.4(ii) that [X A A, E] is naturally
isomorphic to [X, F(A, E)] when E is a &Z-Q-spectrum, in which case F(A, E) is
also a Z-Q-spectrum. Thus f Aid is a stable equivalence. For (i’), Theorems
6.9() and 7.4(i") imply that [EX, E]=[X, QE] for all X when E is an Q-
spectrum, and (i’) follows in view of Corollary 8.9. Similarly, Theorems 6.9(ii)
and 7.4(ii) imply that the functor [—, E] converts wedges to products when E is
an Q-spectrum, and this implies (ii). Again, (vi) follows from Theorems 6.9(vi)
and 7.4(vi). We use (vi) to prove (iii) and (iv).

For (iii), cofibrant approximation gives a commutative diagram

i’ f'

X —— A — Y’

Lol

Xe——A—>Y
i

in which X', A’, and Y’ are cofibrant, the vertical arrows are level acyclic
fibrations, and the maps i’ and f' are h-cofibrations. By Theorem 7.4(iv), the
induced map of pushouts is a m,-isomorphism and thus a stable equivalence. By
the diagram, i’ is a stable equivalence, and it suffices to prove that the cobase change
j Y — X"u, Y is a stable equivalence. Thus we may assume without loss of
generality that the given A, X, and Y are cofibrant. We first deduce from the cofiber
sequence A — X — X /A that [X/A,E] =0. Since XU, Y/Y =X /A, we then
deduce that [V, E] — [X U, Y, E] is a bijection.

For (iv), we apply cofibrant approximation to the diagram of Theorem 6.9(iv)
to see that we may assume without loss of generality that it is a diagram of cofibrant
Z-spectra. A comparison of cofiber sequences shows that X/A — X'/A’ is a
stable equivalence, and then another comparison of cofiber sequences shows that
XU, Y — X"Uy, Y is a stable equivalence.

For (v), we apply cofibrant approximation to obtain a sequence of A-cofibrations
Jui Y, — Y, between cofibrant Z-spectra together with level acyclic
fibrations p,: Y, — X, such that p,,, oj, =i, o p,. Since the i, and p, are
stable equivalences, so are the j,. Let Y = colimY,. The map p: ¥ — X induced
by the p, is a level equivalence, and the lim'-exact sequence of Theorem 6.9(v)
implies that [V, E| — [Yy, E| and thus [X, E] — [X,, E| are isomorphisms.  [J

9. The stable model structure on Z-spectra

We retain the hypotheses on & given at the start of § 8. Definition 6.1 specifies
the level equivalences, level fibrations, level acyclic fibrations, g-cofibrations, and
level acyclic g-cofibrations in 2. Definition 8.3 specifies the stable equiva-
lences. The class of stable equivalences is closed under retracts and is saturated
(satisfies the two-out-of-three property for composites).

DErFINITION 9.1. Let f: X — Y be a map of Z-spectra. We say that:

(1) f is an acyclic g-cofibration if it is a stable equivalence and a
g-cofibration;
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(i) f is a g-fibration if it satisfies the RLP with respect to the acyclic
g-cofibrations;

(iii) f is an acyclic g-fibration if it is a stable equivalence and a g-fibration.

We shall prove the following result. In outline, its proof follows that of Hovey,
Shipley, and Smith [15] for symmetric spectra of simplicial sets, but there are
significant differences of detail.

THEOREM 9.2. The category 2% is a compactly generated proper
topological model category with respect to the stable equivalences, q-fibrations,
and g-cofibrations.

The set of generating g-cofibrations is the set FI specified in Definition 6.2. The
set K of generating acyclic g-cofibrations properly contains the set FJ specified
there. The idea is that level equivalences and stable equivalences coincide on
2-Q-spectra, by Lemma 8.11, and the model structure is arranged so that the
fibrant spectra turn out to be exactly the Z-Q-spectra. We add enough generating
acyclic g-cofibrations to FJ to ensure that the RLP with respect to the K-cell
complexes forces the adjoint structure maps of fibrant spectra to be weak equivalences.
Recall the maps A, from Definition 8.4 and the operation [] from (5.14).

DEerFINITION 9.3. Let M A, be the mapping cylinder of \,,. Then A\, factors as
the composite of a g-cofibration k,: F,,HS1 — M\, and a deformation
retraction r,: M\, —>FnSO. For n=0, let K, be the set of maps of the form
k,[1 i, where i € I. Let K be the union of FJ and the sets K, for n = 0.

We need a characterization of the maps that satisfy the RLP with respect to K.
The following definition is not quite standard, but is convenient for our purposes.

DEFINITION 9.4. A commutative diagram of based spaces
8

D—F

o

A—— B

f
in which p and g are Serre fibrations is a homotopy pullback if the induced map
D — A x E is a weak equivalence or, equivalently, if g: p~'(a) — ¢~ '(f(a)) is
a weak equivalence for all a € A.

PropoSITION 9.5. A map p: E — B satisfies the RLP with respect to K if and
only if p is a level fibration and the diagram

E,——QE,,,

(9.6) ml Pmﬂ

Bn - QBnJrl
o

is a homotopy pullback for each n = 0.
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Proof. Clearly p satisfies the RLP with respect to K if and only if p satisfies
the RLP with respect to FJ and the K, for n = 0. The maps that satisfy the RLP
with respect to FJ are the level fibrations. Thus assume that p is a level fibration
in the rest of the proof. By the definition of K,,, p has the RLP with respect to K,
if and only if p has the RLP with respect to k, [] /. By Lemma 5.16, this holds
if and only if 2% (k,, p,) has the RLP with respect to I, which means that
929 (k,, p,) is an acyclic Serre fibration. Since k, is a g-cofibration and p is a
level fibration, 2.9 (k,, p,) is a Serre fibration because the level model structure
is topological. We conclude that p satisfies the RLP with respect to K if and only
if p is a level fibration and 2 (k,, p.) is a weak equivalence for n=0. Let
Jn: FnSO — M\, be the evident homotopy inverse of r,: M\, —>FnSO. Then
99 (ky, pi) = 2 ((juNa)"s p.). This is a weak equivalence if and only if

29 (N p.): 29 (F,S°, E) — 25 (F,S°, B) X3S (FyirS',B) 9S(Fy1S',E)
is a weak equivalence. But this is isomorphic to the map
E, — B, Xqp, , QE,

and is thus a weak equivalence if and only if (9.6) is a homotopy pullback. [

COROLLARY 9.7. The trivial map F — x satisfies the RLP with respect to K if
and only if F is a 2-Q-spectrum.

CoRrROLLARY 9.8. If p: E— B is a stable equivalence that satisfies the RLP
with respect to K, then p is a level acyclic fibration.

Proof. Certainly p: E— B is a level fibration. We must prove that p is a
level equivalence. Let F = pil(*) be the fiber (defined levelwise) over the
basepoint. Since F — * is a pullback of p, it satisfies the RLP with respect to K
and is therefore a Z-Q-spectrum. Since p is acyclic, so is F — *. Therefore, by
Lemma 8.11, F is level acyclic. By the level long exact sequences, each
pn: E, — B,, induces an isomorphism of homotopy groups in positive degrees. To
deal with m,, observe that, in the homotopy pullback (9.6), the map Qp,
depends only on basepoint components and is a weak equivalence. Therefore p,, is
a weak equivalence as required. |

The g-cofibrations are the same for the stable as for the level model structure.
The essential part of the proof of the model axioms for the stable model structure
is to characterize the acyclic g-cofibrations, the g-fibrations, and the acyclic
g-fibrations. Observe that the small object argument applies to K since the
domains of the maps in K are compact by Lemma 5.7.

ProposITION 9.9. Let f: X — Y be a map in 9. Then:

(i) f is an acyclic g-cofibration if and only if it is a retract of a relative
K-cell complex;

(1) fis a q-fibration if and only if it satisfies the RLP with respect to K, and X
is fibrant if and only if it is a Z-Q-spectrum;

(iii) fis an acyclic g-fibration if and only if it is a level acyclic fibration.
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Proof. (i) Let f be a retract of a relative K-cell complex. Since the maps in K
are acyclic g-cofibrations, f is an acyclic g-cofibration by the closure properties of
the class of g-cofibrations given by the level model structure and the closure
properties of the class of stable equivalences given by Theorem 8.12. Conversely,
let f: X — Y be an acyclic g-cofibration. Using the small object argument,
factor f as the composite of a relative K-cell complex i: X — X' and a map
p: X' — Y that satisfies the RLP with respect to K. We have just seen that i is a
stable equivalence. Since f is a stable equivalence, so is p. By Corollary 9.8, p is
a level acyclic fibration. Since f is a g-cofibration, it has the LLP with respect to
p. Now a standard retract argument applies. There is a map g: ¥ — X' such that
gof=iand pog=id. Thus g and p are maps under X and f is a retract of the
relative K-cell complex i.

(ii) Since f satisfies the RLP with respect to K if and only if it satisfies the
RLP with respect to all retracts of relative K-cell complexes, this follows from (i)
and the definition of a g-fibration.

(iii) By the level model structure, a map is a level acyclic fibration if and only
if it satisfies the RLP with respect to the g-cofibrations, and this implies trivially
that it is a g-fibration. Thus, since a level equivalence is a stable equivalence, a
level acyclic fibration is an acyclic g-fibration. Conversely, an acyclic g-fibration
satisfies the RLP with respect to K, by (ii), and is therefore a level acyclic
fibration by Corollary 9.8. O

The proof that 2% is a model category. The definition of a g-fibration gives
one of the lifting axioms. The identification of the acyclic g-fibrations as the level
acyclic fibrations gives the other lifting axiom and the factorization of a map as a
composite of a g-cofibration and an acyclic g-fibration, via the level model
structure. It remains to prove that a map f: X — Y factors as the composite of an
acyclic g-cofibration and a g-fibration. Applying the small object argument to K,
we obtain a factorization of f as the composite of a relative K-cell complex
i:X — X' and a map p: X' — Y that satisfies the RLP with respect to K. By
the previous proposition, i is an acyclic g-cofibration and p is a g-fibration. U

The proof that 2% is topological. Let i:A— X be a g-cofibration and
p: E— B be a g-fibration. Since p is a level fibration, the map

IS, p.): DS (X, E) — TS (A, E) Xga.5 DS (X, B)

is a Serre fibration because the level model structure is topological. Similarly, if p
is acyclic, then p is level acyclic and 2.(i", p,) is a weak equivalence. We must
show that 2.7 (i", p,) is a weak equivalence if i is acyclic, and it suffices to show
this when i€ K. If i € FJ, this again holds by the result for the level model
structure. Thus suppose that i € k, [ I, say i =k, [1j. We have seen in the proof
of Proposition 9.5 that 2 (k,, p,) is a weak equivalence. Thus, since 7 is a
topological model category, 7 (j*, 2% (k,,p.),) is a weak equivalence. By
Lemma 5.16, this implies that 2.9 (i, p,) is a weak equivalence. O

The proof that 29 is proper. Since g-cofibrations are h-cofibrations and
g-fibrations are level fibrations, the following lemma generalizes the claim. O
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LeEmmA 9.10. Consider the following commutative diagram:

(1) If the diagram is a pushout in which i is an h-cofibration and f is a stable
equivalence, then g is a stable equivalence.

(i) If the diagram is a pullback in which j is a level fibration and g is a stable
equivalence, then f is a stable equivalence.

Proof. (i) The induced map X/A — Y /B is an isomorphism. We compare
the cofibration sequences [—, E| of Theorem 8.12(vi) for the cofibration sequences
A—X—X/A and B— Y — Y /B and apply the five lemma.

(ii) Dually, the induced map from the fiber of i to the fiber of j is an
isomorphism. We compare fibration sequences using Theorem 8.12(vi). ]

We have left one unfinished piece of business from the previous section.

The proof of Proposition 8.7. By Proposition 8.8, we need only show that a
stable equivalence f in 2% is a w,-isomorphism when 2% is 2, 4, or W' T .
Factor f as the composite of an acyclic g-cofibration and an acyclic g-fibration.
Since an acyclic g-fibration is a level acyclic fibration, it is a level equivalence
and therefore a . -isomorphism. We must show that an acyclic g-cofibration is a
w,-isomorphism. We first show that the maps in K are w,-isomorphisms. The
maps in FJ are inclusions of deformation retracts and are therefore w,-
isomorphisms. The maps k, [] i with i € FI specified in Definition 9.3 are also
w-isomorphisms. Indeed, by Lemma 8.6, the maps A\, and therefore the maps k,
are w,-isomorphisms. By Theorem 7.4(i), so are their smash products with based
CW complexes. By passage to pushouts and a little diagram chase, this implies
that the maps k,[] i are w,-isomorphisms. By Theorem 7.4, it follows that any
relative K-cell complex is a m,-isomorphism. Since the acyclic g-cofibrations are
the retracts of the relative K-cell complexes, the conclusion follows. O

In fact, we now see that, in our development of the stable model structure on
2% in these three cases, we can start out by defining the weak equivalences to be
either the stable equivalences or the w,-isomorphisms. We arrive at the same
acyclic g-cofibrations and acyclic g-fibrations either way.

10. Comparisons among P, L, &, and W' T

We now turn to the proofs that our various adjoint pairs are Quillen
equivalences. Write U: 9 — ¥ generically for the forgetful functor
associated to any of the inclusions ¥ € & of (8.1); the alert reader will notice
that the arguments apply more generally. As noted in Proposition 3.2, for each of
the inclusions ¢ = &, we have P o F,¢ =F7.

The characterizations of the g¢-fibrations and acyclic g-fibrations given
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by Propositions 9.5 and 9.9 directly imply the following lemma. Recall
Definition A.1.

LeEMMA 10.1. Each forgetful functor U: 9 — €% preserves q-fibrations
and acyclic g-fibrations. Therefore each (P, U) is a Quillen adjoint pair.

We wish to apply Lemma A.2(iii) to demonstrate that these pairs are Quillen
equivalences. For that, we need to know that U creates the stable equivalences in
its domain category. This is false for U: . — & because the A\, are stable
equivalences of symmetric spectra but the UN, are not stable equivalences (or
equivalently, m,-isomorphisms) of ./ -spectra. This makes a direct proof of the
Quillen equivalence between .4 -spectra and symmetric spectra fairly difficult;
compare [15, §4]. However, this is the only case in which the condition fails.

LEMMA 10.2. The forgetful functors
Uu:s9¥ —2 U S —X¥, and U:WT —IF
and their composites create the stable equivalences in their domain categories.

Proof. This is immediate in the first and third cases, since there the stable
equivalences coincide with the 7 -isomorphisms in both the domain and codomain
categories. To prove that U: #&¥ — L& creates the weak equivalences of
orthogonal spectra, let f: X — Y be a map of orthogonal spectra such that Uf is
a stable equivalence and let f': X’ — Y’ be a fibrant approximation of f. Then
Uf" is a stable equivalence between symmetric Q-spectra and thus a m,-
isomorphism, and it follows that f is a m,-isomorphism. |

Thus U: 99 — €& creates the stable equivalences in 2% whenever the
stable equivalences and 7,-isomorphisms coincide in Z.%. In these cases, we also
have the following result about the unit #: Id — UP of the adjunction.

LemMma 10.3. Consider U: 2 — 6 and P: 6 — 2. If the stable
equivalences and w-isomorphisms coincide in 2%, then n: X — UPX is a
stable equivalence for all cofibrant €-spectra X.

Proof. Since the functors P and U preserve colimits, i-cofibrations, and smash
products with based spaces and since cofibrant %-spectra are retracts of FI-cell
%-spectra, we see from Theorem 8.12 that it suffices to prove the result when
X =F,S", where n=0. Let ,°: F,/S" — F{ S° be adjoint to the identity map
S" — 8" = (FyS°)(n). Then ! is the composite of the maps L™\, for
0 <m < n. These maps are stable equivalences by Lemma 8.6; moreover, with %
replaced by &, they are w,-isomorphisms. Since U preserves ,-isomorphisms and
w,-isomorphisms in % are stable equivalences, the conclusion follows from the
commutative diagram

%
Fls"— M Ffs®=s,

1| |7

UF,;@Sn —> [I_JFOQSO = S(g
Uy,

in which the right-hand arrow 7 is an isomorphism. O
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THEOREM 10.4. The categories of N -spectra and orthogonal spectra, of
symmetric spectra and orthogonal spectra, and of orthogonal spectra and
W -spaces are Quillen equivalent.

Proof. This is immediate from Lemmas A.2(iii), 10.1, 10.2, and 10.3. O

CoROLLARY 10.5. The categories of N -spectra and symmetric spectra are
Quillen equivalent.

Proof. We have the following pair of adjoint pairs:

P P
P Yy JL.
U U
The composite pair (PP, UU) and the second pair (P, U) are Quillen
equivalences. By Lemma A.2, so is the first pair (P, U). O

Proof of Corollary 0.2. The result asserts that a map f: X — Y of cofibrant
symmetric spectra is a stable equivalence if and only if Pf is a w,-isomorphism
of orthogonal spectra. By the naturality of », Lemma 10.3 implies that f is a
stable equivalence if and only if UPf is a stable equivalence. Since U creates the
stable equivalences of orthogonal spectra, this gives the conclusion. O

We now turn to the proof of Theorem 0.3, which asserts that our induced
equivalences of homotopy categories preserve smash products. In the comparisons
that do not involve &, P is strong symmetric monoidal and the conclusion is
formal (see Lemma A.3). Of course, since the equivalence of homotopy categories
induced by [P preserves smash products, so does the inverse equivalence induced by
U. We bring prespectra into the picture and complete the proof in the next section.

11. CW prespectra and handicrafted smash products

For historical continuity, we bring the abstract theory down to earth by relating
it to the classical theory of CW prespectra and handicrafted smash products, due
to Boardman [4] and Adams [1].

Classically, a CW prespectrum is a sequence of based CW complexes X, and
isomorphisms from XX, onto a subcomplex of X,,(; we may regard these
isomorphisms as inclusions of subcomplexes. We have another such notion, which
actually applies equally well to Z-spectra for & = A", £, .#, or # . We define a
CW Z-spectrum to be an FI-cell complex whose cells are attached only to cells
of lower dimension, where we define the dimension of a cell F,D! to be m — n.
Of course, a CW Z-spectrum is cofibrant. The following description of .4'-
spectra, which is implied by Lemma 1.6, makes it easy to compare these two
notions. Recall that, for a based space A, (F,A), =A AS?™" where S™ = x if
m<0. The map N,: F,, | XA— F,A is the adjoint of the identity map
YA — (F,A),, . For an A -spectrum X, let X (n) be the evident ./ -spectrum
such that

X if g=<n,

X(n), = { I

i "x, if g>n,
and observe that X (0) = Fj X,.
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LEmMA 11.1. An A -spectrum X is isomorphic to the colimit of the right
vertical arrows in the inductively constructed pushout diagrams

Ny
Fn+lEXn Fan X<n>

(11.2) Fmgnl N l )
n+

Fn+ 1 Xn+ 1
LEMMA 11.3. A CW prespectrum X is a CW AN -spectrum and is thus cofibrant.

Proof. For a CW complex A, F, A is easily checked to be a CW _/"-spectrum,
naturally in cellular maps of A; moreover, N\,: F,,, | XA — F, A is cellular. Just
as for spaces, a base change of a cellular inclusion of CW ./"-spectra along a
cellular map is a cellular inclusion of CW ._4"-spectra, and a colimit of cellular
inclusions of CW _/"-spectra is a CW _/"-spectrum. |

As is made precise in the following lemma, the converse holds up to homotopy.

LEmMA 11.4. If X is a cofibrant N -spectrum, then the X, have the homotopy
types of CW complexes and the o,: XX, — X, .1 are h-cofibrations. If X is any
prespectrum such that the X, have the homotopy types of CW complexes and the
g, are h-cofibrations, then X has the homotopy type of a CW prespectrum.

Proof. The first statement is a direct level-wise inspection of definitions
when X is an Fl-cell ./ -spectrum, and the general case follows. The second
statement is classical, but we give a proof in our context. Since the maps
F,,,0, in (11.2) are h-cofibrations, so are the right vertical arrows in
(11.2). Therefore the colimit X is homotopy equivalent to the corresponding
telescope. We can construct based CW complexes Y,, homotopy equivalences
fu: Y, — X,, and isomorphisms onto subcomplexes 7,:YXY, — Y, ; such
that o,Lof,=f,. 107, Then Y=colimY(n) is a CW prespectrum, and
Y=telY(n)=telX(n). O

This implies the following observation, which is unexpected from a model-
theoretic point of view.

ProposITION 11.5. Let X be a cofibrant 9-spectrum, where & =X, £, or W',
Then the underlying prespectrum UX has the homotopy type of a CW prespectrum
and thus of a cofibrant N -spectrum.

Proof. For a finite CW complex A, the spaces (F,’A), have the homotopy
types of CW complexes. Therefore, for an FI-cell spectrum X and thus for any
cofibrant &-spectrum X, each X, has the homotopy type of a CW complex. The
conclusion follows from Lemma 11.4. U

We now fix a choice of a naive or ‘handicrafted’ smash product of prespectra.
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DErFINITION 11.6. Define the (naive) smash product of prespectra X and Y by
(XAY)2n:XnAYn and (XAY)ZnJrl:E(XnAYn)’

with the evident structure maps.

ProrosiTiON 11.7.  For any cofibrant prespectrum X, the functor X ANY of Y
preserves w,-isomorphisms.

Proof. Each X, has the homotopy type of a CW complex; hence each functor
X, AY preserves m,-isomorphisms by Theorem 7.4(i). The groups m.(X A Y) are

T, (X AY) = colim, 7y, ,(X, A Y,)
= colim,, , Ty ntq(Xm AY,)
= colim,, colim,, 7, , 1 4(X,, A Y,)
= colim,,, m,, | ,(X,, AY),

and the conclusion follows. O

We must explain the relationship between the naive smash product and the
smash product of Z-spectra for ¥ =X, 4, and #". The definition of the latter
given in §21 implies that there are canonical maps X,, AY, — (X AgY),4n-
These maps for m = n and the structure maps Z(X AgY ), — (X AgY )y, of
the prespectrum U(X AgY) specify maps

(11.8) 6, (UX AUY), — U(X A5 Y),.

As would also be true for any other choice of handicrafted smash product of
prespectra, these maps do not form a map of prespectra, due to permutations of
spheres. However, there are natural homotopies ¢, 0, = o,L¢,. That is, ¢ is a
‘weak map’ of prespectra. This is the kind of map that appears in the classical
representation of homology and cohomology theories on spaces. The homotopy
groups of prespectra are functorial with respect to weak maps, and the ¢ behave
as follows.

PrROPOSITION 11.9. Let & = % or 9 = W . For a cofibrant &-spectrum X and
any @D-spectrum Y, ¢: UX AUY — U(X AgY) is a w,-isomorphism. The analogue
for symmetric spectra is false.

Proof. We shall prove in Proposition 12.3 below that the functor X AgY of Y
preserves ,-isomorphisms. Applying this to a cofibrant approximation of ¥ and
using Propositions 11.7 and 11.5, we see that we may assume that both X and Y
are cofibrant. Passing to retracts, we see that we may assume that X and Y are
Fl-cell complexes. By double induction and passage to suspensions, wedges,
pushouts, and colimits, it suffices to prove the result when X :F,,‘f/ S and
Y=F78° Here X AgY=F, ,S° by Lemma 1.8 and FZ =PF?”. We have an
evident weak map

¢: F)S°AF/S—F) ,S°
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that sends S " AS7" to §29"™ " at level 2¢ and is a m,-isomorphism. Again,
it is due to permutations of spheres that this is only a weak map. The following
diagram of weak maps of prespectra commutes:

FZS°AF7S° ¢ Fr.,S°

] |

UPF.S° AUPF”S° T UPF..,s°

The maps 7 and therefore n A 7 are 7,-isomorphisms, by Lemma 10.3 and Proposition
11.7; hence the bottom map ¢ is a 7,-isomorphism. In the case of symmetric spectra,
this argument does not apply and, by inspection of definitions as in Lemma 8.6, the
source and target of the bottom map ¢ have different homotopy groups. U

Proof of Theorem 0.3. The maps ¢ of (11.8) together with the natural
homotopies ¢, 0, =0,L¢, prescribe what May and Thomason call a
‘preternatural transformation’ [31, A.1]. They observe [31, A.2] (see also [20,
1.7.6]) that use of the ‘cylinder construction’ K gives a natural commutative
diagram of weak maps

KUX) AUT)) -2 kU A7)

‘| v

[U(X)/\[U(Y)T»[U(X/\S Y)

in which the ¢ are natural w,-isomorphisms of prespectra and K¢ is a natural
map of prespectra. When 9 = .4 or ¥ = W', ¢ is a w,-isomorphism, and hence
so is K¢. On passage to homotopy categories, we can invert ¢ and conclude that
the equivalence induced by U: 2% — £ preserves smash products. Because the
equivalence induced by U: #¥ — L.¥ also preserves smash products, it follows
formally that the equivalence induced by U: X.¥ — £ preserves smash products.
Proposition 11.9 shows that the equivalence is not given in the most naive way.

O

12. Model categories of ring and module spectra

So far in our work, we have largely ignored the main point of the introduction
of categories of diagram spectra, namely the fact that the category of Z-spectra is
symmetric monoidal under its smash product Ag when the sphere Z-space S is a
commutative Z-monoid. This holds for all of the categories except £ displayed in
the Main Diagram in the introduction. We are writing A to avoid confusion with
smash products with spaces and as a reminder that the category . of Z-spectra
coincides with the category of S-modules.

It is now an easy matter to obtain (stable) model structures on categories of
2-ring and module spectra when & is X, .4, or #'; we write & generically for
any of these three categories. As we indicate at the end of the section, most of the
proof of the following theorem can be quoted from the axiomatic treatment of
Schwede and Shipley [37].
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THEOREM 12.1. Let R be a Z-ring spectrum, where 9 =X, S, or W .

(1) The category of left R-modules is a compactly generated proper topological
model category with weak equivalences and q-fibrations created in 9.5

(i) If R is cofibrant as a 9D-spectrum, then the forgetful functor from
R-modules to Z-spectra preserves q-cofibrations; hence every cofibrant R-module
is cofibrant as a Z-spectrum.

(1) If R is commutative, the symmetric monoidal category 9%, of R-modules
also satisfies the pushout-product and monoid axioms.

(iv) If R is commutative, the category of R-algebras is a compactly generated
right proper topological model category with weak equivalences and q-fibrations
created in 5.

(v) If R is commutative, every gq-cofibration of R-algebras whose source is
cofibrant as an R-module is a g-cofibration of R-modules; hence every cofibrant
R-algebra is cofibrant as an R-module.

(vi) If f: Q — R is a weak equivalence of &-ring spectra, then restriction and
extension of scalars define a Quillen equivalence between the categories of
Q-modules and of R-modules.

(vii) If f: Q — R is a weak equivalence of commutative &-ring spectra, then
restriction and extension of scalars define a Quillen equivalence between the
categories of Q-algebras and of R-algebras.

In the language of [37], we shall prove that 2.9 satisfies the monoid and
pushout-product axioms. We shall make repeated use of the following observation.
Recall that, by Lemma 5.5, a g-cofibration is an h-cofibration.

LEmMma 12.2. If i: X — Y is an h-cofibration of Z-spectra and Z is any
D-spectrum, then i Agid: X A¢Z — Y AgZ is an h-cofibration.

Proof. Smashing with Z preserves colimits and smash products with spaces
and so preserves the relevant retraction. ]

The following result is the heart of the proof of the monoid and pushout
product-axioms and thus of the proof of Theorem 12.1.

PROPOSITION 12.3.  For any cofibrant Z-spectrum X, the functor X Ag (—)
preserves w,-isomorphisms and stable equivalences.

Proof. Of course, when & = .4 or & = ¥ , w,-isomorphisms are the same as
stable equivalences. We shall prove the result when X = F,S" shortly. Using the
fact that F,A = (F,S°) A A together with Theorems 7.4 and 8.12, we deduce first
that the conclusion holds when X = F,, S % next that it holds when X = F,A for a
finite CW-complex A, and then that it holds when X is any FI-cell complex.
Passage to retracts gives the general case. We treat the case X = F,S" separately
for symmetric spectra and for orthogonal spectra and ¥ -spaces.

Symmetric spectra. Using Example 4.2, Lemma 1.8, and (22.2) to write out
the relevant smash product, we find that, for g = n,

(FaS"AsY)(q) =X, Ax, , (S"AY(q—n))

= (5,/Z, ) A(STAY(g—n).
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The second isomorphism is obtained by writing the free right ¥, _,-set X, as a
disjoint union of orbits ¥,_, and is only an isomorphism of spaces, not of X -
spaces. Even this much depends heavily on the fact that the X, are discrete. We
choose orbit representatives one ¢ at a time, using the chosen representatives for
copies of X, , in ¥, as representatives for some of the copies of X, _, in
L, +1- We find by passage to colimits over g that 7, (F, S" AgY) is naturally the sum
of countably many copies of =,(Y). Thus the functor F,S" AgY preserves ,-
isomorphisms. To show that it preserves stable equivalences, we now see by
application of functorial cofibrant approximation in the level model structure that the
conclusion holds for stable equivalences in general if it holds for stable equivalences
between cofibrant symmetric spectra. For cofibrant Y and any E, we have

[F\S" As Y. E] = Y. Fs(F, ", E)]

naturally in Y. Since Fs(F,S", E) = R"E is a symmetric Q-spectrum by the proof
of Proposition 8.8, the conclusion follows.

Orthogonal spectra and W -spaces. Let Y be either an orthogonal spectrum or
a ¥ -space. Here we give a proof that does not require an explicit description of
the smash product F,,S" Ag Y. By Theorem 7.4(vi) and Lemma 12.2, it suffices to
prove that m,(F,S" AgY) =0 if 7, (Y)=0. Let v,: F,S" — FyS° =S be the
canonical w,-isomorphism (as in the proof of Lemma 10.3). Let
acm,(F,S" AgY) and choose a representative map f: F,S?"" — F,S" AgY.
Since 7, (Y) =0, we can choose r large enough that the composite

(Yo Agid) o f: F, 817" — F,S" AgY — SAgY =Y
is null homotopic. Let g = (y, Agid) o f and let g’ be the map
idAgg: F, ., S" 9" =F,S" AgF, 87" — F,S" AgY

obtained from g by smashing with F,S”. Then g’ is also null homotopic. Now let
f' be the composite

fo(yaAsid): Foy S" 9 =F, 8" AgF, ST — F,S7"" — F,S" AgY.

Then f' also represents o. We show that o = 0 by showing that the maps f’ and
g’ are homotopic. We can rewrite f' and g’ as the composites of the map

idAgf: F, ,S" 9" =F,8" AgF, 87" — F,S" AgF,S"AgY

and the maps F,S" AgF,S" AgY — F,S" Ag Y obtained by applying v, to the
first or second factor F,S". Thus, it suffices to show that the maps id A vy, and
Y Aid from F, 8" AgF,S" to F,S" are homotopic. So far the argument has been
identical for orthogonal spectra and for ¥ -spaces. We prove this last step for
orthogonal spectra. The conclusion for ¥ -spaces follows upon application of the
functor P. For orthogonal spectra, the adjoints

S — (Fy 8" )20 = 0(20) 4 Aoy S = 0(2n)/O0(n); A S*"

of the two maps send s to 1As and to 7As, where 7€ 0(2n) is the
evident transposition on R” x R". These maps are homotopic since O(2n)/0(n)
is connected. 0

We shall later need the following consequence of this result.
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COROLLARY 12.4. When @ =9 or @ =W, v Agid: FLtS*AgY — Y is a
w,-isomorphism for any Z-spectrum Y.

Proof. Letq: X — Y be a 7,-isomorphism, where X is cofibrant. By Proposition
123, vy Agidy and id Aggq: Fj sk Ag X — Fy sk AgY are w,-isomorphisms.
Since g o (yx Agidy) = (yx Agidy) o (id Ag g), this gives the conclusion. O

ProposiTION 12.5 (Monoid axiom). For any acyclic g-cofibration i: A — X of
G -spectra and any Z-spectrum Y, the map i Agid: AANgY — X AgY is a stable
equivalence and an h-cofibration. Moreover, cobase changes and sequential
colimits of such maps are also weak equivalences and h-cofibrations.

Proof. Let Z =X /A and note that Z is homotopy equivalent to the cofiber Ci.
Then Z is an acyclic cofibrant &-space. Since the functor — AgY preserves
cofiber sequences, Theorem 8.12(vi) implies that it suffices to prove that Z AgY is
acyclic. Let j: Y — Y be a cofibrant approximation of Y. By Proposition 12.3,
id; Agj is a stable equivalence. Thus, we may assume that Y as well as Z is
cofibrant. Here Proposition 12.3 gives the conclusion since * — Z is a stable
equivalence and * AgY = x. The last statement holds since cobase changes and
sequential colimits of maps that are h-cofibrations and stable equivalences are
h-cofibrations and stable equivalences, by Theorem 8.12. O

For maps i: X — Y and j: W — Z of Z-spectra, we have the map
ll:‘j (Y/\S W) UX/\SW (X/\SZ) — Y/\SZ
of (5.17). By Lemma 6.6, if i and j are g-cofibrations, then so is i [] j.

ProrosiTION 12.6 (Pushout-product axiom). If i: X — Y and j: W — Z are
g-cofibrations of 9-spectra and i is a stable equivalence, then the gq-cofibration
i[dj is a stable equivalence.

Proof. By the monoid axiom, i Agid: X AgZ — Y AgZ is a stable equiva-
lence for any Z. By Theorem 8.12(iii) (or 7.4(iii)), any cobase change of an
h-cofibration that is a stable equivalence is a stable equivalence. It is immediate
from the definition of i [] j that its composite with the cobase change of i Agidy
along idy Ag j is i Agidy. Therefore i [] j is a stable equivalence. O

Observe that the unit S of the smash product of Z-spectra is cofibrant.

Proof of Theorem 12.1. Most of this is given by the general theory of
Schwede and Shipley [37], and we focus on (i) and (iv). For these model
structures, we are thinking of a variant of the theory of [37] that is based on
Proposition 5.13. The generating g-cofibrations and acyclic g-cofibrations are
obtained by applying the free R-module functor R Ag (—) or the free R-algebra
functor T to the generating g-cofibrations and acyclic g-cofibrations of Z-spectra.

Here TX =\/;=oR Ag XY, The defining adjunctions for the functors R Ag (-)
and T imply that, if A is a compact Z-spectrum, then RAgA is a compact
R-module and TA is a compact R-algebra, in the sense of Definition 5.6.

The pushout-product and monoid axioms allow verification of (i) and (ii) of
Proposition 5.13. That is, the sets of generating g-cofibrations and generating
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acyclic g-cofibrations satisfy the Cofibration Hypothesis 5.3, and the relative cell
complexes generated by the latter are stable equivalences. As in Lemma 5.5, a relative
(R Ag FI)-cell or (R Ag K)-cell R-module is an h-cofibration of R-modules and thus
an h-cofibration of &-spectra. Arguing as in [11, VIL.3.9 and 3.10], with a slight
elaboration to deal with maps of K not in FJ, the same is true for relative
TFI-cell or TK-cell R-algebras. This gives the Cofibration Hypothesis 5.3.

The monoid axiom implies directly that a relative R Ag K-cell complex is a
stable equivalence. This gives the model structure in (i), and it is proper and
topological by the same proofs as for the stable model structure on Z2.%. The
second statement of (i) holds since the right adjoint Fg(R, —) to the
forgetful functor preserves acyclic g-cofibrations by the adjoint form of the
pushout-product axiom.

The proof that relative T K-cell complexes are stable equivalences and the proof
of (v) require the combinatorial analysis of pushouts (which are amalgamated free
products) in the category of R-algebras that is given in [11, VIL.6.1] and [37, 6.2].
That the model structure is right proper and topological is inherited from 2.7
The role of iterated smash products in the specification of T makes it clear that
this category cannot be expected to be left proper.

For (vi) and (vii), the following generalization of Proposition 12.3 verifies a
hypothesis that allows us to quote the general results of [37]. |

ProrosiTION 12.7.  For a cofibrant right R-module M, the functor M A N of
N preserves w,-isomorphisms and stable equivalences.

Proof. Tt suffices to prove the result when M is an (FI AgR)-cell R-module.
As in the proof of Proposition 12.3, we see by induction up the cell filtration that
it suffices to prove the result when M = F,A AgR for a based CW complex A.
Then M AR N =F,A AgN and the result holds by Proposition 12.3. |

13. Comparisons of ring and module spectra

We here prove Theorems 0.4 and 0.5 and Corollary 0.6, which compare various
categories of ring and module diagram spectra. We treat the comparisons between
structured symmetric and orthogonal spectra; the comparisons between structured
orthogonal spectra and # -spaces are proven in exactly the same way.

Proof of Theorem 0.4. The functors P and U between symmetric and
orthogonal spectra preserve ring spectra, and they restrict to an adjoint pair
relating the categories of symmetric and orthogonal ring spectra. This is a Quillen
adjoint pair since, in both cases, the forgetful functor to Z-spaces creates the
weak equivalences and g-fibrations. Since the underlying symmetric spectrum of a
cofibrant symmetric ring spectrum is cofibrant, by Theorem 12.1(v), the restricted
pair is a Quillen equivalence by Lemma A.2(iii). O

Proof of Theorem 0.5. For a symmetric ring spectrum R, (P, U) induces a
Quillen adjoint pair between the categories of R-modules and PR-modules. If R is
cofibrant, then R and all cofibrant R-modules are cofibrant as symmetric
spectra, by Theorem 12.1, and the restricted pair is a Quillen equivalence by
Lemma A.2(iii). O
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Proof of Corollary 0.6. For an orthogonal ring spectrum R, the functor U from
R-modules to UR-modules has left adjoint the functor P(—) Apyg R. Again, this
is a Quillen adjoint pair. Let v: Q — UR be a cofibrant approximation. Since U
creates stable equivalences, the adjoint y: PQ — R is a stable equivalence. We
have the following commutative diagram of right adjoints in Quillen adjoint pairs
relating categories of modules:

~

Mg —— g

(13.1) ”JJ lu

eﬂQ <—*eﬂ[UR
Y

The left arrow U and the arrows induced by the stable equivalences y and 5 are
the right adjoints of Quillen equivalences, by Theorems 0.5 and 12.1(vi), and
hence so is the right arrow U. ]

14. The positive stable model structure on &-spectra

We return to the context of § 8, letting & be any A", X, ., or # . In the last
three cases, we seek a model category of commutative &-ring spectra. However,
because the sphere Z-spectrum is cofibrant, the stable model structure cannot
create a model structure on the category of commutative &-ring spectra. A fibrant
approximation of S as a commutative Z-ring spectrum would be an Q-spectrum
with zeroth space a commutative topological monoid weakly equivalent to 0s°.
That would imply that QS° is weakly equivalent to a product of Eilenberg—
Mac Lane spaces. This is a manifestation of Lewis’s observation [19] that one cannot
have an ideal category of spectra that is ideally related to the category of spaces.

Thus, following an idea of Jeff Smith, we modify the stable model structure in
such a way that Sy is no longer cofibrant. This is very easy to do. Basically, we
just modify the arguments of §§6, 8, 9 by starting with the level model structure
relative to /" — {0} rather than relative to /.

We define positive classes of maps from the classes of maps specified in
Definition 6.1 by restricting to levels n >0 in (i) and (ii) there. We obtain further
positive classes defined in terms of these positive classes exactly as in Definition
9.1. We obtain sets of maps F "1, F*J, and K* by omitting the maps with n =0
from the sets FI, FJ, and K specified in Definitions 6.2 and 9.3. We say that a
Z-spectrum X is a positive Z-Q-spectrum if the structure maps o: X, — QX,,
of its underlying prespectrum are weak equivalences for n>0. With these
definitions, we have the following results.

THEOREM 14.1. The category 9 is a compactly generated proper topo-
logical model category with respect to the positive level equivalences, positive
level fibrations, and positive level g-cofibrations. The sets F1 and F*J are the
generating sets of positive g-cofibrations and positive level acyclic g-cofibrations.
The positive q-cofibrations are those q-cofibrations that are homeomorphisms at
level O.
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Proof. Since the model structure we have specified is the level model structure
relative to /" — {0}, only the last statement is not part of the relative version of
Theorem 3.4. The last statement follows from the fact that a map is a positive
g-cofibration if and only if it is a retract of a relative F "I-cell complex and the
observation that a relative F/-cell complex is a homeomorphism at level 0 if and
only if no standard cells F;i occur in its construction. O

THEOREM 14.2. The category 9 is a compactly generated proper topo-
logical model category with respect to the stable equivalences, positive q-
fibrations, and positive g-cofibrations. The sets FI and K™ are the generating
positive g-cofibrations and generating positive acyclic q-cofibrations. The positive
fibrant 9-spectra are the positive 9-Q-spectra. When 2 =X, 4, or W', the
pushout-product and monoid axioms are satisfied.

For the proof, we need a characterization of the stable equivalences in terms of
the positive level model structure. Let [X, Y]" denote the set of maps X — Y in
the homotopy category associated to the positive level model structure.

LemMA 14.3.  For 2-Q-spectra E, [X, E|" is naturally isomorphic to [X, E].

Proof. Let g: X' — X be a cofibrant approximation to X in the positive level
model structure. Then ¢*: [X,E]" — [X’, E]" is an isomorphism. Since ¢ is a =,-
isomorphism and thus a stable equivalence by Proposition 8.8, ¢*: [X, E] — [X', E]
is also an isomorphism. However, since X " is cofibrant in both model structures,
X El=7X"E)=X",E]". O

PropoSITION 14.4. A map f: X — Y is a stable equivalence if and only if
f [V, E]t — [X, E|" is a bijection for all positive Z-Q-spectra E.

Proof. First, let f be a stable equivalence and E be a positive &-Q-spectrum.
Construct RE as in the proof of Proposition 8.8. Then RE is a &-Q-spectrum and the
natural map £ — RE is a positive level equivalence. By application of Lemma
143 to RE, f*: [Y, E]" — [X, E]" is a bijection since f*: [Y, RE] — [X, RE] is a
bijection. Since a Z-Q-spectrum is a positive Z-Q-spectrum, the converse
implication is immediate from Lemma 14.3. U

From here, Theorem 14.2 is proven by the same arguments as for the stable model
structure, with everything restricted to positive levels. Its last statement implies
the following analogue of Theorem 12.1 for the positive stable model structure.

THEOREM 14.5. Parts (i), (iii), (iv), (vi), and (vii) of Theorem 12.1 are also
valid for the positive stable model structure on 9% for & =X, 4, or W

Parts (ii) and (v) of Theorem 12.1, concerning g-cofibrations, do not apply here
since S is not cofibrant. However, since we have both model structures on hand, this
is not a serious defect. For example, parts (vi) and (vii) in the previous theorem no
longer follow directly from [37]. Rather, they follow from parts (vi) and (vii) of
Theorem 12.1 and the following comparison result, whose proof is immediate.
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ProPOSITION 14.6. The identity functor from 29 with its positive stable
model structure to 2 with its stable model structure is the left adjoint of a
Quillen equivalence. It restricts to a Quillen equivalence on the category of
9-ring spectra, on the category of left modules over a Z-ring spectrum, and on
the category of algebras over a commutative 9-ring spectrum.

REMARK 14.7. The proofs in the previous section show that Theorems 0.1, 0.4,
and 0.5 remain valid when reinterpreted in terms of the positive stable model
structures. The essential point is that, since these structures have fewer cofibrant
objects, verification of the hypothesis of Lemma A.2(iii) for the stable model
structures is more than enough to verify the hypothesis for the positive stable
model structures.

15. The model structure on commutative -ring spectra

We prove the following two theorems. Let & =X or & = .# throughout this
section. To clarify algebraic ideas, we refer to Z-ring spectra as ‘S-algebras’. Let
C be the monad on Z-spectra that defines commutative S-algebras. Thus
CX=Vi=o X(i)/Ei, where X ) denotes the ith smash power, with xO =5

THEOREM 15.1. The category of commutative S-algebras is a compactly
generated proper topological model category with q-fibrations and weak equiva-
lences created in the positive stable model category of Z-spectra. The sets CF "1
and CK™ are the generating sets of q-cofibrations and acyclic q-cofibrations.

THEOREM 15.2. Let R be a commutative S-algebra.

(1) The category of commutative R-algebras is a compactly generated proper
topological model category whose weak equivalences, q-fibrations, and q-
cofibrations are the maps whose underlying maps of commutative S-algebras are
weak equivalences, q-fibrations, and g-cofibrations.

() If f: Q— R is a weak equivalence of commutative S-algebras, then
restriction and extension of scalars define a Quillen equivalence between the
categories of commutative Q-algebras and commutative R-algebras.

Exactly as in algebra, the category of commutative R-algebras is isomorphic to
the category of commutative S-algebras under R. Therefore the model structure in
part (i) is immediate from the model structure in the category of commutative
S-algebras [9, 3.10]. The sets RAgCF "I and R AgCK™ are the generating sets
of g-cofibrations and acyclic g-cofibrations. As in algebra, the smash product Ag
is the coproduct in the category of commutative S-algebras. Thus the maps in
these sets are g-cofibrations of commutative S-algebras because they are
coproducts of g-cofibrations of commutative S-algebras with the identity map of
R. In both theorems, evident adjunctions show that the domains of the maps in
our generating sets are compact. By Propositions 5.1, 5.2, and 5.13, the following
two lemmas give the model structure in Theorem 15.1.

LEMMA 15.3. The sets CF I and CK ™" satisfy the Cofibration Hypothesis 5.3.

Lemma 15.3 directly implies that the sets RAgCF I and RAgCK ™ satisfy
the Cofibration Hypothesis in the category of commutative R-algebras. Indeed, the
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right vertical arrow in a pushout diagram
RAgCX —— A

|

RAsCY——B
of commutative R-algebras can be identified with the right vertical arrow in the

pushout diagram
CX—A

|

CY——B

of commutative S-algebras. The point is that, as for commutative monoids in any
symmetric monoidal category, the pushout of a diagram R’ «— R —R" of

commutative R-algebras is the smash product R’ A R”.

LEMMA 15.4. Every relative CK *-cell complex is a stable equivalence.

We single out for emphasis the key step of the proof of Lemma 15.4. It is the
analogue for symmetric and orthogonal spectra of [11, IIL.5.1] for the S-modules
of Elmendorf, Kriz, Mandell, and May. We do not know whether or not
the analogue for # -spaces or % -spaces holds, and it is for this reason that we do
not have results for commutative rings in those cases. It is an insight of Smith
that restriction to positive cofibrant symmetric spectra suffices to obtain the
following conclusion.

LEMMA 15.5. Let K be a based CW complex, X be a &-spectrum, and n > 0.
Then the quotient map

¢: (EZis Ag, (F,K)) As X — ((F,K)/E0) AsX
is a level homotopy equivalence. For any positive cofibrant &-spectrum X,
q: E2i+ AE, X(I) —)X<l)/El
is a T,-isomorphism.
Proof. We give the details for ¥ = .#. The result for & = X is proven by the

same argument, but with orthogonal groups replaced by symmetric groups. By
Example 4.4, Lemma 1.8, and inspection of coequalizers,

(FaK)" AsX)(a) = 0(a) s Aogg—niy (K AX(g —ni).
The action of o€ X; is to permute the factors in K% and to act through
o®id,_,; on O(g), where o € O(ni) permutes the summands of R™ = (R")".
Since E; acts on O(q) as a subgroup of O(ni), the action commutes with the
action of O(g — ni). Therefore, passing to orbits over £;, we have
(F,K)V/Z; AsX)(g) = O(q)4 AL, x0(q—ni) (K AX(q—ni)).

Similarly,

(ETiy Az, (F,K)Y) AsX)(g) = (EZix 0(q)) 1 As,xog-ni) (K AX(g—ni)),
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The quotient map EX,; X O(q) — O(q) is a (X; X O(gq — ni))-equivariant homo-
topy equivalence since O(q) is a free (X;xO(q— ni))-space that can be
triangulated as a finite (X, x O(g — ni))-CW complex. The first statement follows.
For the second statement, we may assume that X is an F FI-cell spectrum, and the
proof then is the same induction up the cellular filtration as in the proof of
(11, 1L5.1]. 0

The first statement has the following consequence.

LEMMA 15.6. Let K be a based CW complex and let n > 0. Then the functor
CF,K Ag (=) of @-spectra preserves stable equivalences.

Proof. By induction up the cellular filtration of EX,., the successive
subquotients of which are wedges of copies of L;, AS", and use of results in
§8, the functor EX,; | Ay (—) preserves stable equivalences. O

Similarly, the second statement implies the following result.

LEMMA 15.7. The functor C preserves stable equivalences between positive
cofibrant 9-spectra. In particular, each map in CK™ is a stable equivalence.

From here, the proofs of Lemmas 15.3 and 15.4 are analogous to the proofs of
corresponding results about S-modules in [11]. We shall not give details of
arguments that are essentially identical. For the Cofibration Hypothesis 5.3, we
record the following result, whose proof is the same as in [11, XII.2.3].

LEMMA 15.8. The functor C: 2% — 9 preserves h-cofibrations.

Since the functor C commutes with colimits, Cofibration Hypothesis 5.3(i) for
the set CF 1 is equivalent to the following lemma.

LEMMA 15.9. Let X — Y be a wedge of maps in F¥I and let f: CX — R be
a map of commutative R-algebras. Then the cobase change j: R— R Acx CY is
an h-cofibration.

Proof. The proof is similar to that of the analogous result for commutative
S-algebras in [11, VII, §3]. We use the geometric realization of simplicial
9-spectra. This is constructed level-wise and has properties just like the geometric
realization of simplicial spaces and of simplicial spectra; see [26, § 11] and [11,
X, §1]. We also use the two-sided bar construction; see [26, §9] and [11, XII].

We first give a convenient, although rather baroque, model for the inclusion
i: $97" — D?. Think of the unit interval I as the geometric realization of the
standard simplicial 1-simplex A[l]. For any space A, (AXI),=A, Al  is
homeomorphic to the geometric realization of the simplicial space A | A A[l],.
Since A[l] is discrete, the space of g-simplices of A | A A[l], is the wedge of one
copy of A, for each simplex of A[l]. An explicit examination of the faces and
degeneracies of A[1] [25, p. 14] shows that A, A A[1], can be identified with the
simplicial bar construction B,(A ,A,,A.), whose space of g-simplices is the
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wedge of g + 2 copies of A . The faces and degeneracies are given by successive
applications of the folding map V:A, VA, — A, and inclusions of wedge
summands, and all g-simplices with g > 1 are degenerate. The inclusion of the
zeroth and last wedge summands A. in each simplicial degree induce the
inclusions iq and iy of AL in A_ A I, on passage to realization. Write B(—) for
the geometric realization of simplicial bar constructions B,(—) and let CA be
the unreduced cone on A. The quotient map A, A, — (CA), is isomorphic to
the map

B(A,, AL AY) _’B(A+’A+»SO)

induced by the evident map A, — pt, = =5°, and the inclusion iy: A, — (CA)Jr is
isomorphic to the map: A, — B(A,, A, S ) induced from the 1nclu510n of A,
the space of zero simplices. Taking A = $7~ " and 1dent1fy1ng i: S — D1 w1th
ig: S — (€S77Y),, we can identify i with : S — B(S4~ 1, Sf‘,so).

The functor F,, commutes with colimits and with smash products with based
spaces, and hence commutes with geometric realization and the bar construction. We
can apply wedges to the construction to obtain a 51mllar description of a wedge of a
set of standard cells. Explicitly, if X =\/; F,, ST and Y = \/, F, D', then
Y=B(X,X,T) under X, where T =\/; F, S Here B(X,X,T) is the geometric
realization of the evident simplicial Z- spectrum whose Z-spectrum of g-simplices is
the wedge of ¢ + 1 copies of X and a copy of T.

By Proposition 5.1, the category of commutative S-algebras is tensored over
the category of unbased spaces; an explicit construction of tensors is given in
[11, VIL.2.10]. The functor C from %-spectra to commutative S-algebras
commutes with colimits. In particular, it converts wedges to smash products. It also
converts smash products X A A to tensors CX ® A, where X is a Z-spectrum and A
is an unbased space. As is discussed in an analogous situation in [11, VII, §3], it
follows that C converts geometric realizations and bar constructions to similar
constructions defined in terms of the category of simplicial commutative
S-algebras. Exactly as in [11, VIL.3.3], the geometric realization of a simplicial
commutative S-algebra R, can be computed by forgetting the ring structure on
each R, taking the geometric realization as a simplicial &-spectrum, and giving
this geometric realization the structure of commutative S-algebra that it inherits
from R,. With the more usual bar construction defined in terms of smash
products, we have the identification

(15.10) RAcxCY=RAcyB(CX,CX,CT)=B(R,CX,CT)

under R. It follows as in [11, VII.3.9] that j: R — R A¢x CY is an h-cofibration. In
summary, the degeneracy operators of the simplicial Z-spectrum B, (R, CX, CT) are
inclusions of wedge summands; hence B,(R, CX, CT) is proper, in the sense that
its degenerate g-simplices map by an h-cofibration into its g-simplices; compare
[11, X.2.2]. This implies that the map from the Z-spectrum of zero simplices into
the realization is an h-cofibration, and the map from R into the &-spectrum
R A CT is the inclusion of a wedge summand and thus also an A-cofibration. U

Since the maps in CK * are relative CF "I-cell complexes, the previous lemma
and Lemma 1.2 imply Cofibration Hypothesis 5.3(i) for CK . Cofibration
Hypothesis 5.3(ii) for both CF I and CK " is implied by the following analogue
of [11, VIL.3.10], which admits the same easy proof.
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LEmMMA 15.11. Let {R; — R, |} be a sequence of maps of commutative
S-algebras that are h-cofibrations of &-spectra. Then the underlying &-spectrum
of the colimit of the sequence computed in the category of commutative
S-algebras is the colimit of the sequence computed in the category of &-spectra.

Using Lemma 15.6, we see that the proof of Lemma 15.9 leads to the following
analogue of the monoid axiom.

PROPOSITION 15.12. Let i: R— R’ be a g-cofibration of commutative
S-algebras. Then the functor (—) AgR' on commutative R-algebras preserves
stable equivalences.

Proof. We may assume that i is a relative CF "I-cell complex. First let i be
the map CX — CY obtained by applying C to a wedge X — Y of maps in F 1.
By (15.10), the functor (—) Acx CY is isomorphic to the bar construction
B(—,CX,CT). In each simplicial degree, the functor B,(—, CX, CT) preserves
stable equivalences by inductive use of Lemma 15.6. By the &-spectrum analogue
of [11, X.2.4], it follows that the functor B(—, CX,CT) preserves stable
equivalences. Given a pushout diagram of commutative Z-ring spectra

CX ——R

I

CY——R'

we have R'=RAcyCY and thus (=) AxR’'=(—)AcxCY. Therefore the
conclusion holds in this case, and the general case follows by passage to colimits,
using Lemma 15.11. O

Proof of Lemma 15.4. By passage to pushouts and colimits, it suffices to
prove that if i: X — Y is a wedge of maps in K and f: CX — R is a map of
commutative S-algebras, then the cobase change j: R— R Acx CY is a stable
equivalence. Applying the small object argument, factor f as the composite of a
relative CF "I-cell complex f': CX — R’ and a map p: R’ — R that satisfies
the RLP with respect to CF "I. By adjunction, p regarded as a map of Z-spectra
satisfies the RLP with respect to F T1. Thus p is an acyclic positive g-fibration of
Z-spectra. Consider the commutative diagram

/

R~ R'AcyCY

| s

R———RAcx CY
j

Since p is a stable equivalence, p Aid is a stable equivalence by Proposition
15.12. Using R' =R’ Acx CX, Proposition 15.12 also implies that the cobase
change j' is a stable equivalence. Therefore j is a stable equivalence. O
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Formal arguments show that the model structures in Theorems 15.1 and 15.2
are right proper and topological. Since the pushout of a diagram A’ «— A — A"
of commutative R-algebras is A’ A4 A” and a g-cofibration of commutative
R-algebras is a g-cofibration of commutative S-algebras, Proposition 15.12 implies
that the category of commutative R-algebras is left proper. In turn, via Lemma
A.2, this implies Theorem 15.2(ii).

16. Comparisons of modules, algebras, and commutative algebras

We prove Theorems 0.7 and 0.8 and Corollary 0.9 here.

Proof of Theorem 0.7. The functors P: ¥ — 4% and U: /¥ — L&
restrict to an adjoint pair between the category of commutative symmetric ring
spectra and the category of commutative orthogonal ring spectra. We must prove
that (P, U) is a Quillen equivalence. Since weak equivalences and g-fibrations of
commutative ring spectra are created in the positive stable model categories of
underlying spectra, U creates weak equivalences and preserves g-fibrations. Thus
we have a Quillen adjoint pair. By Lemma A.2, it suffices to prove that the unit
map n: R— UPR is a stable equivalence for every cofibrant commutative
symmetric ring spectrum R.

We may assume that R is a CF *I-cell complex. We claim first that 5 is a
stable equivalence when R = CX for a positive cofibrant symmetric spectrum X,
and it suffices to prove that : X/, — UP(X @/x ;) is a stable equivalence
for i = 1. On the right, P(X//%,) = (PX)?/x,, and PX is a positive cofibrant
orthogonal spectrum. Applying the second statement of Lemma 15.5 to X and to
PX, we see by a quick diagram chase that the claim holds if and only if

n EZ;p Ap, X — UP(ET;, Ay, X1)

is a stable equivalence. Using Lemma 10.3 and the fact that suspensions of X @)
are positive cofibrant, we see that this holds by induction up the skeletal filtration
of EX;. By passage to colimits, the result for general R follows from the result
for a CF *I-cell complex that is constructed in finitely many stages. We have
proven the result when R requires only a single stage, and we assume the result
when R is constructed in n stages. Thus suppose that R is constructed in n+ 1
stages. Then R is a pushout R, Acy CY, where R, is constructed in n stages and
X — Y is a wedge of maps in F 1. By (15.10), R = B(R,, CX, CT). Since the
simplicial bar construction is proper and since U and P commute with colimits
and smash products with spaces and thus with geometric realization, the analogue
of [11, X.2.4] shows that it suffices to prove that n is a stable equivalence on
the Z-spectrum

R,As (CX)Y ACT=R,AsC(XV...VXVT)

of g-simplices for each ¢. By the definition of CF *I-cell complexes, we see that

this smash product (or equivalently pushout) of commutative &-ring spectra can be

constructed in n stages. Hence the conclusion follows from the induction hypothesis.
0
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Proof of Theorem 0.8. Let R be a cofibrant commutative symmetric ring
spectrum. Theorems 12.1 and 14.5 give the stable and positive stable model
structures on the categories of R-modules and R-algebras and Theorem 15.2 gives
the positive stable model structure on the category of commutative R-algebras.
The pair (P, U) induces adjoint pairs between the categories of R-modules,
R-algebras, and commutative R-algebras and the categories of PR-modules, PR-
algebras, and commutative [PR-algebras. We must show that these pairs are
Quillen equivalences. For the module and algebra case, the conclusion holds for
both the stable model structures and the positive stable model structures. Since
U. /¥ — L& preserves (positive) g-fibrations and creates weak equivalences,
the same is true of the induced forgetful functors. Thus ([P, U) is a Quillen adjoint
pair in all cases and, by Lemma A.2, we need only prove that the unit of the
adjunction is a stable equivalence when applied to a cofibrant object. For modules
and algebras, a cofibrant object in the positive stable model structure is also
cofibrant in the stable model structure, so we need only consider the latter case.

Thus consider 5: X — UPX. Theorem 0.7 implies that n is a stable
equivalence when X is a cofibrant commutative symmetric ring spectrum, such as
X =R. If X is a cofibrant commutative R-algebra, then the unit R — X and
therefore its composite with the unit S — R are g-cofibrations of commutative
symmetric ring spectra, so that X is a cofibrant commutative symmetric ring
spectrum and 7 is a stable equivalence. If X is a cofibrant R-algebra, then X is
also cofibrant as an R-module by Theorem 12.1(iii). Thus it remains to prove that
7 is a stable equivalence when X is a cofibrant R-module. Arguing as in the proof
of Lemma 10.3, it suffices to prove this when X =R Ag F,,ZS". We have a
canonical m,-isomorphism *,: F ,‘,ﬂ S§" — 8§ of orthogonal spectra. Using the
mapping cylinder construction, we can factor v, as the composite of an acyclic
g-cofibration and a homotopy equivalence. Thus, by Proposition 12.5, «y, induces
a m,-isomorphism

P(RAgFFS")=PRAGF;S"— PRAgS=PR.

Applying U and using a naturality diagram, we see that n is a stable equivalence
when X =R Ag F,,ES " since 7 is a stable equivalence when X = R. O

Proof of Corollary 0.9. As in the proof of Corollary 0.6 in § 12, this follows
from Theorems 12.1, 14.5, 15.2, and 0.8. O

17. The absolute stable model structure on W -spaces

The stable model structure on ¥ -spaces studied so far was based on the level
model structure relative to .4". That is, the level equivalences and level fibrations
of ¥ -spaces were only required to be weak equivalences or fibrations when
evaluated at S” for n= 0. The objects of & c #  are the discrete based spaces
nt = {0, 1, ..., n}, and these are not spheres. We need a stable model structure
based on the absolute level model structure in order to make a comparison.

Definition 6.1 specifies the absolute level equivalences, absolute level fibrations,
absolute level acyclic fibrations, absolute g-cofibrations, and absolute level acyclic
g-cofibrations of # -spaces. Replacing stable equivalences by m,-isomorphisms in
Definition 9.1, we define absolute acyclic g-cofibrations, absolute g-fibrations, and
absolute acyclic g-fibrations in terms of these absolute level classes of maps.
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For a finite based CW complex A, let F,: 9 — % 7 denote the left adjoint
to evaluation at A. We restrict attention to objects A in a skeleton of ¥ . All of
these functors F, are used in Definition 6.2, which specifies the sets FI and
FJ of generating absolute g-cofibrations and generating absolute level acyclic
g-cofibrations of the absolute level model structure.

As in Definition 8.4 and Lemma 8.5, define A4: FEAS1 —F, S° to be that
map of ¥ -spaces such that

N WT(Fy8°, X) — W T (Fg4S', X)

corresponds under adjunction to ¢: X(A) — QX (EA) for all # -spaces X. The
following lemma generalizes part of Lemma 8.6.

LEmMMA 17.1. The maps N, are w,-isomorphisms.

Proof. Using Example 4.6, we identify \4(S?) as the evaluation map
LOQF(A, S9) — F(A, S9).

This gives a 7,-isomorphism by Lemma 8.6 when A is a sphere. Using (i) and
(vi) of Theorem 7.4 to obtain long exact sequences, we see that it follows in
general by induction on the number of cells of A. |

Define K to be the union of the set FJ with the sets k, [J / defined as in
Definition 9.3, where ky: Fy, S g N4 is the absolute acyclic g-cofibration
given in terms of the mapping cylinder of \,.

THEOREM 17.2. The category of W -spaces is a compactly generated proper
topological model category with respect to the ,-isomorphisms, absolute q-fibrations,
and absolute g-cofibrations (of the absolute level model structure). The sets FI and K
are the generating sets of absolute q-cofibrations and absolute acyclic g-cofibrations.

The comparison of our two stable model structures takes the following form.

ProposiTION 17.3. The identity functor from W' with its original stable
model structure to W I with its absolute stable model structure is the left adjoint
of a Quillen equivalence.

We insert several preliminary results about ¥ -spaces before turning to the
proof of Theorem 17.2. Recall that ¥ -spaces and ¥ -spectra coincide, so that a
W -space X has a natural pairing

0: X(A) AB— X(A AB).
With B fixed, these define a map of # -spaces X A B— X(— A B).

REMARK 17.4. In view of o: X(A) Al — X(AAI,), we see that any # -
space X is a homotopy-preserving functor. Of course, a weak equivalence in ¥ is
a homotopy equivalence, by Whitehead’s theorem. Thus any X is a ‘homotopy
functor’, in the sense that it preserves weak equivalences.

DEerFINITION 17.5. Let X be a ¥ -space and A be a finite based CW complex.
Define a prespectrum X|[A] by setting X[A], = X(S" AA), with structure maps
given by instances of o. Note that X[$°] = UX, where U: #'7 — 2. We also
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have the prespectrum X[S°] A A. The maps
o: X(S")ANA— X(S" AA)
specify a map of prespectra
o[A]: X[S°] AA — XA].

The homotopy groups (X [SO] AA) are the homology groups of A with
respect to the homology theory represented by the prespectrum X [S°]. The insight
that the following result should be true is due to Lydakis, who proved an analogue
in the simplicial setting [22, 11.7].

PropoSITION 17.6.  For every W -space X and finite based CW complex A,
o[A] is a w,-isomorphism. Therefore, if f: X — Y is a w,-isomorphism, in the
sense that f[S°]: X[S°] — Y[S°] is a m,-isomorphism, then f[A]: X[A] — Y[A]
is a w,-isomorphism for every A.

Proof. The second statement follows directly from the first and Theorem
7.4(1). We prove the first statement in stages. First suppose that X = Fp S 0 where
B is a finite based CW complex. Then, on nth spaces, o[A] is the canonical map

F(B,S")ANA— F(B,S" AA).

It is easy to check directly that this map is a w,-isomorphism. This is just an
explicit prespectrum level precursor of a standard result about Spanier—Whitehead
duality. Since FzC = (FpS°) A C, Theorem 7.4(i) implies that o[A] is a =,-
isomorphism when X = FzC for any based CW complex C. Using Theorem 7.4,
we see that o[A] is a m,-isomorphism when X is a cell F/-complex. For a general
X, we factor the trivial map * — X as the composite of a cell FI-complex
* — X' and a level acyclic fibration p: X' — X. Since o[A] is a 7 -isomorphism
for X', it is a m,-isomorphism for X. U

The following definitions and lemma turn out to describe the fibrant % -spaces
in the absolute stable model structure.

DEeFNITION 17.7. Consider a commutative diagram of based spaces

f

A——B

iy

X—Y

8

The diagram is a homotopy cocartesian square if the induced map from the
homotopy pushout M(i, f) to Y is a weak equivalence. It is a homotopy cartesian
square if the induced map from A to the homotopy pullback P(g, j) is a weak
equivalence. (The homotopy pullback diagrams of Definition 9.4 are special cases.)

DEeFINITION 17.8. A ¥ -space E is linear if it converts homotopy cocartesian
squares to homotopy cartesian squares.

LEMMA 17.9. The following properties of a W -space E are equivalent:
(i) E is linear;
(i) E[A] is an Q-spectrum for all A€ W;
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(iii) o: E(A) — QE(XA) is a weak equivalence for all A€ W'

Proof. Recall that our functors are assumed to be based, so that E(x) = x. If
E is linear, then E(A) is weakly equivalent to the homotopy pullback QE(XA) of
the diagram % — E(XA)+«— x. This weak equivalence is homotopic to the
adjoint structure map o; hence E satisfies (iii). Conversely, if E satisfies (iii), then
the map 7,(E(A)) — m,(E[A]) = colimm, ,(E(S" AA)) is an isomorphism for
g =0, and these 7, (E(A)) form part of a homology theory. By the five lemma,
this implies that, for a cofiber sequence

A f
——B——C,
the induced map from E(A) to the homotopy fiber of E( f) is a weak equivalence. In
turn, this implies that E is linear. The equivalence of (ii) and (iii) is elementary. []

From here, the proof of Theorem 17.2 is exactly the same as the proof of
Theorem 9.2, but with the stable equivalences there replaced by the -
isomorphisms here; see also the proof of Proposition 8.7 in §10. We use
Proposition 17.6 repeatedly, and we apply the results on m,-isomorphisms of § 7
to the restricted maps f[A] of prespectra associated to maps f of # -spaces. We
record the main steps of the proof since they give useful characterizations of the
classes of maps that enter into the model structure.

ProposiTioN 17.10. A map p: E — B satisfies the RLP with respect to K if
and only if p is an absolute level fibration and the diagram

E(A)— QE(ZA)

(17.11) p(A)l JQp(EA)
B(A) —— QB(ZA)

is a homotopy pullback for each finite based CW complex A.
Using the third criterion in Lemma 17.9, this gives the following result.

COROLLARY 17.12.  The trivial map F — % satisfies the RLP with respect to K
if and only if F is linear.

CoroLLARY 17.13. If p: E— B is a w,-isomorphism that satisfies the RLP
with respect to K, then p is an absolute level acyclic fibration.

ProprosITION 17.14. Letf: X — Y be a map of W -spaces. Then:

(1) f is an absolute acyclic g-cofibration if and only if it is a retract of a
relative K-cell complex;
(i1) fis an absolute g-fibration if and only if it satisfies the RLP with respect to
K, and X is fibrant if and only if it is linear;
(iii) f is an absolute acyclic q-fibration if and only if it is an absolute level
acyclic fibration.
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For the study of # -ring and module spaces, we have the following result,
which implies that Theorem 12.1 applies to # -spaces under the absolute as well
as the original stable model structure.

ProposiTION 17.15.  Under the absolute stable model structure, the category of
W -spaces satisfies the pushout-product and monoid axioms.

Exactly as in the proofs of Propositions 12.6 and 12.5, this is a consequence of
the following analogue of Proposition 12.3.

PROPOSITION 17.16. For any cofibrant W -space X, the functor X Ag(—)
preserves T,-iSomorphisms.

Proof. As in the proof of Proposition 12.3, but taking into account that there
are more cofibrant objects to deal with, it suffices to prove that
7.(F4S° AgY) =0 if 7,(Y) =0, where A is any finite based CW complex. Let
Z be a Spanier—Whitehead k-dual to A, with duality maps n: S¥ — A A Z and
e ZAA— S*. By adjunction, 5 gives rise to a map 7: FASk—>FOZ and
the adjoint

Z—F(A,S") = (Fy8°)(8%)
of & gives rise to a map &: F,Z — F, S°. Consider the composites

idA7y 2
@ oS =F, S AgFy 8  — "L F SO NgFoz=F,Z 5 F, 5"

and

k- p ok o Yk Aid 0 0~ 0

6: FE]‘AS =FkS /\FAS —>FOS AsFAS =FAS .

These maps have adjoints S* — (F, S°)(Z*A) = F(A, £*A), which in turn have

adjoints o: LA — Z*A and 8: £¥A — Z*A. Inspecting definitions, we see that
@ is the composite

id A e

EE—

Aid
SA=S AA T ANZAA AASK=1xkA,

which is homotopic to the identity by the definition of a k-duality, and £ is the
identity map. Thus « = . Since 7,(Y) =0, 7. (FyZ AgY) = 0 by Theorem 7.4(i)
and Proposition 12.3. Therefore o Agidy induces the zero map on w,. By Corollary
12.4, B Agidy induces an isomorphism on . Therefore 7, (F4S° AgY) =0. O

We add some observations about connectivity for use in the next section.

DEFINITION 17.17. A prespectrum X is n-connected if 7,(X) = 0 for g <n; X
is connective if it is (—1)-connected. A # -space X is connective if its underlying
prespectrum X [S°] is connective; X is strictly connective if X(A) is n-connected
when A is n-connected.

Observe that, on passage to the homotopy groups w,(X(A)) of its spaces, a
connective linear ¥ -space X defines a homology theory in all degrees.
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Lemma 17.18. A connective linear W -space is strictly connective. The
following conditions on a map f: X — Y between connective linear W -spaces
are equivalent:

(i) fis a w,-isomorphism;
(i) f: X($%) — Y(8°) is a weak equivalence;
(iii) f is a level equivalence.

Proof. If T is an n-connected 2-spectrum, then its zeroth space is n-connected.
If X is connective and linear and A is n-connected, then X[A] is n-connected
because its homotopy groups are the homology groups of A with respect to a
connective homology theory. Since X[A] is an Q-spectrum with zeroth space
X(A), X(A) is n-connected and X is strictly connective. In the second statement,
(i) and (ii) are clearly equivalent and (ii) and (iii) are equivalent since a map
of homology theories is an isomorphism if and only if it is an isomorphism
on coefficients. 0

18. The comparison between F -spaces and W -spaces

It remains to relate % -spaces to # -spaces. It is important to keep in mind the
two quite different forgetful functors defined on ¥ -spaces, namely

Uz T —F7 and Uy W T — 2.

We write U for the former and write PP for its left adjoint #.9 — W7 .

We have the level model structure on the category of Z -spaces given by the
level equivalences, level fibrations, and g-cofibrations. We recall what we need
about the stable model structure from [35, Appendix B].

DErFINITION 18.1. Let f: X — Y be a map of % -spaces. We say that:
(1) f is a m,-isomorphism if U,Pf is a m,-isomorphism of prespectra;
(ii) f is a stable equivalence if a cofibrant approximation f': X' — Y’ of f
(in the level model structure) is a m,-isomorphism;

(iii) f is an acyclic g-cofibration if it is a stable equivalence and a g-cofibration;
(iv) fis a g-fibration if it satisfies the RLP with respect to the acyclic g-cofibrations;
(v) f is an acyclic g-fibration if it is a stable equivalence and a g-fibration.

One reason for the distinction between w,-isomorphisms and stable equivalences
is that we have not proven that PP preserves level equivalences or even carries
level equivalences to w,-isomorphisms in general. Another is that this definition
of a stable equivalence agrees with the one given in [35, Appendix B]; see
Remark 19.9 below.

For an . -space X, we write X, = X(n"); recall that X, = . Let §,; n* — 1"
be the projection given by 8;(i) = 1 and 8;(j) = 0 for j #i. Let ¢: 27 — 17 be
the based map such that ¢(1) =1 = ¢(2).

DEFINITION 18.2. An Z#-space X is special if the map X, — X/ induced by
the n projections 6,;: n* — 17 is a weak equivalence. If X is special, then
mo(X,) is an abelian monoid with product my(X;) X 7o(X;) = 7o(X,) — 7o(X})
induced by ¢. A special Z-space X is very special if wy(X;) is an abelian group.
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THEOREM 18.3. The category 7 is a cofibrantly generated model category
with respect to the stable equivalences, q-fibrations, and q-cofibrations. An
F -space is fibrant if and only if it is very special.

We refer the reader to [35] for the proof. While the result is deduced there from
its simplicial analogue, a topological argument works just as well. However, it is
not known and, as explained in [35, A.6], seems unlikely to be true, that the
stable model structure on #.7 is compactly generated, so that a more general
version of the small object argument than Lemma 5.8 is needed. The set of
generating g-cofibrations is FI, and of course its elements have compact domains.
However, there does not seem to be a canonical choice of a set of generating
acyclic g-cofibrations, and the elements of the set chosen in [35, Appendix B] do
not all have compact domains. All elements of the set are w,-isomorphisms, and
this has the following consequences.

LEmMA 18.4. All acyclic g-cofibrations are w.-isomorphisms.
LEMMA 18.5. The pair (P, U) is a Quillen adjoint pair.

Proof. Since U: W7 — F 7 carries absolute level equivalences and
absolute level fibrations to level equivalences and level fibrations, (P°,U) is a
Quillen adjoint pair with respect to these level model structures and thus [P
preserves g-cofibrations (and level acyclic g-cofibrations). Now the previous
lemma shows that [P preserves acyclic g-cofibrations, since it obviously preserves
w,-isomorphisms. U

In particular, U preserves fibrant objects, as could easily be checked directly.
LEMMA 18.6. If Y is a linear W -space, then UY is a very special F -space.

The following result, which was left open in [35], is a consequence of its
counterpart, Proposition 17.15, for # -spaces. It implies that Theorem 12.1 applies
to # -spaces.

ProposiTION 18.7. The stable model structure on the category of F -spaces
satisfies the pushout-product and monoid axioms.

Proof. This is an exercise in the use of cofibrant approximation of maps. The
essential points are that smash products and pushouts of cofibrant approximations
are cofibrant approximations and that the functor [P preserves colimits and smash
products and creates the stable equivalences between cofibrant objects. O

Because the topological prolongation functor [P is harder to analyze than its
simplicial counterpart, we shall derive the following result from its known
simplicial analogue in the next section. In essence, this result goes back to Segal
[38] and is at the heart of his infinite loop space machine.

ProrosITION 18.8. Let X be a cofibrant ¥ -space. Then PX is a strictly
connective W -space. If X is very special, then PX is a cofibrant linear W -space.
That is, the functor P preserves cofibrant-fibrant objects.
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Granting these results, Lemma 17.18, and the fact that UP = Id immediately
give the following consequences.

LEMMA 18.9. The following conditions on a map f:X — X' between
cofibrant very special & -spaces are equivalent:

(i) fis a w,-isomorphism;
(i) f: X, — X is a weak equivalence;
(i) f is a level equivalence;

(iv) Pf is an absolute level equivalence of W -spaces.

LeEmmA 18.10. If Y is a connective linear W -space and f: X — UY is a
cofibrant-fibrant approximation of the F -space UY, then the composite

go Pf: PX — PUY — Y

is an absolute level equivalence of W -spaces.

The results above directly imply Theorems 0.10, 0.11, and 0.12. Corollary 0.13
follows as in the proof of Corollary 0.6 in § 13.

19. Simplicial and topological diagram spectra

Let %, denote the category of pointed simplicial sets, abbreviated to ssets, and
let T: ¥, — 7 and S: I — &, be the geometric realization and total singular
complex functors. Both are strong symmetric monoidal. Let v: Id — ST and
p: TS — Id be the unit and counit of the (S, T) adjunction. Both are monoidal
natural weak equivalences. Recall that a map f of spaces is a weak equivalence
or Serre fibration if and only if Sf is a weak equivalence or Kan fibration of
ssets.

For a discrete category &, a Z-sset is a functor Y: 4 — &, and we have
the category 2%, of Z-ssets. When we are given a canonical symmetric
monoidal functor Sy,: ¥ — &, we define Z-spectra over S, in the evident
fashion. Let us write 2.9 [%,] and 2.9[7 ] for the categories of Z-spectra of
ssets over S, and Z-spectra of spaces over TSg;. Both are symmetric monoidal
categories. Level-wise application of S gives a lax symmetric monoidal functor
S: 99T ] — 2%[¥,] with unit map v: S5 — STS,. Level-wise application
of T gives a strong symmetric monoidal functor T: 2.9 [¥,] — 2.%[T]. These
functors are right and left adjoint, and they induce adjoint functors when
restricted to categories of rings, commutative rings, and modules over rings.

WARNING 19.1.  The functor TS: 9 — 7 is not continuous. Therefore we do
not have a functor TS: 2.9 — 2.7 when the topological category Z is not discrete.

When & = %, we shall see how to get around this problem in Theorem 19.11.
As far as the relevant homotopy categories go, we can work interchangeably
with Z-spectra of ssets and Z-spectra of spaces.

PropoSITION 19.2. Let & be discrete and suppose that the category of
9-spectra of ssets is a model category such that every level equivalence is a
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weak equivalence. Define a weak equivalence of &-spectra of spaces to be a map
f such that Sf is a weak equivalence. Then S and T induce adjoint equivalences
of homotopy categories that induce adjoint equivalences between the respective
homotopy categories of rings, commutative rings, and modules over rings.

Proof. Since 5: Y — STY is a level equivalence for all &-spectra of ssets,
an argument much like the proof of Lemma A.2 applies. U

The proposition applies to symmetric spectra [15] and to % -spectra [35]. In the
latter case, just as for J -spaces, % -spectra of ssets are the same as Z -ssets. As
noted in the preprint version of [15] and in [35], Lemma A.2 applies to give the
following stronger conclusion in these cases.

THEOREM 19.3. Let 9 =X or 9 =%. The pair (1,S) is a Quillen
equivalence between the categories 2.9 S, and DS T |.

Since [15] and [35] give the pushout-product and monoid axioms in ¥ [%,],
2 =Y and 2 =, and we have proven these axioms in Z[7 |, we are entitled
to the following multiplicative elaborations of Theorem 19.3.

THEOREM 19.4. Let 9 =X or 9 =%. The functors T and S induce a
Quillen equivalence between the categories of 9-ring spectra of simplicial sets
and -ring spectra of spaces.

THEOREM 19.5. Let 9 =X or 9 = F. For a Z-ring R of simplicial sets, the
functors T and S induce a Quillen equivalence between the categories of
R-module spectra (of simplicial sets) and T R-module spectra (of spaces).

By Smith’s result (private communication) that the category of commutative
symmetric ring spectra of simplicial sets is a Quillen model category with
definitions parallel to those in § 15, we also have the commutative analogue of
Theorem 19.4 in this case.

THEOREM 19.6. The functors T and S induce a Quillen equivalence between
the categories of commutative symmetric ring spectra of simplicial sets and
commutative symmetric ring spectra of spaces.

Now focus on Z -ssets and % -spaces. We must deduce Proposition 18.8 from
its simplicial analogue. There is a prolongation functor P?* from Z -ssets to the
category s+ of simplicial functors ., — .. We can use it to study the
topological prolongation functor P = P from Z-spaces to the category 7 7 of
continuous functors 4 — 7. The advantage of P is that, although it is
characterized as the left adjoint to the forgetful functor, it has two equivalent
explicit descriptions. First, in analogy with P7 (23.3), for a functor Y: # — &,
and a sset K,

(19.7) (IP‘%Y)(K)_/D GEK"/\Y,,.

Since T commutes with colimits and finite products, this description implies that

(19.8) (P7TY)NTK)=T(P”Y)(K)).
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Of course, this relationship requires us to begin with an % -sset Y. However, there
is a simple trick that has the effect of allowing us to use (19.8) to study 7 -spaces
X. Let v: CY — Y be a functorial cofibrant approximation in the level model
structure on % -ssets and define

E=poTy: TCSX —X.

Since £ is a level equivalence and T preserves cofibrant objects, £ is a functorial
cofibrant approximation of % -spaces. If X is cofibrant, then P£¢ is an absolute
level equivalence. In effect, this allows us to use P7CSX to study PX.

REMARK 19.9. In [35, Appendix B], a map f: X — Y of % -spaces is defined
to be a stable equivalence if Sf is a ,-isomorphism. It is equivalent that TCSf
is a m,-isomorphism. Thus, since TCSf is a cofibrant approximation of f, these
stable equivalences are the same as the stable equivalences of Definition 18.1(ii).

The other description of P s given as follows. A based set E can be
identified with the colimit of its based finite ordered subsets, and these can be
identified with the based injections n™ — E for n = 0. We extend Y to a functor
from based sets to simplicial sets by defining Y(E) to be the colimit of the
simplicial sets ¥ (n"), where the colimit is taken over the based functions
n" — E or, equivalently, over the based injections n™ — E. We then define
(P7*Y)(K) to be the diagonal of the bisimplicial set obtained by applying Y to
the set K, of g-simplices of K for all g. This description is exploited by Bousfield
and Friedlander [7] and Lydakis [21] to study the homotopical properties of
prolongation. The definitions of special and very special % -ssets are the same as
for & -spaces, and an % -space X is (very) special if and only if the % -sset SX is
(very) special.

Proof of Proposition 18.8. Since any finite CW complex is homotopy
equivalent to TK for some finite simplicial complex K, we may restrict attention
to spaces of the form TK in # . Let X be a cofibrant 7 -space and let Y = CSX.
By the absolute level equivalence £: TY — X, it suffices to prove the result for
TY, and

(19.10) (PTY)TK)=T(P”Y(K)).

By [7, 4.10], (P”*Y)(K) is n-connected if K is n-connected. Since a simplicial
set L is n-connected if and only if TL is n-connected, this shows that (PTY)(TK)
is n-connected if TK is n-connected, so that TY is strictly connective. Now
assume that X and therefore Y is very special. By Lemma 17.9, it suffices to
prove that o: (PTY)(TK) — Q(PTY)(XTK) is a weak equivalence for all
finite simplicial complexes K, and we may replace the target of o by the
homotopy fiber of the evident map (PTY)(CTK)— (PTY)(ETK). By [7,
4.3], (P”*Y)(K) maps by a weak equivalence to the homotopy fiber of the map
(P”Y)(CK) — (P” Y)(ZK). Since T commutes with cones, suspensions, and
homotopy fibers, the conclusion follows upon applying T and using (19.10). O

Finally, as promised in the introduction, we compare the category "7 with
Lydakis’ category % of ‘simplicial functors’, namely simplicial functors from
the category of based finite ssets to the category of all based ssets; see [22].
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THEOREM 19.11. There is a Quillen equivalence (PT, SU) from the category
SF to WT with its absolute stable model structure. The functor PT is strong
symmetric monoidal and the functor SU is lax symmetric monoidal.

Proof. For based ssets K and L, let F(K, L) denote the usual sset of based
maps K — L. Define a topological category ¥~ with objects the based finite ssets
and whose space of maps K — L is TF (K, L). There is a natural inclusion of ssets

F(K,L)— SF(TK,TL).
Its adjoint is a natural continuous map
t: TF(K,L)— F(TK,TL).

There results a continuous functor f: ¥~ — ¥ that sends K to TK. Hence we
have an adjoint pair (P, U) relating 7 -spaces to ¥ -spaces. For a simplicial
functor Y, we obtain a continuous functor TY: ¥ — Z such that
(TY)(K)=TY(K); on morphism spaces, TY is given by the composites

TFK, L) S TR(Y (K), Y(L) —— F(TY(K), TY(L)).

For based spaces A and B, the adjoint of the evident map
SF(A,B)ASA=S(F(A,B)AA) —— SB
is a natural map
s: SF(A,B) —— F(SA, SB).

For a ¥ -space X, we obtain a simplicial functor SX such that
(SX)(K) = SX(K); on morphism ssets, SX is given by the composites

v SX s

F(K,L)——STF(K,L)—— SF(X(K),X(L)) —— F(SX(K), SX(L)).

The pair (T, S) relating % and ¥ is adjoint, and we have the following
diagram of pairs of adjoint functors:

T P
S F VT WIT
[UJ P [Ul P
LI, <——°—>E
S

The diagram of right adjoints commutes by inspection; hence the diagram of left
adjoints commutes up to isomorphism. By comparing our characterizations of
absolute g-fibrations and absolute acyclic g-fibrations in Propositions 17.10 and
17.14 with the analogous characterizations [22, 9.4, 9.8] given by Lydakis, we see
that SU preserves g-fibrations and acyclic g¢-fibrations, so that (PT, SU) is a
Quillen adjoint pair. The right pair ([°, U) is a Quillen equivalence by Theorem
0.1, the left pair ([P, U) is a Quillen equivalence by the simplicial analogue of
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that result, and the bottom pair (T, S) is a Quillen equivalence by Theorem 19.4.
Therefore (PT, SU) is a Quillen equivalence. The monoidal properties of these
functors follow from Proposition 3.3 and the properties of T and S. ]

PART III. SYMMETRIC MONOIDAL CATEGORIES AND FSPs

We fix language about symmetric monoidal categories in § 20, and we discuss
symmetric monoidal diagram categories in §21. Briefly, there is an elementary
external smash product that takes a pair of Z-spaces to a (2 x %)-space. Left
Kan extension internalizes this product to give a smash product that takes a pair
of Z-spaces to a Z-space. We show how the functors U and P behave with
respect to internal smash products in § 23.

Such internal products on functor categories were studied by Day [8], in a
general categorical setting. The construction made a first brief appearance in
stable homotopy theory in work of Anderson [3], but its real importance only
became apparent with Jeff Smith’s introduction of symmetric spectra.

In § 22, we show how functors with smash product, FSPs, fit into the picture. For
a commutative monoid R in 9.7, we define Z-FSPs over R in terms of the external
smash product, and we show that the category of Z-FSPs over R is isomorphic to
the category of R-algebras, as defined with respect to the internal smash product.
We are mainly interested in the case R =S, where & is one of our standard
examples. Here the conclusion is that Z-FSPs are equivalent to Z-ring spectra.

The notion of an FSP was introduced by Bokstedt [6], who used it to define
topological Hochschild homology. His FSPs were essentially the same as our
7 -FSPs (although his definition was simplicial and he imposed convergence and
connectivity conditions). Under the name ‘strictly associative ring spectrum’,
Y-FSPs first appeared in work of Gunnarson [12]. The name ‘FSP defined on
spheres’ has also been used. Jeff Smith first recognized the relationship between
these externally defined FSPs and his symmetric ring spectra. Similarly, an
Z -FSP is equivalent to a Gamma-ring, as defined by Lydakis and Schwede
[21, 35]. Under the unprepossessing name ‘., -prefunctor’, commutative .#-FSPs
had already appeared in work of May, Quinn, and Ray [28], where they were
shown to give rise to E-ring spectra.

20. Symmetric monoidal categories

We fix some language to avoid confusion. A monoidal category is a category &
together with a product (01 =[gy: X% — & and a unit object u = uy such
that [J is associative and unital up to coherent natural isomorphism; & is
symmetric monoidal if [] is also commutative up to coherent natural isomorphism.
See [16, 17, 23] for the precise meaning of coherence here. A symmetric
monoidal category 2 is closed if it has internal hom objects F(d, e) with
adjunction isomorphisms

9d0Oe, f)=2(d,F(e,f)).

There are evident notions of monoids in monoidal categories and commutative
monoids in symmetric monoidal categories. The (strict) ring spectra in any of the
modern approaches to stable homotopy theory are the monoids and commutative
monoids in the relevant symmetric monoidal ground category. To compare such
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objects in different ground categories, we need language to describe when functors
and natural transformations preserve monoids and commutative monoids.

DEerFINITION 20.1. A functor T: .o/ — 2 between monoidal categories is lax
monoidal if there is a map N\: uy — T(u,,) and there are maps

¢: T(A)Oy T(A') —T(AO, A)

that specify a natural transformation ¢: [J4 o (TXT)— T o [J; it is required
that all coherence diagrams relating the associativity and unit isomorphisms of .o/
and % to the maps A and ¢ commute. If .o/ and # are symmetric monoidal, then
T is lax symmetric monoidal if all coherence diagrams relating the associativity,
unit, and commutativity isomorphisms of .« and % commute. The functor 7 is
strong monoidal or strong symmetric monoidal if N\ and ¢ are isomorphisms.

The relevant coherence diagrams are specified in [16, 17]. The direction of the
arrows A and ¢ leads to the following conclusion.

Lemma 20.2. If T: o/ — % is lax monoidal and M is a monoid in o/ with
unit n: u, — M and product p: M, M — M, then T(M) is a monoid in %
with unit T(n) o N: uy — T(u ) — T (M) and product

T(uw)o¢: TM) Oy T(M) — T(MDO,, M) — T(M).

If T: of — B is lax symmetric monoidal and M is a commutative monoid in </,
then T(M) is a commutative monoid in 4.

We also need the concomitant notion of a monoidal natural transformation.
Here we do not need to use an adjective ‘lax’ or ‘strong’ since the definition is
the same for either lax or strong monoidal functors.

DEerFINITION 20.3. Let S and T be lax monoidal or lax symmetric monoidal
functors .o/ — %. A natural transformation «: S — T is monoidal if the
following diagrams commute:

Uz
N
S(u.y/) o T(u,ca//)
and
alJa

| Jor

S(Ad, A" TAO,, A")

The following assertion is obvious from the definition and the previous lemma.

LEmMA 204. If o is monoidal and A is a monoid in of, then
a: S(A) — T(A) is a map of monoids in B. If o is symmetric monoidal and A
is a commutative monoid in </, then o: S(A) — T(A) is a map of commutative
monoids in A.
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21. Symmetric monoidal categories of Z-spaces

Let 2 be a symmetric monoidal (based) topological category with unit object u
and continuous product []. We describe the symmetric monoidal structure on the
category .7 of Z-spaces in this section. After the following definition and
lemma, we assume that & has a small skeleton sk &; sk & inherits a symmetric
monoidal structure such that the inclusion sk ¥ c & is strong symmetric monoidal.

DEerINITION 21.1. For Z-spaces X and Y, define the ‘external’ smash product
X AY by
XAY=Ao(XXY):IXD— T,

thus, for objects d and e of &, (X AY)(d,e) =X(d) AY(e). For a 9-space Y

and a (2 x Z)-space Z, define the external function &-space F(Y,Z) by
F(Y,Z)d)=27(Y,Z{d)),

where Z(d)(e) = Z(d, e). Then, for Z-spaces X and Y and a (Z x &)-space Z,

(21.2) (DXxDT (XANY,Z)=9T (X,F(Y,Z)).
Recall the functors F,; from Definition 1.3.

LEMMA 21.3. There is a natural isomorphism

FdA KFEB—>F(d’e)(A/\B).

Proof. Using (21.2), (1.4), and the definitions, we see that
(9%x9)T (F/ANF,B,Z)=F (AAB,Z(d,e))
= (2x9)7 (Fa4,o(AAB),Z)
for a (2 x Z)-space Z. O

We internalize the external smash product X A Y by taking its topological left
Kan extension along [J [23, Chapter X]. This gives 2.7 a smash product A under
which it is a closed symmetric monoidal topological category. For an object d of
9, let [0/d denote the category of objects [J-over d; its objects are the maps
a: e[df — d and its morphisms are the pairs of maps (¢, ¥): (e, f) — (e', f')
such that o'(¢ [0 ¢) = «. This category inherits a topology from %, and a map
d — d’ induces a continuous functor [1/d — [1/d’.

DEerFINITION 21.4. Let X and Y be Z-spaces. Define the internal smash
product X AY to be the topological left Kan extension of X AY along [J. It is
characterized by the universal property

(21.5) 9T XANY,Z)=(9%xD)T (X AY,Zo[).
On an object d, it is specified explicitly as the colimit
(XAY)(d) =colim,,_,,X(e) ANY(f)

indexed on []/d; this makes sense since []/d has a small cofinal subcategory.
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When & itself is small, (X A Y)(d) can also be described as the coend
(e,f)eaZx2D
xav)@ = [ (e01f.d) A (X(e) AY(S)

with its topology as a quotient of \/(, ;) Z (el f,d) A (X(e) AY(f)). By the
functoriality of colimits, maps d — d’ in & induce maps

(XAY)d)— (XAY)d)
that make X A Y into a &-space.

DErFINITION 21.6. Let X, Y, and Z be Z-spaces. Define the internal function
9-space F(Y,Z) by

F(Y,Z)=F(Y,Zo[).
Then (21.1) and (21.5) immediately imply the adjunction
(21.7) GXANY,Z)=9(X,F(Y,2)).

With these definitions, the proof of Theorem 1.7 is formal; see Day [8]. For
Lemma 1.8, we see by use of (21.5), (21.7), (1.4), and the definitions that

97 (F/ANF,B,X)=F(AANB,X(de)) =27 (Fyn.(AAB),X)
for a &-space X.

22. Diagram spectra and functors with smash product

Fix a skeletally small symmetric monoidal category &. We have the symmetric
monoidal category 27 of %-spaces, and we consider its monoids and
commutative monoids and their modules and algebras. These are defined in
terms of the internal smash product in 29, and we shall explain their
reinterpretations in terms of the more elementary external smash product A. The
proofs of the comparisons are direct applications of the defining universal
properties of A (21.5) and F; (1.4).

Recall the definitions in § 20. We have the category of lax monoidal functors
2 — 7 and monoidal transformations and its full subcategory of lax symmetric
monoidal functors. These are the structures defined in terms of the external smash
product that correspond to monoids and commutative monoids in .7 .

ProposITiION 22.1. The category of monoids in 29 is isomorphic to the
category of lax monoidal functors & — . The category of commutative monoids
in 99 is isomorphic to the category of lax symmetric monoidal functors & — 7.

Proof. Let R: 2 — 7 be lax monoidal. We have a unit map \: S — R(u)
and product maps ¢: R(d) A R(e) — R(d [J e) that make all coherence diagrams
commute. We may view ¢ as a natural transformation R AR — R o []. By the
defining properties of F, and A, N and ¢ determine and are determined by maps
A u" — R and ¢: R A R — R that give R a structure of a monoid in 2.7. [

Now assume given a lax monoidal functor R: ¥ — 7 . Definition 1.9 gives the
notion of a Z-spectrum X over R, and we see that X is defined by means of a
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continuous natural transformation o: X A R — X. Regarding R as a monoid in
99, we have the notion of a (right) R-module X defined in terms of a map
X AR — X. Proposition 1.10 states that R-modules and Z-spectra over R are the
internal and external versions of the same notion, and the proof of that result is
immediate from (21.5). We mimic the definitions of tensor product and Hom
functors in algebra to define functors A, and Fg. For a right R-module X and a
left R-module Y, X A, Y is the coequalizer of &-spaces displayed in the diagram
u A id
(22.2) XARANY —/——=XAY ——XARY,
id A pf

where p and u' are the actions of R on X and Y. For right R-modules Y and Z,
Fr(Y,Z) is the equalizer of Z-spaces displayed in diagram

u*
(22.3) Fr(Y,Z) —— F(Y,Z)—=F(Y AR, Z).
w

Here p* = F(u, id) and w is the adjoint of the composite

FOLZ)AY AREDA 7 ARz,
where u and v are the actions of R on Y and Z.

In the rest of this section, we assume that R is a commutative monoid in 2.7 ;
that is, R is a lax symmetric monoidal functor & — 7 . Here the categories of
left and right R-modules are isomorphic. Moreover, X Ax Y and Fr (X, Y) inherit
R-module structures from X or, equivalently, Y. For R-modules X, Y, and Z,

(22.4) TIRXARY, Z) = DS (X, Fr(Y,Z)).

It is formal to prove Theorem 1.7 from the definitions of A and Fy.
The external version of an R-algebra is called a &-FSP (functor with smash
product) over R. We write 7 consistently for symmetry isomorphisms.

DEFINITION 22.3. A Z-FSP over R is a &-space X together with a unit map
n: R — X of Z-spaces and a continuous natural product map u: X AX — X o [
of functors ¥ X ¥ — 7 such that the composite

X(d) = x(d) A S LA (@) A R@)
id A
L2 X(d) A X () o X (@O u) = X (d)
is the identity and the following unity, associativity, and centrality of unit
diagrams commute:

AT

R(d) AR(e) 22 X (a) A X(e)
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X(@) AX(e) AX(H) P2 X ey Ax(f)

o |

X(d)AX(eOf) X@OeOf)

and

R(d) A x(e) T2 x(a) A x(e) X (@D )

7| [x

X(e) /\R(d)mX(e) /\X(d)TX(eD d)

A 2-FSP is commutative if the following diagram commutes, in which case the
centrality of unit diagram just given commutes automatically:

X(d) AX(e) L= X(dOe)

7| e

X(e) /\X(d)TX(eDd)

Observe that X has an underlying &-spectrum over R with structure map
o=po(idAn):XAR—— Xo[].
ProPOSITION 22.4. The category of R-algebras is isomorphic to the category

of 9-FSPs over R. The category of commutative R-algebras is isomorphic to the
category of commutative &-FSPs over R.

23. Categorical results on diagram spaces and diagram spectra

We prove the categorical results stated in §§ 2, 3. First, we use (21.5) to prove
Theorem 2.2, which states that the categories of Zg-spaces and Z-spectra over R
are isomorphic.

Proof of Theorem 2.2. 'We return to the notations of Construction 2.1. We have
Dr(d,e) = DFg(e" AR, d" AR)
=97 (e*,d" AR)
= (d" AR)(e)
= colimgy.fo,—.. Z(d, f) AR(g).

Taking o to be the identity map of d []e and using the identity map d — d, we
obtain an inclusion »: R(e) — Zg(d,d[Je). Let X be a Zg-space. Pullback
along 6 gives X a structure of Z-space. Pullback along » of the evaluation map
r(d,dOe) ANX(d) — X(de) gives the components X (d) AR(e) — X(dOe)
of a map X AR — X o []. Via (21.5), this gives an action of R on X. These two
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actions determine the original action of &. Indeed, working conversely, if X is an
R-module and «: f [0 g — e is a morphism of &, then the composites displayed
in the following diagram pass to colimits to define the evaluation maps
(d*AR)(e) AX(d) — X(e) of a functor X: D — T :

2(d, f) AR(g) AX(d)

idAT
9(d.f) AX(d) AR(g) =L X () AR(g)
(5 TIid) A p p

Q(dDg,ng)/\X(dDg)TX(ng)ﬂX(e)

Here ¢ is the evaluation map of X and p is the action of R on X. This gives the
desired isomorphism of categories between Y7 and %.%%.

Now let R be commutative. To show that the smash products agree under the
isomorphism between %, and 97, we can either compare the definitions of
the respective smash products directly or compare the defining universal
properties. The unit (ugk)* of the smash product of Zy-spaces is isomorphic to
R since

(ug,)"(d) = Dg(ug,. d) = ((ug)” AR)(€) =R(e). O

Returning to the context of §3, let «: ¥ — & be a continuous functor, where
% is skeletally small. The following definition includes the proof of Proposition 3.2.

DEFINITION 23.1. Define P: 49 — 2.7 on %-spaces X by letting PX be the
topological left Kan extension of X along ¢. It is characterized by the adjunction

(23.2) 97 (PX,Y)=%7 (X,UY).
Let «/d be the topological category of objects t-over d; its objects are the maps

a:itc—d in Z and its morphisms are the maps ¥:c — ¢’ in % such that
a'(ty) = a. On an object d, PX is specified explicitly as the colimit

PX(d) = colim,,._, 4 X(c)
indexed on ¢/d. If € is small, PX(d) can also be described as the coend

ce?
(23.3) PX(d) = / D(e,d) AX(c).

If ©: ¥ — & is fully faithful and ¢ € ¥, then the identity map of ¢c is a terminal
object in /¢ and therefore 5: X — UPX is an isomorphism.

Now assume that % and & are skeletally small symmetric monoidal categories
and that ¢ is a strong symmetric monoidal functor.

Proof of Proposition 3.3. Observe that left Kan extension also gives a functor
P:(¢x%)T — (9%x9)T.
A direct comparison of colimits shows that
(23.4) PX AX')=PX APX/,
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and it is trivial to check the analogous isomorphism

(23.5) Uy AY')=Uy AUY".

We have a unit isomorphism A:ug — tug and a product isomorphism
¢: Oy o (1x1) — v o Og. For (2 x Z)-spaces Z, ¢ induces a natural isomorphism
(23.6) U(Z o Ogy) = (UZ) o Lg.

The unit isomorphism Pug = uy, is given by the last statement of Proposition 3.2,

and its adjoint gives the unit isomorphism ug = Uuv,. The defining universal
properties of A and [P, together with (23.4) and (23.6), give a natural isomorphism

9T (PXAPX,Y) —— 97 (P(XAX'),Y),

and this implies the product isomorphism PX APX'=P(X AX'). Note the
direction of the displayed arrow: P would not even be lax monoidal if ¢ were only
lax, rather than strong, monoidal. Similarly, the defining universal properties of A
and P, together with (23.5) and (23.6), give a composite natural map

GTYANY YAY )= (2x2)T (Y AY,(YAY')oOy)

*

L @xDTPUY AY'), (YAY')o[,)
=(Ex6)T(UY AY"),U((YAY')oOy))
=(¥x%)7 (UY AUY ,U(Y AY') o Oy)
=47 (UY AUY  U(YAY")).

The product map UY AUY' — U(Y AY') is the image of the identity map of
Y A Y' along this composite, and one cannot expect this map to be an isomorphism.
O

Proof of Proposition 3.4. We are given a monoid R in .7 . For objects a and
b of €, we have

Gur(a, b) = colim. ..., % (a, c) ARu(c").

Smash products of maps v: €(a, c) — Z(wa, 1c) and identity maps of the spaces
R(ic") pass to colimits to give maps

Cur(a, b) — Zg(i(a), u(b)).

These specify the required extension k: g — Y of 1: € — £ on morphism
spaces. By inspection, k is symmetric monoidal when R is commutative. O

Appendix A. Recollections about equivalences of model categories

We have made heavy use of basic facts about adjoint functors and
adjoint equivalences between model categories. We recall these facts for the
reader’s convenience.

DerFINITION A.l. Let P: o/ — % and U: 4 — .o/ be left and right adjoints
between model categories .o/ and #. The functors P and U are a Quillen adjoint
pair if U preserves g-fibrations and acyclic g-fibrations or, equivalently, if [P
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preserves g-cofibrations and acyclic g-cofibrations. A Quillen adjoint pair is a Quillen
equivalence if, for all cofibrant A € o/ and all fibrant B € #, a map PA — B is
a weak equivalence if and only if its adjoint A — UB is a weak equivalence.

These notions are discussed thoroughly in [14, § 1.3], and the following result is
immediate from [14, 1.3.13, 1.3.16].

LEMMA A.2. Let P: of — % and U: B — o/ be a Quillen adjoint pair.
(1) The total derived functors
LP: Ho(.«/) — Ho(%) and RU: Ho(#) — Ho(.</)
exist and are adjoint.

(ii) (P, U) is a Quillen equivalence if and only if RU or, equivalently, LP is
an equivalence of categories.

(iii) If U creates the weak equivalences of # and n: A — UPA is a weak
equivalence for all cofibrant objects A, then (P, U) is a Quillen equivalence.

The following observation [14, 4.3.3] is relevant to Theorems 0.3 and 0.10.

LEMMA A3. LetP: of — B and U: B — .o/ be a Quillen equivalence, where
P is a strong monoidal functor between monoidal categories (under products A). The
natural isomorphism PX APY — P(X AY) induces a natural isomorphism

LPX A LPY — LP(X Al Y).
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