Algebraic Geometry II Exercise Sheet 9 Due Date: 30.06.2014

Exercise 1:

- (i) Let \mathcal{A} and \mathcal{B} be abelian categories and let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor that admits an exact additive left adjoint functor $G : \mathcal{B} \to \mathcal{A}$. Show that F preserves injective objects.
- (ii) Let X be a topological space. Show that the category PSh(X, Z) of presheaves of abelian groups has enough injectives.
 Hint: Let U ⊂ X be open. Use that

$$A \longmapsto \left(\underline{A}_U : V \mapsto \begin{cases} A & if \ U \subset V \\ 0 & otherwise \end{cases}\right)$$

defines a functor from abelian groups to $PSh(X,\mathbb{Z})$ adjoint to the functor $\Gamma(U,-)$.

Exercise 2:

Let \mathcal{A}, \mathcal{B} and \mathcal{C} be abelian categories and let $G : \mathcal{A} \to \mathcal{B}$ and $F : \mathcal{B} \to \mathcal{C}$ be left exact additive functors.

(i) Let M be an object of \mathcal{B} and let $0 \to M \to K^{\bullet}$ be an exact complex such that K^i is acyclic for F for all i. Show that there is a canonical isomorphism

$$H^i(F(K^{\bullet})) \to R^iF(M).$$

Hint: Proceed by induction on i.

(ii) Assume that G is exact and G maps injective objects to F-acyclic objects. Show that

$$R^i(FG)(M) \cong R^iF(GM).$$

(iii) Assume that F is exact. Show that

$$R^i(FG)(M) \cong F(R^iG(M)).$$

Exercise 3:

Let X be a (locally ringed) topological space. A sheaf \mathscr{F} on X is called *flabby* if the restriction maps

$$\Gamma(U,\mathscr{F}) \longrightarrow \Gamma(V,\mathscr{F})$$

are surjective for all $V \subset U \subset X$. Let

 $0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{G} \longrightarrow \mathscr{H} \longrightarrow 0$

be a short exact sequence of abelian sheaves (or of \mathcal{O}_X -modules).

(i) Assume that \mathscr{F} is flabby. Show that

$$0 \longrightarrow \Gamma(X, \mathscr{F}) \longrightarrow \Gamma(X, \mathscr{G}) \longrightarrow \Gamma(X, \mathscr{H}) \longrightarrow 0$$

is exact.

Hint: Let $h \in \Gamma(X, \mathscr{H})$. Apply Zorn's lemma to the set

$$\{(U,g) \mid U \subset X \text{ open, } g \in \Gamma(U,\mathscr{G}) \text{ such that } g \mapsto h|_U\}.$$

(ii) Assume that \mathscr{F} is flabby. Show that \mathscr{G} is flabby if and only if \mathscr{H} is flabby.

Exercise 4:

Let X be a locally ringed space.

(i) Show that an injective O_X-module is flabby.
 Hint: For an open embedding j : U → X and an abelian sheaf F on U consider the sheaf j₁F which is the sheafification of the presheaf

$$V\longmapsto \begin{cases} \mathscr{F}(V) & \text{if } V\subset U\\ 0 & \text{otherwise.} \end{cases}$$

Show that $j_{!}$ is adjoint to j^{*} and that

$$\mathscr{F}(X) = \operatorname{Hom}_X(\mathcal{O}_X, \mathscr{F}) \longrightarrow \operatorname{Hom}_X(j_!\mathcal{O}_u, \mathscr{F}) = \operatorname{Hom}_U(\mathcal{O}_U, \mathscr{F}|_U) = \mathscr{F}(U)$$

agrees with the restriction map.

- (ii) Show that flabby sheaves are acyclic for $\Gamma(X, -)$.
- (iii) Let \mathscr{F} be an \mathcal{O}_X -module. Show that the cohomology of \mathscr{F} as an abelian sheaf coincides with the cohomology of \mathscr{F} as an \mathcal{O}_X -module.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeomII