Algebraic Geometry II Exercise Sheet 8 Due Date: 23.06.2014

Exercise 1:

Let X and Y be integral k-schemes of finite type and let $f: X \to Y$ be a dominant morphism of finite type. Let $d = \dim X - \dim Y = \operatorname{trdeg}_{K(Y)} K(X)$.

- (i) Let $y \in Y$. Show that dim $f^{-1}(y) \ge d$.
- (ii) Show that there is an open dense subset $U \subset Y$ such that dim $f^{-1}(y) = d$ for all $y \in U$. (*Hint: Reduce to the case* Spec $B \to$ Spec A. Then there are $T_1, \ldots, T_d \in B$ which form a transcendental basis of K(X) over K(Y). Now consider the (fibers of the) morphism Spec $B \to$ Spec $A[T_1, \ldots, T_d]$.)
- (iii) For $x \in X$ set $h(x) = \max\{\dim Z\}$, where Z runs over all irreducible components of $f^{-1}(f(x))$ containing x. Show that $\{x \in X \mid h(x) \ge e\}$ is closed in X for all $e \in \mathbb{Z}$. (*Hint: Use induction on* dim X.)

Remark: If f is proper, then it follows that the map $y \mapsto \dim f^{-1}(y)$ is upper semi-continuous.

Exercise 2:

(i) Let $f: X \to Y$ be a flat morphism of k-schemes of finite type. Show that for all $x \in X$ and $y = f(x) \in Y$ one has

$$\dim_x f^{-1}(y) = \dim_x X - \dim_y Y_z$$

where $\dim_x X = \dim \mathcal{O}_{X,x}$ (and similarly for the other dimensions). (*Hint: First reduce to the case* $Y = \operatorname{Spec} \mathcal{O}_{Y,y}$. Then use induction on dim Y and Krull's principal ideal theorem. Use flatness of $\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ to show that the image of a non-zero divisor is a non-zero divisor.)

- (ii) Give an example of a proper morphism $f: X \to Y$ such that
 - (a) the fiber dimension of f is not constant (hence f is not flat).
 - (b) f is flat and f is smooth over $f^{-1}(U)$ for some open dense subset $U \subset X$ but there is a point $y \in Y$ such that $f^{-1}(y)$ is connected and not irreducible (hence f is flat but not smooth).

Exercise 3:

Let \mathcal{C} be an abelian category. Show that in \mathcal{C} arbitrary pull-backs and push-outs exists.

Exercise 4:

Prove the snake lemma in an arbitrary abelian category.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeomII