Algebraic Geometry II Exercise Sheet 4 Due Date: 19.05.2014

Exercise 1:

Let Y be a noetherian scheme and let $f: X \to Y$ be a morphism of finite type. Let \mathscr{L}_1 and \mathscr{L}_2 be line bundles on X and let \mathscr{M} be a line bundle on Y.

- (i) Assume that \mathscr{L}_1 and \mathscr{L} are ample over Y. Show that $\mathscr{L}_1 \otimes_{\mathcal{O}_X} \mathscr{L}_2$ is ample over Y.
- (ii) Assume that \mathscr{L}_1 is (very) ample over Y and that there exists a surjection $f^*\mathscr{G} \twoheadrightarrow \mathscr{L}_2$ for some coherent sheaf \mathscr{G} on Y. Show that $\mathscr{L}_1 \otimes_{\mathcal{O}_X} \mathscr{L}_2$ is (very) ample over Y.
- (iii) Assume that \mathscr{L}_1 is ample over Y. Show that that $\mathscr{L}^{\otimes n} \otimes_{\mathcal{O}_X} \mathscr{L}_2$ is ample over Y for $n \gg 0$.
- (iv) Assume that \mathscr{L}_1 is (very) ample over Y. Show that $\mathscr{L}_1 \otimes_{\mathcal{O}_X} f^*\mathscr{M}$ is (very) ample over Y.
- (v) Assume that \mathscr{L}_1 is ample over Y. Show that there exists n > 0 such that $\mathscr{L}_1^{\otimes m}$ is very ample for all $m \ge n$.

Exercise 2:

- (i) For $m, n \in \mathbb{Z}$ consider the line bundle $\mathscr{L}_{(m,n)} = \operatorname{pr}_1^* \mathcal{O}(m) \otimes_{\mathcal{O}_X} \operatorname{pr}_2^* \mathcal{O}(n)$ on $X = \mathbb{P}_k^1 \times \mathbb{P}_k^1$. Show that $\mathscr{L}_{(m,n)}$ is very ample if and only if $\mathscr{L}_{(m,n)}$ is ample if and only if m, n > 0.
- (ii) Let $Y = V_+(T_2^2T_3 (T_1^3 T_1T_3^2)) \subset \mathbb{P}_k^2$. Let $P = (0:1:0) \in \mathbb{P}_k^2$ and let $\mathscr{I}_P \subset \mathcal{O}_X$ be the sheaf of ideals corresponding to the closed subscheme $\{P\}$ with the reduced scheme structure. Show that \mathscr{I}_P is a line bundle and let $\mathscr{L} = \mathscr{I}_P^{\vee}$. Show that $\mathscr{L}^{\otimes 3} \cong \mathcal{O}_{\mathbb{P}_k^2}(1)|_X$ but that \mathscr{L} is not generated by global sections.

(This shows that \mathscr{L} is ample but not very ample)

Exercise 3:

Let k be an algebraically closed field and let X be a proper k-scheme. Let \mathscr{L} be a line bundle on X and let $\varphi : \mathcal{O}_X^{n+1} \to \mathscr{L}$ be a surjection corresponding to a morphism $g : X \to \mathbb{P}_k^n$. Let $V \subset \Gamma(X, \mathscr{L})$ denote the sub-k-vectorspace generated by the images of the standard basis of \mathcal{O}_X^{n+1} . Assume that

- (a) for any two closed points $x \neq y \in X$ there exists $s \in V$ such that $0 = s(x) \in \mathscr{L} \otimes \kappa(x)$ and $0 \neq s(y) \in \mathscr{L} \otimes \kappa(y)$ (or vice versa).
- (b) for any closed point $x \in X$ the set $\{s_x \mod \mathfrak{m}_x^2 \mathscr{L}_x \mid s \in V, s_x \in \mathfrak{m}_x \mathscr{L}_x\}$ spans the $\kappa(x)$ -vector space $\mathfrak{m}_x \mathscr{L}_x/\mathfrak{m}_x^2 \mathscr{L}_x$, where $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ is the maximal ideal.

Show that g is a closed immersion (especially \mathscr{L} is very ample).

(Hint: In order to show that $\mathcal{O}_{\mathbb{P}^n_k,g(x)} \to \mathcal{O}_{X,x}$ is surjective for all closed points $x \in X$, show that a local homomorphism of local rings $(A, \mathfrak{m}_A) \to (B, \mathfrak{m}_B)$ is surjective, if it induces an isomorphism on residue fields, it is finite (i.e. B is finitely generated as an A-module) and the canonical morphism $\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective.)

Exercise 4:

- (i) Let $m \geq 2$ and $L = V_+(T_1, \ldots, T_m) = \{(1:0:\cdots:0)\} \subset \mathbb{P}_k^m$. Show that there is a linear projection $\pi_L : X = \mathbb{P}_k^m \setminus L \to \mathbb{P}_k^{m-1}$ given by the morphism $\bigoplus_{i=1}^m \mathcal{O}_X e_i \to \mathcal{O}(1)|_X$ mapping the basis vector e_i to $T_i \in \Gamma(X, \mathcal{O}(1)) \subset \Gamma(\mathbb{P}_k^m, \mathcal{O}(1))$. Show further that $\mathbb{P}_k^{m-1} \cong V_+(T_0)$ is a section of the morphism π_L .
- (ii) Let $m > n \ge 1$. Generalize (i) to describe an arbitrary linear projection $\mathbb{P}_k^m \setminus L \to \mathbb{P}_k^n$ where $L \subset \mathbb{P}_k^m$ is a linear subspace of dimension m n 1.
- (iii) Let X be a k-scheme of finite type and let \mathscr{L} be a line bundle on X. Let $V \subset \Gamma(X, \mathscr{L})$ be a finite dimensional k-vector space such that the canonical morphism $\mathcal{O}_X \otimes_k V \to \mathscr{L}$ is surjective. Let s_0, \ldots, s_n resp. t_0, \ldots, t_m be generators of V inducing morphisms $f: X \to \mathbb{P}_k^n$ resp. $g: X \to \mathbb{P}_k^m$. Assume that $n \leq m$. Show that there is a linear subspace $L \subset \mathbb{P}_k^m$ of dimension m-n-1 such that (up to an automorphism of \mathbb{P}_k^n) the morphism f can be written as the composition of g with a linear projection $\mathbb{P}_k^m \setminus L \to \mathbb{P}_k^n$.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeomII