Algebraic Geometry II Exercise Sheet 3

Due Date: 12.05.2014

Exercise 1:

- (i) Let k be a field and let $1 \le m < n$. Show that the Grassmann-variety $\operatorname{Gr}_{m,n}$ of m-dimensional subspaces in k^n is proper over k.
- (ii) Let $f: \mathbb{A}^1_k \to \operatorname{Gr}_{2,4}$ be the morphism defined by the family of subspaces

$$\mathcal{O}_{\mathbb{A}^1_k} egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix} \oplus \mathcal{O}_{\mathbb{A}^1_k} egin{pmatrix} 0 \ T \ 1 \ 0 \end{pmatrix} \subset \mathcal{O}^4_{\mathbb{A}^1_k}$$

on \mathbb{A}^1_k = Spec k[T]. Show that the morphism f extends to a unique morphism $\tilde{f} : \mathbb{P}^1_k \to \mathrm{Gr}_{2,4}$ and compute $\tilde{f}(\infty)$.

Exercise 2:

- (i) Let $f: X \to Y$ be a morphism of finite type and assume that Y is locally noetherian. Show that in the valuative criteria for separatedness and properness it is enough to consider
 - (a) complete discrete valuation rings.
 - (b) discrete valuation rings with algebraically closed residue field.
- (ii) Let X be a proper k-scheme and let C be curve over k, i.e. C is a 1-dimensional integral scheme of finite type over k. Let $P \in C$ be a closed point such that C is smooth at P (i.e. $\mathcal{O}_{C,P}$ is a discrete valuation ring). Let $f : C \setminus \{P\} \to X$ be a morphism of k-schemes. Show that there is a unique morphism $\tilde{f} : C \to X$ extending f.
- (iii) Let $f: X \to Y$ be a morphism of finite type. For i = 1, ..., n let $X_i \subset X$ and $Y_i \subset Y$ be closed subschemes such that $f|_{X_i} \to Y$ factors over $Y_i \hookrightarrow Y$ and such that $X = \bigcup_{i=1}^n X_i$. Write $f_i: X_i \to Y_i$ for the induced morphisms. Show that f is proper if and only if all the f_i are proper.

Exercise 3:

Let Y be a locally noetherian scheme and let $\mathscr{S} = \bigoplus_{d \ge 0} \mathscr{S}$ be a quasi-coherent graded \mathcal{O}_Y -algebra such that \mathscr{S}_1 is coherent and \mathscr{S} is generated by \mathscr{S}_1 . Let $X = \underline{\operatorname{Proj}}_Y \mathscr{S}$ and write $p: X \to Y$ for the canonical projection to Y.

(i) Show that there is a functor $\mathcal{M} \mapsto \tilde{\mathcal{M}}$ from the category of quasi-coherent graded \mathscr{S} -modules to the category of quasi-coherent \mathcal{O}_X -modules, globalizing the construction in the case Y = Spec A.

(ii) Let $\mathcal{O}(n)$ be the locally free \mathcal{O}_X -module associated to $\mathscr{S}[n]$ and, given a quasi-coherent sheaf \mathscr{F} on X, define

$$\Gamma_*(\mathscr{F}) = \bigoplus_{d \in \mathbb{Z}} p_*(\mathscr{F} \otimes_{\mathcal{O}_X} \mathcal{O}(n)).$$

This defines a functor

$$\Gamma_* : \{ \text{quasi-coherent } \mathcal{O}_X \text{-modules} \} \longrightarrow \{ \text{quasi-coherent graded } \mathscr{S} \text{-modules} \}$$

Show that $\Gamma_*(-)$ and (-) are adjoint functors and that the canonical morphism

 $\Gamma_*(\mathscr{F}) \longrightarrow \mathscr{F}$

is an isomorphism for all quasi-coherent sheaves \mathscr{F} on X.

Exercise 4:

Let k be a field and $X = \mathbb{P}_k^3 = \operatorname{Proj} k[T_0, T_1, T_2, T_3]$. Let

$$C = V_+(T_2, T_3), \ D = V_+(T_0^2 - T_1^2 + T_0T_2, T_3) \subset X$$

be closed subschemes of dimension 1 with corresponding sheaves of ideals $\mathscr{I}_C, \mathscr{I}_D \subset \mathcal{O}_X$.

- (i) Show that the (scheme-theoretic) intersection of C and D consists precisely of the points P = (1:1:0:0) and Q = (1:-1:0:0).
- (ii) Let $X_1 = \text{Bl}_{C \setminus P} X \setminus P$ be the blow up of $X \setminus P$ in $C \setminus P$ and let $\pi_1 : X_1 \to X \setminus P$ be the canonical projection. Let $Z_1 \subset X_1$ be the closed subscheme defined by $\pi_1^{-1}(\mathscr{I}_D|_{X \setminus P})\mathcal{O}_{X_1} \subset \mathcal{O}_{X_1}$ and let X'_1 be the blow up of X_1 in Z_1 . Write $\pi'_1 : X'_1 \to X \setminus P$ for the canonical projection.

Let $X_2 = \operatorname{Bl}_{D\setminus Q} X \setminus Q$ be the blow up of $X \setminus Q$ in $D \setminus Q$ and let $\pi_2 : X_2 \to X \setminus D$ be the canonical projection. Let $Z_2 \subset X_2$ be the closed subscheme defined by $\pi_2^{-1}(\mathscr{I}_C|_{X\setminus D})\mathcal{O}_{X_2} \subset \mathcal{O}_{X_2}$ and let X'_2 be the blow up of X_2 in Z_2 . Write $\pi'_2 : X'_2 \to X \setminus Q$ for the canonical projection.

Show that there is a canonical isomorphism $\pi'_1^{-1}(X \setminus \{P,Q\}) \to \pi'_2^{-1}(X \setminus \{P,Q\}).$

(iii) Let Y be the scheme obtained by gluing X'_1 and X'_2 along the isomorphism

$$\pi_1'^{-1}(X \setminus \{P,Q\}) \to \pi_2'^{-1}(X \setminus \{P,Q\}).$$

Show that the canonical morphism $f: Y \to X$ is proper.

(In fact the morphism f is not projective. However, this is much harder to show.)

(iv) Show that there is a closed subscheme $Z \subset Y$ such that the morphism $\operatorname{Bl}_Z Y \to X$ given by composing the canonical morphism $\operatorname{Bl}_Z Y \to Y$ with f is projective.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeomII