Dr. E. Hellmann SS 2014

Algebraic Geometry II Exercise Sheet 2

Due Date: 05.05.2014

Exercise 1:

- (i) Show that a morphism $f: X \to Y$ is a monomorphism (i.e. $f \circ g = f \circ h \Rightarrow g = h$ for morphisms $g, h: T \to X$) if and only if the diagonal $\Delta_f: X \to X \times_Y X$ is an isomorphism.
- (ii) Let $f, g: X \to Y$ be morphisms of S-schemes and assume that X is reduced and that Y is separated over S. Assume that there is a dense open subscheme $U \subset X$ such that $f|_U = g|_U$. Show that f = g.
- (iii) Let $f: X \to Y$ be a separated morphism. Let $g: Y \to X$ be a section of f, i.e. a morphism such that $f \circ g = \mathrm{id}_Y$. Show that g is a closed immersion.

Exercise 2:

Let X be a scheme and let $\mathscr{A} = \bigoplus_{d>0} \mathscr{A}_d$ be a quasi-coherent graded \mathcal{O}_X -algebra.

(i) Show that there is an X-scheme $\pi: \underline{\operatorname{Proj}}_X \mathscr{A} \to X$ such that for all affine open subschemes $U \subset X$ there is an isomorphism $\varphi_U: \pi^{-1}(U) \cong \operatorname{Proj}(\Gamma(U, \mathscr{A}))$ of U-schemes, and for all affine open subschemes $V \subset U$ the diagram

$$\pi^{-1}(V) \xrightarrow{\varphi_{V}} \operatorname{Proj}\left(\Gamma(V, \mathscr{A})\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi^{-1}(U) \xrightarrow{\varphi_{U}} \operatorname{Proj}\left(\Gamma(U, \mathscr{A})\right)$$

commutes. Here the vertical arrow on the right is induced by the restriction map

$$\Gamma(U,\mathscr{A}) \longrightarrow \Gamma(V,\mathscr{A}).$$

(ii) Let \mathscr{L} be a line bundle on X and define $\mathscr{A}' = \bigoplus_{d \geq 0} \mathscr{A}_d \otimes_{\mathcal{O}_X} \mathscr{L}^{\otimes d}$ which has a canonical structure as an \mathcal{O}_X -algebra. Show that there is a canonical isomorphism of X-schemes

$$\underline{\operatorname{Proj}}_X\mathscr{A}\cong\underline{\operatorname{Proj}}_X\mathscr{A}'.$$

(iii) Assume that X is noetherian that $\mathscr{A}_0 = \mathcal{O}_X$ and \mathscr{A}_1 is coherent and that \mathscr{A} is generated (as an \mathcal{O}_X -algebra) by \mathscr{A}_1 . Show that π is proper.

Exercise 3:

A morphism $f: X \to Y$ of schemes is called *projective* if there is a factorization

where i is a closed immersion.

- (i) Show that the base change of a projective morphism is projective.
- (ii) Show that the composition of projective morphisms is projective.

(Hint: Use the Segre-embedding)

Exercise 4:

- (i) Let $\mathscr E$ be a locally free $\mathcal O_X$ -module of rank d on scheme X. Show that $\mathbf P(\mathscr E) = \underline{\operatorname{Proj}}_X(\operatorname{Sym}^{\bullet}\mathscr E)$ is locally on X isomorphic to $\mathbb P^{d-1}_X = X \times \mathbb P^{d-1}_{\mathbb Z}$.
- (ii) Assume that X is affine. Show that $\mathbf{P}(\mathscr{E}) \to X$ is projective in the sense of exercise 3.

Homepage: www.math.uni-bonn.de/people/hellmann/alggeomII