WS 2005/06

Übungen zur Algebraischen Geometrie

Blatt 7, Abgabe am 07.12.2005

Aufgabe 25

Ein Integritätsring R heißt ganzabgeschlossen, wenn alle Elemente $x \in \text{Quot}(R)$, die ganz über R sind (d. h. zu denen es ein normiertes Polynom $f \in R[X]$ mit f(x) = 0 gibt), in R liegen.

- a) Zeige, dass jeder faktorielle Ring ganzabgeschlossen ist.
- b) Sei k ein algebraisch abgeschlossener Körper, und sei char $k \neq 2$. Sei $Z = V(Y^2 X^2(X+1)) \subseteq \mathbb{A}^2(k)$ (vgl. Aufgabe 8). Der Homomorphismus

$$\Gamma(Z_1) = k[X, Y]/(Y^2 - X^2(X+1)) \longrightarrow k[T^2 - 1, T(T^2 - 1)],$$

 $X \mapsto T^2 - 1, Y \mapsto T(T^2 - 1),$

ist ein Isomorphismus. Zeige, dass für $z \in Z$ der Halm $\mathcal{O}_{Z,z}$ genau dann ganzabgeschlossen ist, wenn $z \neq (0,0)$. *Hinweis*: Die Rechnung wird etwas einfacher, wenn man benutzt, dass ein Integritätsring R genau dann ganzabgeschlossen ist, wenn für alle maximalen Ideale $\mathfrak{m} \subseteq R$ die Lokalisierung $R_{\mathfrak{m}}$ ganzabgeschlossen ist [Atiyah, Macdonald, *Introduction to Commutative Algebra*, Prop. 5.15].

Aufgabe 26

- a) Zeige, dass der Morphismus $Z_1 \longrightarrow Z_2$ aus Aufgabe 8 nicht endlich ist.
- b) Gib einen surjektiven Morphismus $\mathbb{A}^1(k) \longrightarrow \mathbb{P}^1(k)$ an, zeige, dass alle Fasern endliche Mengen sind, und dass der Morphismus nicht endlich ist.

Aufgabe 27

Sei k ein algebraisch abgeschlossener Körper mit überabzählbar vielen Elementen. Sei X eine Prävarietät über k von Dimension ≥ 1 , und sei $(Y_n)_{n\in\mathbb{N}}$ eine Folge von abgeschlossenen Teilmengen von X, dim $Y_n < \dim X$ für alle n. Zeige, dass $\bigcup_n Y_n \neq X$.

Hinweis: Zeige die Behauptung zunächst für $X = \mathbb{A}^1(k)$ und dann für $X = \mathbb{A}^n(k)$. Behandle nun den Fall affiner Varietäten durch Anwendung des Noetherschen Normalisierungssatzes und beweise schließlich den allgemeinen Fall.

Aufgabe 28

Bezeichne mit W, X, Y, Z die Koordinaten des affinen Raums $\mathbb{A}^4(k)$. Sei V die affine Varietät $V(XW-YZ)\subseteq \mathbb{A}^4(k)$, und sei $U=\{(w,x,y,z)\in V;\ y\neq 0\}\cup\{(w,x,y,z)\in V;\ w\neq 0\}$.

- a) Sei $g \in \Gamma(V, \mathcal{O}_V)$ mit $g(u) \neq 0$ für alle $u \in U$. Wir wollen zeigen, dass dann $g(u) \neq 0$ für alle $u \in V$ gilt, d. h. $V(g) \cap V = \emptyset$. Wir nehmen dazu an, dass $V(g) \cap V \neq \emptyset$ und leiten wie folgt einen Widerspruch her. Sei E = V(Y, W). Folgere aus der obigen Annahme, dass $V(g) \cap V = E$. Sei nun E' = V(X, Z). Zeige, dass $V(g) \cap E' = \{(0, 0, 0, 0)\}$, und begründe, dass das ein Widerspruch ist
- b) Wir definieren $h \in \Gamma(U, \mathcal{O}_V)$ durch

$$h(w,x,y,z) = \left\{ \begin{array}{ll} x/y, & y \neq 0 \\ z/w, & w \neq 0 \end{array} \right. .$$

Zeige, dass sich h nicht in der Form f/g, $f,g \in \Gamma(V,\mathcal{O}_V)$, $g(u) \neq 0$ für alle $u \in U$, schreiben läßt.