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Young integral
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Differential equation driven by rough signal
Consider the equation

dZt

dt
= F (Zt)

dXt

dt
. (1)

We want to solve this equation
with input Xt that is not differentiable.
Formally (1) can be written as

dZt = F (Zt) dXt , (2)

or more precisely as

Zt = Z0 +

ˆ t

0
F (Zt) dXt . (ODE)

The integral above is a Riemann–Stieltjes integral:
ˆ t

0
F (Zt) dXt = lim

0=t0<···<tJ=t
|tj+1−tj |→0

J∑
j=1

F (Ztj−1)(Xj − Xj−1).
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Fixed point argument

Existence and uniqueness of solutions are frequently proved
using the following iterative procedure.
Start with a guess Z (0) for the solution.
Given Z (k), let Y (k) := F (Z (k)), and

Z
(k+1)
t = Z0 +

ˆ t

0
Y (k) dXt .

This iteration should stay in some function space for it to be useful.
If X is continuous and has bounded variation:

V 1(X ) := sup
t0<···<tJ

J∑
j=1

|Xtj − Xtj−1 | <∞,

then one suitable space are bounded continuous functions
(if F is Lipschitz).
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Bounded r -variation

We are interested in inputs X that are not of bounded variation
(e.g. sample paths of Brownian motion).
How should we measure their regularity?
Since our ODE is parametrization-invariant, it is natural to use
a parametrization-invariant space.

Definition
For 0 < r <∞ the r -variation of a sequence (Xt) is given by

V r (X ) := sup
t0<···<tJ

( J∑
j=1

|Xtj − Xtj−1 |
r)1/r . (V r )
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Basic properties of bounded r -variation

Example
Bounded r -variation is a parametrization-invariant version
of 1/r -Hölder continuity. Indeed, if X is defined on a bounded
interval [0,T ] and |Xs − Xt | ≤ C |s − t|1/r for all s, t, then

V r (X ) ≤ sup
t0<···<tJ

( J∑
j=1

|C |tj − tj−1|1/r |r
)1/r

≤ C sup
t0<···<tJ

( J∑
j=1

|tj − tj−1|
)1/r

= CT 1/r .

Lemma
V r (F ◦ X ) ≤ ‖F‖LipV r (X ).
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Discrete version
To avoid technical difficulties, we consider a difference equation
that is a discrete analogue of our ODE:

Zj − Zj−1 = F (Zj−1)(Xj − Xj−1). (∆E)

Setting Yj := F (Zj), we obtain

ZJ = Z0 +
∑

0<j≤J
Yj−1(Xj − Xj−1).

We will ignore Z0 and try to obtain estimates
for the map (X ,Y ) 7→ Z given by

ZJ =
∑

0<j≤J
Yj−1(Xj − Xj−1). (∆1)

All estimates should be independent of the number of j ’s,
so they can be transferred to the ODE.
The spaces should be invariant under composition with suitable F .
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First paraproduct estimate
Lemma (E.R. Love and L.C. Young, 1936)
For r < 2 we have∣∣∣ ∑

0<j≤J
(Yj−1 − Y0)(Xj − Xj−1)

∣∣∣ ≤ ζ(2/r)V r (Y )V r (X ). (LY)

The basic idea is that∑
0<j≤J

(Yj−1 − Y0)(Xj − Xj−1) =
∑

0<i<j≤J
(Yi − Yi−1)(Xj − Xj−1)

is a two-dimensional sum. But it can be much better
to arrange this sum in a different collection of rectangles:

X

Y

X

Y
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Inductive splitting of the paraproduct

The new partition is chosen inductively. First, choose a small
square near the diagonal with the smallest contribution. After
removing this square, the remaining summation region has a similar
shape as before, but with J decreased by 1:

X

Y

X

Y
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It remains to understand how small the contribution
of a small square near the diagonal can be.
Estimating the minimum by an average
and using Hölder’s inequality we obtain

inf
0<k<J

|(Yk − Yk−1)(Xk+1 − Xk)|

≤
(
(J − 1)−1

∑
0<k<J

|(Yk − Yk−1)(Xk+1 − Xk)|r/2
)2/r

≤ (J − 1)−2/r( ∑
0<k<J

|Yk − Yk−1|r
)1/r( ∑

0<k<J

|Xk+1 − Xk |r
)1/r

≤ (J − 1)−2/rV r (Y )V r (X ).

The hypothesis r < 2 is needed to ensure summability
of the coefficients (J − 1)−2/r .
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Mapping properties of the discrete Stieltjes integral

Corollary
Let ZJ be given by (∆1). Then for r < 2 we have

V r (Z ) ≤ (‖Y ‖∞ + CrV
r (Y ))V r (X ).

Proof: For any J < J ′ we have

|ZJ′ − ZJ | =
∣∣∣ ∑
J<j≤J′

Yj−1(Xj − Xj−1)
∣∣∣

=
∣∣∣YJ(XJ′ − XJ) +

∑
J<j≤J′

(Yj−1 − YJ)(Xj − Xj−1)
∣∣∣

≤ ‖Y ‖∞|XJ′ − XJ |+ CrV
r (Y , [J, J ′])V r (X , [J, J ′]).
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Hence for any increasing sequence (Jl) we have

(∑
l

|ZJl − ZJl−1 |
r)1/r ≤ (∑

l

|YJl−1(XJl − XJl−1)|r
)1/r

+ Cr

(∑
l

|V r (Y , [Jl−1, Jl ])V
r (X , [Jl−1, Jl ])|r

)1/r
.

The first term is crealy bounded by ‖Y ‖∞V r (X ).
In the second term we can actually bound the larger quantity(∑

l

|V r (Y , [Jl−1, Jl ])V
r (X , [Jl−1, Jl ])|r/2

)2/r
≤
(∑

l

|V r (Y , [Jl−1, Jl ])|r
)1/r(∑

l

|V r (X , [Jl−1, Jl ])|r
)1/r

≤ V r (Y )V r (X ).
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Rough integral
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Controlled paths

We want a theory that works for X ∈ V r with r ≥ 2.

Definition
Let X ,Y ′ be functions with bounded r -variation.
We say that a function Y is controlled by X
with Gubinelli derivative Y ′ if the error term

Rs,t := (Yt − Ys)− Y ′s (Xt − Xs), s ≤ t,

has bounded r/2-variation in the sense that

V r/2(R) := sup
t0<···<tJ

( J∑
j=1

|Rtj ,tj−1 |
r/2)2/r <∞.

The space of controlled paths turns out to be robust
under a version of (∆1).
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Controlled paths have bounded r -variation

Lemma
If Y is controlled by X with Gubinelli derivative Y ′ and error term
R , then

V rY ≤ V r/2R + ‖Y ′‖∞V rX .

Proof.

|Yt − Ys | ≤ |Rs,t |+ |Y ′s ||Xt − Xs |.

Insert this into the definition of r -variation:

V r (Y ) = sup
t0<···<tJ

( J∑
j=1

|Ytj − Ytj−1 |
r)1/r .
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Composition of controlled paths with C 2 functions
Unlike bounded r -variation, controlled rough path property
is not preserved under composition with Lipschitz functions.
We need more regularity:

Lemma
If (Y ,Y ′) is controlled by X , then for every C 2 function F also
F ◦ Y is controlled by X , with Gubinelli derivative F ′(Y ) · Y ′.

Proof
For s < t by Taylor’s formula we have

F (Yt)− F (Ys) = F ′(Ys)(Yt − Ys) + O((Yt − Ys)2).

Since Y is V r , the second summand above is V r/2.
The first summand equals

F ′(Ys)Y ′s (Xt − Xs) + F ′(Ys)Rs,t ,

where R is the error term of rough path (Y ,Y ′).
16



Proof continued.
Just seen: F ′(Ys)Y ′s is a Gubinelli derivative.
It remains to check that it is V r .
I Y ′ is V r by hypothesis.
I Since Y is a controlled path, it is V r .
I Since F ∈ C 2, F ′ is Lipschitz, hence F ◦ Y is V r .
I Product of V r paths Y ′ and F ′ ◦ Y is again V r .
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Rough path
Want: define Zt :=

´ t
0 Ys dXs for controlled Y ’s

(and hope that the result will still be controlled).
If we can take Y = 1, we should get Z = X .
Then we should be able to take Y = Z .
But there is no way to make sense of

´
X dX if X is too irregular.

Solution: we postulate the value of this integral.

Definition (Lyons)
For 2 ≤ r < 3, an r -rough path is a pair of functions (Xt ,Xs,t)
such that V r (X ) <∞, V r/2(X) <∞, and Chen’s relation

Xs,u = Xs,t + Xt,u + (Xt − Xs)(Xu − Xt) (Chen)

holds for all s ≤ t ≤ u.

I One should imagine (picture!)
Xs,t“=”

´ t
s (Xw− − Xs) dXw =

´
s<u<w<t dXu dXw .

I A rough path can be interpreted as a function of one variable.
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Why postulate the integral?

If (Xj) is a discrete sequence, there is a canonical choice of X
that satisfies Chen’s relation, namely

Xs,t :=
∑
s<j≤t

(Xj−1 − Xs)(Xj − Xj−1). (∆area)

The quantitative content of the definition of rough path
is that we assume a bound on V r/2(X).
No such bound (independent of the length of the sequence)
can be deduced from a bound on V r (X ) if r ≥ 2.
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Modified Riemann sums
Given a rough parth (X ,X) and a controlled path (Y ,Y ′),
we define modified Riemann sums for

´
Yu− dXu by

ZJ :=
J∑

j=1

(
Yj−1(Xj − Xj−1) + Y ′j−1Xj−1,j

)
. (∆2)

Why does this modification work?
Consider Y = X , it is controlled by X with derivative Y ′ ≡ 1. By
Chen’s relation
J+1∑
j=J

(
Xj−1(Xj − Xj−1) + Xj−1,j

)
= XJ−1(XJ − XJ−1) + XJ−1,J + XJ(XJ+1 − XJ) + XJ,J+1

= XJ−1(XJ+1 − XJ−1) + XJ−1,J + XJ,J+1 + (XJ − XJ−1)(XJ+1 − XJ)

= XJ−1(XJ+1 − XJ−1) + XJ−1,J+1

Hence (∆2) telescopes to X0(XJ − X0) + X0,J .
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Estimate for modified Riemann sums

Lemma
Let 2 ≤ r < 3. Let (X ,X) be a rough path indexed by 0, . . . , J,
and let Y be controlled by X with Gubinelli derivative Y ′ and
remainder R . Then

∣∣∣ J∑
j=1

(
(Yj−1 − Y0)(Xj − Xj−1) + Y ′j−1Xj−1,j

)∣∣∣
. V r/2(R)V r (X ) + V r (Y ′)V r/2(X) + |Y ′0||X0,J |.

Induction base
In the case J = 1 LHS equals X0,1.
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Proof of estimate for modified Riemann sums
Inductive step: J → J + 1. Wlog Y0 = 0. For any 1 ≤ k ≤ J have∑

j

(
Yj−1(Xj − Xj−1) + Y ′j−1Xj−1,j

)
=

∑
j 6∈{k,k+1}

(
Yj−1(Xj − Xj−1) + Y ′j−1Xj−1,j

)
+ Yk−1(Xk − Xk−1) + Yk−1(Xk+1 − Xk) + (Yk − Yk−1)(Xk+1 − Xk)

+ Y ′k−1Xk−1,k + Y ′k−1Xk,k+1 + (Y ′k − Y ′k−1)Xk,k+1

=
∑

j 6∈{k,k+1}

(
Yj−1(Xj − Xj−1) + Y ′j−1Xj−1,j

)
+ Yk−1(Xk+1 − Xk−1) + Y ′k−1Xk−1,k+1

+ (Yk − Yk−1)(Xk+1 − Xk)− Y ′k−1(Xk − Xk−1)(Xk+1 − Xk)

+ (Y ′k − Y ′k−1)Xk,k+1

last 2 lines = Rk−1,k(Xk+1 − Xk) + (Y ′k − Y ′k−1)Xk,k+1.
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Proof continued.
We choose k that minimizes the error term and estimate

min
1≤k≤J

|Rk−1,k(Xk+1 − Xk) + (Y ′k − Y ′k−1)Xk,k+1|

≤
(
J−1

J∑
k=1

|Rk−1,k(Xk+1 − Xk) + (Y ′k − Y ′k−1)Xk,k+1|r/3
)3/r

. J−3/r
(∑

|Rk−1,k(Xk+1 − Xk)|r/3
)3/r

+ J−3/r
(∑

|(Y ′k − Y ′k−1)Xk,k+1|r/3
)3/r

≤ J−3/r
(∑

|Rk−1,k |r/2
)2/r(∑

|Xk+1 − Xk |r
)1/r

+ J−3/r
(∑

|Y ′k − Y ′k−1|
r
)1/r(∑

|Xk,k+1|r/2
)2/r

≤ J−3/rV r/2(R)V r (X ) + J−3/rV r (Y ′)V r/2(X).

The factors J−3/r are summable by hypothesis r < 3.
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Modified Riemann sums are again controlled
Theorem
Let 2 ≤ r < 3 and let (X ,X) be an r -rough path.
Suppose that (Y ,Y ′) is controlled by X .
Then Z , given by (∆2), is also controlled by X
with Gubinelli derivative Y .

Proof
For J < J ′ we have

ZJ′ − ZJ =
∑

J<j≤J′

(
Yj−1(Xj − Xj−1) + Y ′j−1Xj−1,j

)
= YJ(XJ′ − XJ)

+
∑

J<j≤J′

(
(Yj−1 − YJ)(Xj − Xj−1) + Y ′j−1Xj−1,j

)
To see that Y is a Gubinelli derivative we need an `r/2 bound for
the latter sum.
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Proof continued.
By Lemma∑

J<j≤J′

(
(Yj−1 − YJ)(Xj − Xj−1) + Y ′j−1Xj−1,j

)
. V r/2(R, [J, J ′])V r (X , [J, J ′])

+ V r (Y ′, [J, J ′])V r/2(X, [J, J ′]) + ‖Y ′‖∞|XJ,J′ |.

This is `r/2 summable over any sequence of disjoint intervals [J, J ′].
Let us look for example at the first term.
For J0 < J1 < J2 < · · · consider the larger quantity(∑

j

(
V r/2(R, [Jj−1, Jj ])V

r (X , [Jj−1, Jj ])
)r/3)3/r

≤
(∑

j

(
V r/2(R, [Jj−1, Jj ])

)r/2)2/r(∑
j

(
V r (X , [Jj−1, Jj ])

)r)1/r

≤ V r/2(R)V r (X ).
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Sample paths of martingales
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Sample paths have bounded r -variation

Theorem (Lépingle, 1976)
Let X = (Xt) be a martingale. For 1 < p <∞ and 2 < r we have

‖V r
t Xt‖p ≤ Cp,r‖X‖p.

I refines martingale maximal inequality: Mf ≤ X0 + V r
t Xt

I quantifies martingale convergence:
V rXt finite =⇒ Xt converges
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Tools from probability
Lemma
Let (Xn)n be a martingale and (τj)j an increasing sequence
of stopping times. Then the sequence (Xτj )j is a martingale
with respect to the filtration (Fτj )j .
Recall

Fτ = {A ∈ F∞ | A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}
= {A ∈ F∞ | A ∩ {τ = t} ∈ Ft for all t ≥ 0}.

Theorem (Martingale square function estimate/BDG)
Let (Xn)n be a martingale and

SX :=
(∑
j≥1

|Xj − Xj−1|2
)1/2

.

Then for 1 < p <∞ we have

‖SX‖p . ‖X‖p.
28



Proof of Lépingle’s inequality
(Ω, µ, (Fn)n) filtered probability space,
(Xn)n adapted process with values in a metric space,
V∞n := supn′′≤n′≤n d(Xn′′ ,Xn′).
Stopping times with m ∈ N:

τ
(m)
0 := 0, τ

(m)
j+1 := inf

{
t > τ

(m)
j

∣∣ d(Xt ,Xτ (m)
j

) > 2−mV∞t /10
}
.

Claim:
(
V rX

)r ≤ C
∞∑

m=0

(2−mV∞∞ )r−2
∞∑
j=1

d(X
τ
(m)
j

,X
τ
(m)
j−1

)2.

Since V∞ ≤ V r , and assuming V r <∞, this implies(
V rX

)2 ≤ C
∞∑

m=0

(2−m)r−2
∞∑
j=1

d(X
τ
(m)
j

,X
τ
(m)
j−1

)2.

If (Xn) is a martingale, then by optional sampling
also the sampled process (X

τ
(m)
j

)j is a martingale.

The red sum =:S2
(m) is the square function of the sampled process,

hence by BDG inequality ‖S(m)‖p . ‖X‖p, 1 < p <∞.
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Proof of claim

Claim:
(
V r (Xn)

)r ≤ C
∞∑

m=0

(2−mV∞∞ )r−2
∞∑
j=1

d(X
τ
(m)
j

,X
τ
(m)
j−1

)2.

Let 0 ≤ t ′ < t <∞ and m ≥ 2. Suppose that

2 <
d(Xt′ ,Xt)

2−mV∞t
≤ 4.

It suffices to find j with t ′ < τ
(m)
j ≤ t and

d(Xt′ ,Xt) ≤ 8d(X
τ
(m)
j−1
,X

τ
(m)
j

).
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Enhanced martingales
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Rough paths in nilpotent groups
In order to apply the stopping time estimate,
we interpret a rough path (X ,X) as a path in the 3-dimensional
Heisenberg group H ∼= R3 with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + xy ′).

by setting Xt := (Xt ,Xt ,X0,t).
From Chen’s relation for s < t we obtain

X−1
s Xt = (Xt − Xs ,Xt − Xs ,Xs,t).

With box norm on H:

‖(x , y , z)‖ := max(|x |, |y |, |z |1/2)

and the corresponding distance d(H,H ′) := ‖H−1H ′‖ we have

V rX + (V r/2X)1/2 ∼ V rX.
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Square function of enhanced martingale
Let X be a martingale and X be given by (∆area).

Theorem
For 1 < p <∞ and r > 2 we have

‖V r/2X‖p . ‖X‖p.

The stopping time argument applied to X shows that it suffices to
bound ∑

j

∞∑
j=1

d(Xτj ,Xτj−1)2

in Lp/2, where (τj)j is an increasing sequence of stopping times.

Proposition
For every 1 < p <∞ we have

‖
∞∑
j=1

|Xτj−1,τj |‖p/2 . ‖X‖
2
p.

33



Paraproduct formulation
Proposition (diagonal case)
For 1 < p <∞ and every increasing sequence of stopping times
(τj) we have

‖
∞∑
j=1

|Xτj−1,τj |‖p/2 . ‖X‖
2
p.

Proposition (off-diagonal case)
For every 1 ≤ p1, p2 <∞ and every increasing sequence of
stopping times (τj) we have

‖
∞∑
j=1

|Πτj−1,τj (f , g)|‖1/(1/p1+1/p2)
. ‖Sf ‖p1

‖Sg‖p2
,

where Πs,t(f , g) :=
∑
s<j≤t

(fj−1 − fs)dgj , dgj = gj − gj−1.
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Tools from probability 2

Theorem (Reverse martingale square function/BDG)
If SX is the square function of a martingale X ,
then for 1 ≤ p <∞ we have

‖X‖p . ‖SX‖p.

Theorem (Martingale maximal inequality)
If (Xn)n is a martingale, then for 1 ≤ p <∞ we have

‖sup
n
|Xn|‖p . ‖X‖p.
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Preliminary remarks

The paraproduct is given by

Πτj−1,τj =
∑

τj−1<k≤τj

(fk−1 − fτj−1)(Xk − Xk−1)

=
∞∑
k=1

f
(j)
k−1(X

(j)
k − X

(j)
k−1),

where
f
(j)
k = f

τj
k − f

τj−1
k = fk∧τj − fk∧τj−1 . (stopped)

Truncating the summation to k ≤ K we obtain a martingale.
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Proof of the paraproduct estimate for p1 = p2 = 2

‖
∞∑
j=1

|Πτj−1,τj |‖1

=
∞∑
j=1

‖Πτj−1,τj‖1

.
∞∑
j=1

‖SΠτj−1,τj‖1 by reverse square function estimate

= E
∞∑
j=1

(∑
k

|f (j)k−1|
2|X (j)

k − X
(j)
k−1|

2)1/2
≤ E

∞∑
j=1

M(f (j))
(∑

k

|X (j)
k − X

(j)
k−1|

2)1/2
≤
(
E
∞∑
j=1

M(f (j))2)1/2(E ∞∑
j=1

∑
k

|X (j)
k − X

(j)
k−1|

2)1/2
37



Proof of the paraproduct estimate continued

(
E
∞∑
j=1

M(f (j))2)1/2(E ∞∑
j=1

∑
k

|X (j)
k − X

(j)
k−1|

2)1/2
=
( ∞∑
j=1

‖M(f (j))‖22
)1/2(E∑

k

|Xk − Xk−1|2
)1/2

.
( ∞∑
j=1

‖f (j)‖22
)1/2‖SX‖2

=
(
E
∞∑
j=1

|f (j)|2
)1/2‖SX‖2

= ‖Sf ‖2‖SX‖2. �(p1 = p2 = 1)
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Tools from probability 3

Lemma (Vector-valued BDG inequality)
Let h(k) be martingales with respect to some fixed filtration.
Let 1 ≤ q, r <∞. Then we have∥∥Mh(k)

∥∥
Lq(`rk )

.q,r

∥∥Sh(k)∥∥
Lq(`rk )

.

This is different from vector-valued estimates in Martikainen’s
lecture because
I the maximal function is inside the `r norm, and
I `1 is not UMD.

We postpone the proof and look at how this vector-valued
inequality is applied.
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Proof of the paraproduct estimate for 1/p1 + 1/p2 ≤ 1

‖
∞∑
j=1

|Πτj−1,τj |‖1/(1/p1+1/p2)

. ‖
∞∑
j=1

SΠτj−1,τj‖1/(1/p1+1/p2)
by vector-valued BDG

= ‖
∞∑
j=1

(∑
k

|f (j)k−1|
2|X (j)

k − X
(j)
k−1|

2)1/2‖1/(1/p1+1/p2)

≤ ‖
∞∑
j=1

Mf (j)
(∑

k

|X (j)
k − X

(j)
k−1|

2)1/2‖1/(1/p1+1/p2)

≤ ‖
( ∞∑
j=1

(Mf (j))2)1/2( ∞∑
j=1

∑
k

|X (j)
k − X

(j)
k−1|

2)1/2‖1/(1/p1+1/p2)

= ‖
( ∞∑
j=1

(Mf (j))2)1/2Sg‖1/(1/p1+1/p2)
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Proof of the paraproduct estimate continued

‖
( ∞∑
j=1

(Mf (j))2)1/2Sg‖1/(1/p1+1/p2)

≤ ‖
( ∞∑
j=1

(Mf (j))2)1/2‖p1
‖Sg‖p2

≤ ‖
( ∞∑
j=1

(Sf (j))2)1/2‖p1
‖Sg‖p2

by vector-valued BDG

= ‖Sf ‖p1
‖Sg‖p2

. �(1/p1 + 1/p2 ≥ 1)

We used BDG inequality with exponent 1/(1/p1 + 1/p2) ≥ 1.
How to handle smaller p1, p2?
For singular integrals one uses the Calderón–Zygmund
decomposition.
The CZ decomposition uses the doulbing property of cubes in Rn,
so we need a different decomposition for martingales.
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