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Lépingle’s inequality
Theorem (Lépingle, 1976)
Let f = (ft) be a martingale. For 1 < p < ∞ and 2 < r we have

‖Vrt ft‖p ≤ Cp,r‖f‖p,

where Vr is the r-variation norm

Vrtft ∶= sup
t(0)<⋯<t(J)

(∑
j
|ft(j+1) − ft(j)|r)

1/r
.

▶ refines martingale maximal inequality: Mf ≤ f0 + Vrt ft
▶ quantifies martingale convergence: Vrft finite ⟹ ft

converges
▶ Vr is a parametrization-invariant version of 1/r-Hölder

continuity
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Some variational estimates in harmonic analysis
Theorem (Jones+Seeger+Wright 2008)
If Tt are truncations of a cancellative singular integral, then

‖VrTtf‖p ≤ Cp,r‖f‖p, 1 < p < ∞, r > 2.

Same for truncated Radon transforms along homogeneous curves.
Same for spherical averages onℝd for d

d−1
< p < 2d.

They also prove an r = 2 “jump” endpoint to be explained in the next
slide.
Theorem (Mas+Tolsa 2011, 2015)
Let 𝜇 be an n-dimensional AD regular Radon measure onℝd. TFAE:

1. 𝜇 is uniformly n-rectifiable
2. for any odd CZ kernel VrtTt is Lp bounded for 1 < p < ∞, r > 2,
3. VrtRt is L2 bounded for some r < ∞, where Rt are truncated

Riesz transforms.
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Lépingle’s inequality, endpoint version
Theorem (Pisier, Xu 1988/Bourgain 1989)
For 1 < p < ∞ we have the jump inequality

Jp2(ft) ∶= sup
𝜆>0

‖𝜆N1/2
𝜆 ft‖p ≤ Cp‖f‖p,

where N𝜆 is the 𝜆-jump counting function

N𝜆ft ∶= sup
t(0)<⋯<t(J)

#{j | |ft(j+1) − ft(j)| > 𝜆}.

Observation

‖Vrft‖p,∞ ≤ Cp,r sup
𝜆>0

‖𝜆N1/2
𝜆 ft‖p,∞, 2 < r.

This + real interpolation shows that jump inequalities imply
r-variational estimates in open ranges of p.
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Proof of endpoint Lépingle inequality

𝜆-jump counting function is morally extremized by
greedy selection of 𝜆/2-jumps:

t(0) ∶= 0, t(j + 1) ∶= min{s > t(j) | |fs − ft(j)| > 𝜆/2}.

𝜆/2 𝜆

𝜆N1/2
𝜆 ≤ 𝜆(∑

j

|ft(j+1) − ft(j)|2

(𝜆/2)2 )
1/2

≤ 2(∑
j
|ft(j+1) − ft(j)|2)

1/2

– square function of the stopped martingale ft(j), bounded on Lp.

Remark (vector valued)
For martingales with values in a Banach space with martingale cotype q
can have power 1/q instead of 1/2.
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Jumps as a real interpolation space
Proof of Lépingle’s inequality gives for a given 𝜆 a decomposition

ft = ∑
j
1t(j)≤t<t(j+1)ft(j) +∑

j
1t(j)≤t<t(j+1)(ft − ft(j)).

Observation (Pisier+Xu 1988)
This decomposition shows in fact that

[L∞(V∞),L1(V1)]1/2,∞(ft) ≲ ‖f‖2,

where the LHS is a norm in a real interpolation space.
More generally, it turns out that

Jp2(ft) ∼ [L∞(V∞),Lp𝜃(V2𝜃)]𝜃,∞(ft) ≲ ‖f‖p

for 1 < p < ∞ and 0 < 𝜃 < 1.
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Application: diffusion semigroups
Corollary
If (Tt) is a diffusion semigroup (i.e., contractive on L1 and L∞,
selft-adjoint, order positive, Tt1 = 1), then

Jp2(Ttf) ≤ Cp‖f‖p, 1 < p < ∞.

Proof.
Rota’s dilation theorem: Ttf = 𝔼 ∘martingale.
Conditional expectation bounded on Jp2 by interpolation.

Corollary (Mirek, Stein, ZK)
Let G ⊂ ℝd be a symmetric convex body and
Atf(x) = |G|−1 ∫G f(x + ty)dy. Then

Jp2(Atf) ≤ Cp‖f‖p, 3/2 < p < 4.

▶ maximal estimate by Bourgain (L2), Carbery
▶ variational estimate by Bourgain+Mirek+Stein+Wrobel
▶ can input results for ℓq balls by Müller 1990 (q < ∞),

Bourgain 2013 (q = ∞) to get larger range of p
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Periodic multipliers
Let (mt) be a sequence of multipliers supported on [−

1
2q
, 1
2q
]d, q

positive integer. Define periodic multipliers
mper
t (𝜉) ∶= ∑

l∈ℤd
mt(𝜉 − l/d).

Theorem (Magyar+Stein+Wainger 2002)
For any Banach space X of functions in t and 1 ≤ p ≤ ∞ we have

‖mper‖multℓp→ℓp(X) ≤ Cp,d‖m‖multLp→Lp(X)

Theorem (Mirek+Stein+ZK)
For any Banach spaces X0,X1 of functions in t and 1 ≤ p𝜃 we have

‖mper‖multℓp→[ℓ∞(X0),ℓp𝜃(X1)]𝜃;∞
≤ Cp,d‖m‖multLp→[L∞(X0),Lp𝜃(X1)]𝜃;∞

Corollary

‖mper‖multℓp→Jp2
≤ Cp,d‖m‖multLp→Jp2
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Application: discrete Radon transforms
Let ANf(x) ∶=

1
N
∑N

n=1 f(x − n2).

Theorem (Mirek+Stein+Trojan 2015)

‖VrNANf‖ℓp(ℤ) ≲ ‖f‖ℓp(ℤ), 1 < p < ∞, r > 2.

▶ Circle method approach by Bourgain
▶ Ionescu–Wainger multipliers select rationals with small

denominators
▶ Use periodic multipliers on major arcs

Theorem (Mirek+Stein+ZK)

Jp2(ANf) ≲ ‖f‖ℓp(ℤ), 1 < p < ∞.
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What are correct endpoint variational inequalities?
Theorem (S.J. Taylor 1972)
If (Bt) is the standard Brownian motion, then

𝜓(Vt<T)(Bt) = sup
t0<⋯<tJ<T

‖Btj+1 − Btj‖𝜓(L)j ,

is a.s. finite with the Young function

𝜓(t) = t2/ log∗ log∗ t.

Same is true for all martingales with continuous paths, since they
are reparametrizations of Brownian motion.
Question
What is the best 𝜓-variational estimate for general martingales?
Variational inequalities:

𝜓(t) = tr, r > 2.

Jump inequalities:

𝜓(t) = t2/(log∗ t)1+𝜖.
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Variational estimates in time-frequency analysis
Theorem (Oberlin+Seeger+Tao+Thiele+Wright 2009)
The variationally truncated partial Fourier integral

sup
t0<⋯<tJ

(∑
j

||∫
tj<𝜉<tj+1

e2𝜋ix𝜉 ̂f(𝜉)d𝜉||
r
)
1/r

is bounded L2 → L2 for r > 2.
▶ Quantitative form of Carleson’s theorem

Theorem (Do+Muscalu+Thiele 2016)
The variationally truncated bilinear Hilbert transform

sup
t0<⋯<tJ

(∑
j

||∫
tj<𝜉1<𝜉2<tj+1

e2𝜋ix(𝜉1+𝜉2) f̂1(𝜉1)f̂2(𝜉2)d𝜉1d𝜉2||
r/2
)
2/r

is bounded L2 × L2 → L1 for r > 2.
▶ Uses a variational estimate for paraproducts

11



Martingale paraproduct

For martingales (fj)j, (gj)j and martingale differences dfj = (fj− fj−1)
the truncated paraproduct (or area process) is defined by

Πt
s(f, g) ∶= ∑

s≤j<k≤t
dfjdgk.

s

t

dgj

s tdfj s

t

s t

(ft − fs)(gt − gs) = Πt
s(f, g) + dfs+1dgs+1 +⋯+ dftdgt + Πt

s(g, f)
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Variational estimate for martingale paraproduct

Theorem (Do+Muscalu+Thiele 2012 (doubling), Kovač+ZK
2018 (non-doubling))
For 1 < p1, p2 < ∞ with 1

p1
+ 1

p2
+ 1

p3
= 1 and 2 < r we have

‖
‖ sup
t0<⋯<tJ

(∑
j
||Πt(j+1)

t(j) (f, g)||r/2)
2/r‖
‖p′3

≤ Cp1,p2‖f‖p1‖g‖p2

Proof idea: for 𝜆 > 0 estimate the jump counting function

sup
t(0)<⋯<t(J)

#{j | |Πt(j+1)
t(j) (f, g)| > 𝜆}.
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Application: stochastic integrals

Corollary
Let (Xt), (Yt) be càdlàg continuous time martingales. Then for
1 < p1, p2 < ∞ with 1

p1
+ 1

p2
+ 1

p3
= 1 and 2 < r we have

‖
‖ sup
t0<⋯<tJ

(∑
j
||∫
(t(j),t(j+1)]

(Xs−−Xt(j))dYs||
r/2)

2/r‖
‖p′3

≤ Cp1,p2,r‖X‖p1‖Y‖p2 .

▶ Chevyrev+Friz 2018: diagonal case p1 = p2.
▶ Friz+Victoir 2006: martingales with continuous paths.
▶ Classically X,Y are Brownian motions.
▶ Useful in Lyons’s theory of rough paths.
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