The endpoint multilinear Kakeya theorem via the Borsuk–Ulam/Lusternik–Schnirelmann theorem After L. Guth, A. Carbery, I. Valdimarsson

Pavel Zorin-Kranich

University of Bonn

Kopp, October 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Main theorem

Definition

A 1-*tube* $T \subset \mathbb{R}^n$ is the 1-neighborhood of a straight doubly infinite line in the direction $e(T) \in \mathbb{S}^{n-1}$. Let $\mathcal{T}_1, \dots, \mathcal{T}_n$ be families of 1-tubes in \mathbb{R}^n such that $e(T_j)$ is close to the basis vector e_i for $T_i \in \mathcal{T}_i$.

Theorem (Multilinear Kakeya/perturbed Loomis–Whitney)

$$\int_{\mathbb{R}^n} \left(\sum_{T_1 \in \mathcal{T}_1} \chi_{T_1}(x) \cdots \sum_{T_n \in \mathcal{T}_n} \chi_{T_n}(x) \right)^{1/(n-1)} dx \\ \lesssim (\#\mathcal{T} \cdots \#\mathcal{T}_n)^{1/(n-1)}.$$

Here and later implicit constants depend only on n.

ション (日本) (日本) (日本) (日本)

Main theorem, discrete version

Let Q denote the lattice of dyadic cubes of unit size. Let also

$$G(Q) = \left(\prod_{j} \#\{T_j \in \mathcal{T}_j \mid T_j \cap Q \neq \emptyset\}\right)^{1/(n-1)}.$$

Then

$$\sum_{\mathcal{Q}\in\mathcal{Q}}G(\mathcal{Q})\lesssim\prod_j(\#\mathcal{T}_j)^{1/(n-1)}.$$

Main theorem, discrete version

Let Q denote the lattice of dyadic cubes of unit size. Let also

$$G(Q) = \left(\prod_{j} \#\{T_j \in \mathcal{T}_j \mid T_j \cap Q \neq \emptyset\}\right)^{1/(n-1)}$$

Then

$$\sum_{\mathcal{Q}\in\mathcal{Q}} G(\mathcal{Q}) \lesssim \prod_{j} (\#\mathcal{T}_{j})^{1/(n-1)}.$$

Equivalent formulation: for every $M : \mathcal{Q} \to \mathbb{R}_+$ with $\sum_{Q} M(Q) = 1$ there exist $S_j : \mathcal{Q} \to \mathbb{R}_+$ with

$$G(\mathcal{Q})M(\mathcal{Q})^{1/(n-1)} \lesssim \prod_{j} S_{j}(\mathcal{Q})^{1/(n-1)},$$

 $\sum_{\mathcal{Q}} S_{j}(\mathcal{Q}) \lesssim \#\mathcal{T}_{j}.$

Proof of equivalence (needed direction)
Let
$$\mathcal{G} := \sum_{\mathcal{Q}} G(\mathcal{Q})$$
 and $M(\mathcal{Q}) = G(\mathcal{Q})/\mathcal{G}$. Then

$$\mathcal{G} = \left(\mathcal{G}^{-1/n} \sum_{\mathcal{Q}} G(\mathcal{Q})\right)^{n/(n-1)}$$

$$= \left(\sum_{\mathcal{Q}} G(\mathcal{Q})^{(n-1)/n} M(\mathcal{Q})^{1/n}\right)^{n/(n-1)} \qquad \text{(hypothesis)}$$

$$\lesssim \left(\sum_{\mathcal{Q}} \prod_{j=1}^{n} S_j(\mathcal{Q})^{1/n}\right)^{n/(n-1)} \qquad \text{(Hölder)}$$

$$\lesssim \prod_{j=1}^{n} \left(\sum_{\mathcal{Q}} S_j(\mathcal{Q})\right)^{1/(n-1)} \qquad \text{(hypothesis)}$$

Not much happened, but cross-interaction and self-interaction are separated.

Ansatz for tubes

$$S_j(Q) = \sum_{T \in \mathcal{T}_j} S_j(Q, T_j)$$

Theorem

For every function $M : \mathcal{Q} \to \mathbb{R}_+$ with $\sum M = 1$ there exist $S_j : \mathcal{Q} \times \mathcal{T}_j \to \mathbb{R}_+$ with

$$M(Q) \lesssim \prod_{j} S_{j}(Q, T_{j}) ext{ if } T_{j} \cap Q \neq \emptyset,$$

 $\sum_{Q \in \mathcal{Q}: T_{j} \cap Q \neq \emptyset} S_{j}(Q, T_{j}) \lesssim 1 ext{ for each } T_{j} \in \mathcal{T}_{j}.$

Wlog *M* compactly supported.

・ロ・・師・・雨・・日・ のへぐ

Ansatz for tubes

$$S_j(Q) = \sum_{T \in \mathcal{T}_j} S_j(Q, T_j)$$

Theorem

For every function $M : \mathcal{Q} \to \mathbb{R}_+$ with $\sum M = 1$ there exist $S_j : \mathcal{Q} \times \mathcal{T}_j \to \mathbb{R}_+$ with

$$M(Q) \lesssim \prod_{j} S_{j}(Q, T_{j}) ext{ if } T_{j} \cap Q \neq \emptyset,$$

 $\sum_{Q \in \mathcal{Q}: T_{j} \cap Q \neq \emptyset} S_{j}(Q, T_{j}) \lesssim 1 ext{ for each } T_{j} \in \mathcal{T}_{j}.$

Wlog *M* compactly supported. Will find polynomial *p* of degree $\lesssim \lambda$ and set

 $S_j(Q, T_j) := \lambda^{-1} \mathfrak{s}_{p,Q}(e(T_j)).$ Add this to handout!

Directional surface area

Let Z_p be the zero set of the polynomial p. Let

$$\mathfrak{s}_{p,\mathcal{Q}}(v) := \int_{Z_p \cap \mathcal{Q}} |\langle v, N_x \rangle| \mathrm{d}\mathcal{H}^{n-1}(x), \quad N_x \text{ normal unit vector.}$$

(small lie: this is not a continuous function of p, so one has to use a mollified version instead to apply a topological result)

< ロ > < 部 > < 差 > < 差 > 差 の < @</p>

Directional surface area

Let Z_p be the zero set of the polynomial p. Let

$$\mathfrak{s}_{p,\mathcal{Q}}(v) := \int_{Z_p \cap \mathcal{Q}} |\langle v, N_x \rangle| \mathrm{d}\mathcal{H}^{n-1}(x), \quad N_x \text{ normal unit vector.}$$

(small lie: this is not a continuous function of p, so one has to use a mollified version instead to apply a topological result) Guth's tube estimate:

$$\sum_{\mathcal{Q}\in\mathcal{Q},T\cap\mathcal{Q}\neq\emptyset}\mathfrak{s}_{p,\mathcal{Q}}(e(T))\leq\int_{Z_p\cap\tilde{T}}|\langle e(T),N_x\rangle|\mathrm{d}\mathcal{H}^{n-1}(x)\lesssim\deg p.$$

This takes care of the self-interaction term.

Cross-interaction term

Let now
$$T_j \in \mathcal{T}_j$$
 be tubes and $Q \in Q$. Then

$$\prod_j S(Q, T_j) = \lambda^{-n} \prod_j \mathfrak{s}_{p,Q}(e(T_j))$$

$$\sim \lambda^{-n} \Big(\operatorname{vol} \operatorname{conv}(0, e(T_j)/\mathfrak{s}_{p,Q}(e(T_j))) \Big)^{-1}$$

by transversality

$$\gtrsim \lambda^{-n} \Big(\operatorname{vol} \mathbb{B}_{\mathfrak{s}_{p,Q}} \Big)^{-1},$$

where \mathbb{B} is the unit ball of the norm \mathfrak{s} . Want to find polynomial *p* with

$$\lambda^n M(Q) \lesssim \left(\operatorname{vol} \mathbb{B}_{\mathfrak{s}_{p,Q}}
ight)^{-1}$$

Visibility

Want to find polynomial *p* with

$$\widetilde{M}(Q) := \lambda^n M(Q) \lesssim \left(\operatorname{vol} \mathbb{B}_{\mathfrak{s}_{p,Q}} \right)^{-1} =: \operatorname{Vis}_{p,Q}.$$

Small lie: we pretend that $\mathbb{B}_{\mathfrak{s}_{p,Q}} \subset \mathbb{B}$ for all Q with $M(Q) \neq 0$. For this we need λ to be large enough; this is how we choose λ . Notice that

$$\sum_{Q} \tilde{M}(Q) = \lambda^n$$

is approximately the dimension of the space of polynomials of degree $\leq \lambda$ in *n* variables. Let \mathcal{P}^* be the unit sphere in this space.

・ロト・4回ト・ヨト・ヨト ヨークへの

Naive approach to maximizing visibility

Imagine for the moment that the directional surface area is isotropic, i.e. $\mathfrak{s}_{p,Q}(v) \sim s_{p,Q} ||v||$ for all p, Q, where $s_{p,Q}$ is the usual surface area. In this case:

- 1. Fit into each cube Q approximately $\tilde{M}(Q)$ disjoint balls of measure $\tilde{M}(Q)^{-1}$.
- 2. Use the polynomial ham sandwich theorem to find p of degree $\lesssim \lambda$ that bisects all these balls.
- 3. In each ball Z_p has surface area at least $\tilde{M}(Q)^{-(n-1)/n}$ by the isoperimetric inequality.
- 4. Summing up gives $s_{p,Q} \gtrsim \tilde{M}(Q)^{1/n}$, hence $\mathbb{B}_{\mathfrak{s}_{p,Q}} \subset \tilde{M}(Q)^{-1/n}\mathbb{B}$, hence $\operatorname{Vis}_{p,Q} \gtrsim \tilde{M}(Q)$.

Problem: $\mathfrak{s}_{p,Q}$ not isotropic.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへで

Numerology of adapted ellipsoids

Suppose now that $\mathbb{B}_{s_{p,Q}}$ basically does not depend on p, e.g. in the sense that its John ellipsoid $E_Q \subset \mathbb{B}$ does not depend on p. In this case:

- 1. We do not have to worry about the cubes with vol $E_Q \lesssim \tilde{M}(Q)^{-1}$.
- 2. For the cubes with $\operatorname{vol} E_Q \gg \tilde{M}(Q)^{-1}$ a fixed positive proportion can be covered by $\leq \tilde{M}(Q)$ disjoint copies of ηE_Q for some small absolute constant η .
- 3. By the polynomial ham sandwich theorem there exists p of degree $\leq \lambda$ that bisects all these copies.
- 4. Let v_1, \ldots, v_n be principal axes of E_Q . In each copy E' of ηE_Q the surface Z_p has area at least $vol(\eta E_Q)$ in the direction ηv_j for some *j* (this is an affine invariant formulation of the isoperimetric inequality).
- 5. Adding these contributions we $\mathfrak{s}_{p,Q}(\eta v_j) \gtrsim 1$ contradiction for small enough η .

The topological input

Theorem (Lusternik, Schnirelmann, 1930) If \mathbb{S}^N is covered by N + 1 closed sets, then one of these sets contains a pair of antipodal points.

The topological input

Theorem (Lusternik, Schnirelmann, 1930)

If \mathbb{S}^N is covered by N + 1 closed sets, then one of these sets contains a pair of antipodal points.

We claim that the sets

$$B(Q) = \{ p \in \mathcal{P}^* \mid 1 \le \operatorname{Vis}_{p,Q} \le \tilde{M}(Q) \}$$

do not cover \mathcal{P}^* . To see this we will write $\cup_Q B(Q)$ as the union of $\lesssim \sum_Q \tilde{M}(Q)$ closed sets that are disjoint from their antipodes.

The topological input

Theorem (Lusternik, Schnirelmann, 1930)

If \mathbb{S}^N is covered by N + 1 closed sets, then one of these sets contains a pair of antipodal points.

We claim that the sets

$$B(Q) = \{ p \in \mathcal{P}^* \mid 1 \le \operatorname{Vis}_{p,Q} \le \tilde{M}(Q) \}$$

do not cover \mathcal{P}^* . To see this we will write $\cup_Q B(Q)$ as the union of $\lesssim \sum_Q \tilde{M}(Q)$ closed sets that are disjoint from their antipodes. The John ellipsoid $E_{p,Q}$ of $\mathbb{B}_{\mathfrak{s}_{p,Q}}$ depends continuously on p. Using the geometry of the space of all ellipsoids we split the sphere \mathcal{P}^* into $O_n(1)$ symmetric closed subsets \mathcal{P}^*_{θ} on each of which $E_{p,Q}$ is locally constant. Let

$$B(Q,\theta) = \{ p \in \mathcal{P}_{\theta}^* \mid 1 \le \operatorname{Vis}_{p,Q} \le \tilde{M}(Q) \}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)(C)

Covering

For each ellipsoid E ⊂ B with vol E ≥ M(Q)⁻¹ fix a maximal collection of disjoint translates of ηE inside each Q, index them by α = 1,..., Cη⁻ⁿM(Q). Numerology shows that not each translate of ηE_{p,Q} can be (approximately) bisected

2. Let

$$B(Q, \theta, \alpha) = \{p \in B(Q, \theta) \text{ not } \approx \text{ bisects } \alpha \text{-th copy of } \eta E_{p,Q}\}.$$

This is a closed set, and it can be partitioned into closed antipodal sets by looking which of $\{x \in Q \mid p(x) > 0\}$ and $\{x \in Q \mid p(x) < 0\}$ is larger.

End of talk

Tanks.

Zhang's extensions to hyperplanes

We can replace tubes T_j by neighborhoods H_j of affine k_j -subspaces (for simplicity with $\sum_{j=1}^m k_j = n$). I will not state the results, but will explain the additional ingredients involved in obtaining them. Let *p* denote the same polynomial as before and let μ_Q be the pushforward of the surface measure on $Z_p \cap Q$ to $\mathbb{R}^n = \Lambda^1 \mathbb{R}^n$ under the normal vector field. In this case we use

$$S_j(Q,H_j) = \lambda^{-k_j} |\langle H_j, \mu_Q^{\wedge k_j} \rangle|,$$

where H_j is also used for the volume form on the tangential space of the central affine subpace of H_j . The intersection estimate still holds (but seems to require a fair bit of linear algebra).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cross-interaction for hyperplanes

Lemma $|\mu^{\wedge n}| \gtrsim \operatorname{Vis}_{p,Q}.$

Proof.

Note $\mathfrak{s}_{p,Q}(v) = \int |\langle v, w \rangle | d\mu(w)$. By affine invariance wlog $\mathbb{B}_{\mathfrak{s}_{p,Q}} \sim \mathbb{B}$. In this case $|\mu| \leq 1$ and μ cannot concentracte near hyperplanes.

Lemma

$$|\mu^{\wedge n}||\wedge_{j=1}^{m}H_{j}|\lesssim \prod_{j=1}^{m}|\langle H_{j},\mu^{\wedge k_{j}}\rangle|.$$

Proof. Laplace expansion formula.

イロト (母) (日) (日) (日) (日) (日)