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Abstract. Via a construction due to V. Drinfel’d, we prove an equivalence of categories,

generalizing the equivalence between commutative flat group schemes in characteristic p
with trivial Verschiebung and their Dieudonné modules to group schemes with Fq-action.
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1. Introduction

Let p be a prime and let k be a field of characteristic p. Denote by Gr+
k the category of

affine commutative group schemes over k which can be embedded into GNa for some set N .
We assign to G ∈ Gr+

k its Dieudonné Fp-module M(G) = HomGr+k
(G,Ga), with the obvious

left module structure over EndGr+k
(Ga) ∼= k[F ], the non-commutative polynomial ring with

Fλ = λpF for λ ∈ k.
These Dieudonné modules completely classify group schemes of the above type, as follows.

Theorem 1.1 ([3], IV, §3, 6.7). The contravariant functorM defines an exact anti-equivalence
of categories

M : Gr+
k −→ k[F ] -Mod . (1.1)

Under this duality, algebraic group schemes correspond to finitely generated k[F ]-modules,
and finite group schemes to finite-dimensional k-vector spaces.

The above result allows us to describe the structure of our category over a perfect field,
and its simple objects if the base is algebraically closed.

Theorem 1.2 ([3], IV, §3, 6.9). Let k be a perfect field. Then G ∈ Gr+
k is algebraic if and

only if it can be written as a product

G ∼= Gna × π0(G)×H,
where n ∈ N, H is a finite product of group schemes of the form αps , and π0(G) is an étale
sheaf of finite Fp-vector spaces. If k is algebraically closed, then

π0(G) ∼= (Fp)m, m ∈ N.
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On the other hand, let S be a scheme of characteristic p. Consider the category gr+∨
S

of locally finitely presented flat group schemes over S of height ≤ 1 (i.e. killed by their
Frobenius). Let p- LieS denote the category of finite locally free OS-p-Lie algebras. Then we
have the following classification theorem, similar to the above.

Theorem 1.3 ([8], Remark 7.5). The covariant functor

L : gr+∨
S −→ p- LieS , G 7−→ Lie(G),

defines an equivalence of categories.

Two of our main results generalize Theorem 1.1, resp. reduce to Theorem 1.3 via Cartier
duality (when “q = p”). Moreover, we formulate two conjectures under which they unify.

Assume that S is an Fq-scheme for some prime power q = pr. Our group schemes G are
affine, commutative, flat over S and carry an Fq-action. We require that locally on S, there
is an embedding G ↪→ GNa for some set N , which respects the Fq-actions.

The category of these group schemes will be denoted by Fq- Gr+
S , and its full subcategory

of finite group schemes of finite presentation is called Fq- gr+
S .

On the other hand, we consider left OS [F r]-modules, which are flat as OS-modules. They
are called Fq-shtukas over S, and their category is denoted by Fq- ShtS . We write Fq- shtS
for the full subcategory of Fq- ShtS of locally free modules of finite rank over OS .

We study the following generalization of the contravariant functor (1.1),

Mq =M : Fq- gr+
S −→ Fq- shtS , G 7−→ HomFq- Gr+S

(G,Ga).

We also explain the construction of a functor in the other direction,

Gq = G : Fq- shtS −→ Fq- gr+
S ,

which is fully faithful and left-adjoint to M. However, Gq does not define an equivalence

of categories for q 6= p. Rather, we describe a full subcategory Fq- gr+,b
S of balanced group

schemes in Fq- gr+
S , and prove that it is the essential image of G.

Namely, let G = Spec(BG) ∈ Fq- gr+
S . Then we show that the space of primitive elements

in the affine algebra of G decomposes into eigenspaces for the F×q -action as

Prim(BG) =

r−1⊕
s=0

Primps(BG). (1.2)

Now G is called balanced, if the p-Frobenii Primpt(BG) → Primpt+1(BG), x 7→ xp, are

bijective for all 0 ≤ t < r − 1. Note that when q = p, we recover Fp- gr+,b
S = gr+

S .

Theorem 1.4. The functor G : Fq- shtS → Fq- gr+,b
S defines an exact anti-equivalence of

categories with quasi-inverse M.

Our definition of the balanced subcategory of Fq- gr+
S is inspired by Raynaud’s paper [17].

He considers finite commutative group schemes G with an action of Fq, and the decomposition
of the augmentation ideal into eigenspaces for the F×q -action,

IG =

q−1⊕
j=1

Ij ,

similarly to (1.2). Note that all summands Ij are finite locally free OS-modules. Raynaud
imposes the condition that rk(Ij) = 1, for all j.

We define a group scheme G ∈ Fq- gr+
S to be quasi-balanced if rk(Ij) is the same for all j.

This turns out to be almost the same as being balanced; in particular, Raynaud’s condition
implies the balance property. The following theorem is our second main result.

Theorem 1.5. Every G ∈ Fq- gr+,b
S is quasi-balanced. For q 6= 4, the converse holds.

Finally, we consider the question whetherM : Fq- Gr+,b
S → Fq- ShtS defines an equivalence

of categories in general. In order to make sense of this, we have to assume the following.
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Conjecture 1.6. For any G ∈ Fq- Gr+
S , the OS-module M(G) is flat.

Recall from above that it holds for finite G. Moreover assume the following key statement.

Conjecture 1.7. For G ∈ Fq- Gr+
S locally of finite presentation, locally on S, there exists an

embedding G ↪→ GNa , with N ∈ N, such that the morphism M(GNa )→M(G) is surjective.

This follows from Theorem 1.1 if S = Spec(k) is a point. Moreover, it is true in the finite
case. We obtain the conditional result that M is an equivalence if we restrict ourselves to
finitely presented group schemes and finitely generated OS [F r]-modules, respectively.

In particular, if S = Spec(k), we obtain the following generalization of Theorem 1.2.

Theorem 1.8. Let k be a perfect field. Then a balanced group scheme G ∈ Fq- Gr+,b
k is

algebraic if and only if it is isomorphic to a product

G ∼= Gna × π0(G)×H,
with n ∈ N and H a product of group schemes of the form αqs , and where π0(G) is an étale
sheaf of finite Fq-vector spaces. If k is algebraically closed, π0(G) ∼= (Fq)m, for some m ∈ N.

Theorem 1.4 has an interesting history. In his article [4], §2, Drinfel’d defines the functor
G : Fq- shtS → Fq- gr+

S and shows that it is fully faithful and exact. Furthermore, he proves

that the étale group schemes in Fq- gr+
S lie in the essential image of G.

In Laumon’s book [12], App. B, he claims that Fq- shtk is anti-equivalent to Fq- gr+
k , where

k is a perfect field of characteristic p. However, Fq- gr+
k is not an abelian category for q 6= p,

and αp is of Fq-additive type but not balanced. This error was pointed out to us by Hartl.
Laumon’s argument is sufficiently detailed to locate the mistake in his reasoning.

In [19], Proposition 1.7, Taguchi gives a (rather brief) proof of Theorem 1.4. However,

he describes Fq- gr+,b
S by a condition on the order of the group schemes, which precludes a

generalization to the category Fq- Gr+
S as above.

Abrashkin [1] considers a category DGr∗(Fq)S , based on a definition of Faltings [5].

Roughly, the Fq-action on G ∈ Fq- gr+
S is strict, if G has a deformation G[ (which is then

universal with respect to its Fq-action) such that Fq acts via scalar multiplication on the
associated representative of the cotangent complex.

In §2.3, Abrashkin constructs an equivalence of categories Dq : Fq- shtS
∼−−→ DGr∗(Fq)S .

Moreover, in §2.3.2., he shows that a group scheme carrying a strict Fq-action is balanced.

Hence, the obvious functor DGr∗(Fq)S → Fq- gr+,b
S is well-defined, and it is clear from the

constructions that the following diagram commutes.

Fq- shtS DGr∗(Fq)S

Fq- gr+,b
S

Dq

Gq

The above equivalence of categories appears in Hartl-Singh [11], Theorem 5.2, at the torsion
level of the function field analogue of the crystalline Dieudonné theory for p-divisible groups
they establish over a general base. This was one of the main motivations for our study. For
further applications in this direction, see for example Hartl-Kim [10], as well as the paper [9]
by Genestier and V. Lafforgue, where Theorem 1.4 appears as Proposition 0.3.

Let us briefly outline the structure of the paper. In §2, we provide some basic theory
of group schemes we need. Section §3 specializes to group schemes of additive type, and
culminates in the proof of Theorem 1.4 in the crucial case q = p. Some details are postponed
to avoid repetition and streamline the argument.

In §4 and §5, we define the categories Fq- shtA and Fq- gr+
A, respectively, and study their

internal structure. Section §6 is concerned with the construction of the functorsM and G, a
more detailed analysis of their properties, and the proof of Theorem 1.4.

In §7, we introduce quasi-balanced group schemes, and compare the two balance conditions.
Finally, §8 concerns the question what we can still say in the case of infinite group schemes.
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2. Preliminaries on group schemes

Let p be a prime number, and S a scheme of characteristic p.

Definition 2.1. For an S-scheme X, denote by FrobX : X → X its Frobenius endomorphism.
Let X(p) = X ×S,FrobS S. The relative Frobenius FX : X → X(p) of X is defined by the
following diagram with cartesian square.

X

X(p) S

X S.

FX

FrobX ·y
FrobS

In particular, FX is a morphism of S-schemes.

Definition 2.2. We denote by GrS the category of affine commutative flat group schemes
over S, and its full subcategory of finite group schemes locally of finite presentation by grS .

Convention: All of our considerations take place locally on S. To emphasize when we
assume S = SpecA, we will write GrA = GrS . We also fix G = SpecBG as a notation.

Definition 2.3. We write HopfA, resp. hopfA, for the opposite category of GrA, resp. grA.

Definition 2.4. Let G = SpecBG ∈ GrA. Consider the symmetrization morphism

s : B⊗pG −→ TSp(BG), x1 ⊗ . . .⊗ xp 7−→
∑
π∈Sp

xπ(1) ⊗ . . .⊗ xπ(p), (2.1)

where TSp(BG) := (B⊗pG )Sp . Since G is flat, x 7→ x⊗p induces an isomorphism

σ∗pBG := BG ⊗A,σp A ∼−−→ TSp(BG)/s(B⊗pG ),

see [3], IV, §3, 4.1. Here, σp denotes the Frobenius of A, and so we have G(p) = Spec(σ∗pBG),
which is by the above a closed subscheme of SpG := Spec(TSp(BG)). The Verschiebung of
G is then defined as the composition

VG : G(p) ↪−→ SpG
mult−−−→ G,

where mult is the p-fold multiplication on G, which factors over SpG, since G is commutative.

Remark 2.5. We have FG ◦ VG = p · idG, and VG ◦ FG = p · idG(p) , by [3], IV, §3, 4.6. On
affine algebras, V ∗G acts by taking p-th “copowers”. In this sense, it is dual to the (relative)
Frobenius, which we make precise below. The name (German for “shift”) comes from the
Verschiebung on Witt (co-)vectors, where it acts as an index shift (cf. [7], III, §3.1).

Definition 2.6. For G ∈ GrA, let η : BG → A be the augmentation – or counit – of BG,
given by the unit section of G. The augmentation ideal of G is defined by IG = ker(η).
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Remark 2.7. The short exact sequence

0 −→ IG −→ BG
η−−→ A −→ 0

is split on the right by the unit ε : A→ BG of BG, so that in fact BG = A⊕IG. In particular,
the A-module IG is flat.

Definition 2.8. Let G ∈ GrA. The space of primitive elements in BG is defined by

Prim(BG) := {x ∈ IG | ∆(x) = x⊗ 1 + 1⊗ x},
where ∆ is the comultiplication on BG, i.e. the map induced by the multiplication of G. The
subgroup of group-like elements of BG is defined by

Grp(BG) := {x ∈ BG | ∆(x) = x⊗ x, η(x) = 1},
where η : BG → A is the counit of BG.

Example 2.9. The group structure on Ga = SpecA[x] is defined by x ∈ Prim(BGa). Hence

Prim(BG) ∼= Hom(G,Ga),

for G ∈ GrA, by the universal property of the polynomial algebra.

Remark 2.10. Let G ∈ GrA and x ∈ IG. Then

∆(x) ≡ x⊗ 1 + 1⊗ x mod IG ⊗ IG,
cf. [20], §2.3. This explains the name “primitive element”.

Example 2.11. Let x ∈ BG. On x ∈ Prim(BG), the Verschiebung vanishes,

V ∗G(x) = x⊗ 1⊗ . . .⊗ 1 + . . .+ 1⊗ . . .⊗ 1⊗ x =
1

(p− 1)!
s(x⊗ 1⊗ . . .⊗ 1) ≡ 0,

where s is the morphism (2.1). On the other hand, if x ∈ Grp(BG), then

V ∗G(x) = x⊗p ∼= x⊗σp 1

acts identically.

Proposition 2.12. Let G = SpecB and H = SpecC be affine group schemes over A. Then
the primitive elements

Prim(B ⊗ C) = Prim(B)⊗ 1 + 1⊗ Prim(C)

are compatible with tensor products.

Proof. We have to show that the isomorphism

Prim(B)×Prim(C) ∼−−→ Hom(G,Ga)×Hom(H,Ga) ∼−−→ Hom(G×H,Ga) ∼−−→ Prim(B⊗C)

is given by (y, z) 7→ y ⊗ 1 + 1 ⊗ z ∈ Prim(B ⊗ C). By definition, the image of (y, z) in
Hom(G×H,Ga) is induced by the unique Hopf algebra morphism f : A[x]→ B ⊗C so that

x A[x] x

y B B ⊗ C C z

∈
f∃!

3

∈ πB πC
3

commutes. Here, the projection πB : B ⊗C → B (and similarly πC : B ⊗C → C) is given by
the injection G → G ×H, g 7→ (g, 0). Explicitly, πB(b ⊗ c) = bε(η(c)), where η : C → A is
the counit and ε : A→ C the unit of C. But now indeed,

πB(f(x)) = πB(y ⊗ 1 + 1⊗ z) = yε(η(1)) + ε(η(z)) = y,

because z ∈ IH = ker(η). We have πC(f(x)) = z by the same argument. �

Definition 2.13. Let G ∈ GrS . The Cartier dual G∨ = Hom(G,Gm) of G is defined by

G∨ : R 7−→ HomGrR(G⊗R, Gm ⊗R)

as a functor of points.
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Example 2.14. The group scheme αp = SpecA[x]/(xp), with x ∈ Prim(Bαp), is self-dual,

α∨p = αp,

cf. e.g. [16], §5, p.11. On the other hand, consider the constant group scheme

Fp ∼= SpecA[x]/(xp − x),

where x is primitive. Its dual is given by the roots of unity, with group-like generator T ,

µp = SpecA[T ]/(T p − 1).

Lemma 2.15 (cf. [3], II, §1, 2.10; [18], §3.2.2). Let G ∈ grA. Then G∨ = SpecB∨G, where
the dual Hopf algebra B∨G = HomA(BG, A) carries as (co-)multiplication

∇G∨ : B∨G ⊗B∨G ∼= Hom(BG ⊗BG, A)
∆∗G−−→ Hom(BG, A),

∆G∨ : B∨G
∇∗G−−→ Hom(BG ⊗BG, A) ∼= B∨G ⊗B∨G,

the transpose of the (co-)multiplication on BG. Similarly for the unit and counit,

εG∨ : A ∼= HomA(A,A)
η∗G−−→ B∨G,

ηG∨ : B∨G
ε∗G−−→ HomA(A,A) ∼= A.

Remark 2.16. In the case of Lemma 2.15, it is easy to see that Frobenius and Verschiebung
are dual to one another, as Cartier duality exchanges multiplication and comultiplication.
The same is indeed true for any G ∈ GrA by [3], IV, §3, 4.9. Namely,

FG∨ = (VG)∨, (2.2)

and assuming G∨ is represented by a flat group scheme over A, also

VG∨ = (FG)∨.

The following result is crucial for our main theorem in the finite case.

Proposition 2.17. For G = SpecBG ∈ grA, there are natural isomorphisms of A-modules

LieG∨ ∼= HomA(I/I2, A) ∼= DerA(B∨, A) ∼= PrimBG,

where B∨ = B∨G and I = ker(η∨ : B∨ → A) is the augmentation ideal of G∨.

Proof (cf. [7], I, §8.3 ff.) Let A(ε) = A[t]/(t2) be the algebra of dual numbers and denote
by π : A(ε)� A the projection. For u ∈ G∨(A(ε)), we have by definition

u ∈ LieG∨ = kerG∨(π)⇐⇒ (B∨
u−→ A(ε)

π−→ A) = η∨ ⇐⇒ u(I) ⊆ εA(ε).

In that case, we get u(I2) ⊆ ε2A(ε) = 0, hence an element in the tangent space of G∨,

u : I/I2 −→ A, α 7−→ u(α)

ε
.

The second isomorphism is just the universal property (cf. [20], §2.11)

DerA(B∨, A) ∼= HomB∨(Ω1
B∨|A, A) ∼= HomB∨(I/I2 ⊗A B∨, A) ∼= HomA(I/I2, A),

where the B∨-module structure on A is given by η∨. Finally, consider the natural pairing

〈-, -〉 : B∨ ×BG −→ A, (α, x) 7−→ α(x).

For x ∈ BG, recalling Lemma 2.15, we have x ∈ Prim(BG) if and only if

〈αβ, x〉 = (α⊗ β)(∆(x)) = (α⊗ β)(x⊗ 1 + 1⊗ x) = 〈α, x〉η∨(β) + η∨(α)〈β, x〉,
that is to say 〈-, x〉 ∈ DerA(B∨, A). �

Remark 2.18. Proposition 2.17 will also allow us to dualize our theory, in the sense that

Lie Hom(G,Gm) = Hom(G,Ga),

for G ∈ grA. Therefore, Cartier duality reduces Theorem 3.13 to Theorem 1.3.
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3. Group schemes of additive type

Definition 3.1. A group scheme G ∈ GrS is of additive type if there exists a closed embed-
ding of G into GNa for some set N , locally on S. We define Gr+

A, resp. gr+
A, to be the full

subcategory of GrA, resp. grA, of group schemes of additive type.

Theorem 3.2. Let G ∈ GrS be locally finitely presented. Then the following are equivalent.

(i) G ∈ Gr+
S .

(ii) IG = (PrimBG), i.e. PrimBG generates IG as an ideal, locally on S.

Moreover, the above conditions imply the following.

(iii) VG = 0.

For finite G ∈ grS, all three conditions are equivalent.

Proof (Raynaud). The equivalence of (i) and (ii) is clear. Indeed, an embedding G ↪→ GNa is
the same as a Hopf algebra epimorphism A[x1, . . . , xN ] � BG, and the xn are primitive by
definition. The implication ”(ii)⇒ (iii)” is settled by Example 2.11.

Now it remains to show that if G ∈ grA and A is a local ring, then VG = 0 implies that
there exists a closed embedding G ↪→ GNa for some N ∈ N.

Consider the Cartier dual G∨ of G, with affine algebra B∨ = BG∨ (cf. Lemma 2.15) and
augmentation ideal I = IG∨ . Since BG is finite and locally free, it is reflexive. Therefore, we
have an inclusion on R-valued points as follows,

G(R) ∼= HomGrR(G∨ ⊗R,Gm ⊗R) ∼= Grp(B∨ ⊗R) ⊆ (B∨ ⊗R)×. (3.1)

The functor ResB∨/A(Gm ⊗ B∨) on the right-hand side is represented by a group scheme,
because B∨ is finite flat, and (3.1) defines a closed embedding G ↪→ ResB∨/A(Gm ⊗ B∨).
Now, the counit of B∨ induces a natural splitting

η : ResB∨/A(Gm ⊗B∨) −� Gm
of the natural inclusion Gm ↪→ ResB∨/A(Gm ⊗B∨). This yields a split short exact sequence

1 Gm ResB∨/A(Gm ⊗B∨) 1 + I 1,

α α
ηR(α) (on R-points),

where (1 + I)(R) := 1 + ker(ηR). Consider the kernel H of the composition

G ↪−→ ResB∨/A(Gm ⊗B∨) ∼= Gm × (1 + I) −� 1 + I.

Then H embeds into Gm, so its fibres are of multiplicative type. But they are also killed by
the Verschiebung, hence vanish ([3], IV, §3, 4.11). By Nakayama, H = 0.

Finally, since FG∨ = (VG)∨ = 0 by (2.2), we have Ip = 0. Thus 1 + I is isomorphic via

truncated exp and log to the finite free additive group I ∼= Gord(G)−1
a . �

Remark 3.3. Over a field A = k, all three conditions in Theorem 3.2 are equivalent, as
shown in [3], IV, §3, 6.6. We conjecture that this holds over an arbitrary base scheme S.

Remark 3.4. If condition (ii) in Theorem 3.2 holds, the Hopf algebra BG is also called
primitively generated, i.e. it is generated as an algebra by its primitive elements.

Example 3.5. The constant group scheme Fp over the Fp-algebra A embeds into Ga via the

projection

A[x]� A[x]/(xp − x).

The same holds for the group schemes αps = SpecA[x]/(xp
s

), for s ∈ N, since x is primitive
by definition. That is, they are all of additive type.

We now compute the order of a finite group scheme G of additive type. This is the essential
step towards our main theorem.



8 THOMAS POGUNTKE

Proposition 3.6. Let G ∈ gr+
A, and consider its dual B∨ = B∨G. Locally on SpecA, there

exists an algebra isomorphism

B∨ ∼= A[t1, . . . , tn]/(tp1, . . . , t
p
n).

Moreover, the A-module Prim(BG) is locally free, and the order of G is given by

ord(G) = prk(PrimBG).

Proof (cf. [8], §7.4.3 and [12], Lemma B.3.14). Let A be a local ring with residue field k.
Let I be the augmentation ideal of B∨, which is then free of finite rank d. Write Ik := I ⊗ k,
and choose a basis e1, . . . , ed such that en+1, . . . , ed is a basis of I2

k . Let ti ∈ I be a lift of ei
for 1 ≤ i ≤ d, so that t1, . . . , td is an A-basis of I by Nakayama.

Now consider the free A-submodule M := spanA(t1, . . . , tn) ⊆ I, and define

B′ := Sym(M)/(t⊗p | t ∈M) ∼= A[t1, . . . , tn]/(tp1, . . . , t
p
n).

Since FG∨ = (VG)∨ = 0, we have Ip = 0, and the canonical morphism

ψ : B′ −→ B∨, ti 7−→ ti,

is well-defined. Surjectivity of ψ is easy to check along the filtration

0 = Ip ⊆ Ip−1 ⊆ . . . ⊆ I ⊆ B∨.

We claim that in fact dimk(B′ ⊗ k) = dimk(B∨ ⊗ k), so that ψ ⊗ k is an isomorphism. To
show this, we can assume k to be perfect. Using Ipk = 0, we then know by [3], III, §3, 6.3,
that there is an algebra isomorphism

B∨ ⊗ k ∼= k[T1, . . . , TN ]/(T p1 , . . . , T
p
N ).

But then in particular N = dim(Ik/I
2
k) = n. Since both B∨ and B′ are finite flat A-modules

of finite presentation, ψ is an isomorphism.
For the second part, it suffices by Proposition 2.17 to show that I/I2 is free. But ψ−1

induces an isomorphism of A-modules

I/I2 ∼−−→ J/J2 ∼= M,

where J denotes the augmentation ideal of B′.
Finally, Proposition 2.17 then tells us that rk(PrimBG) = rk(I/I2) = n, and thus indeed

ord(G) = rk(B∨) = pn = prk(PrimBG),

as desired. �

Remark 3.7. It is easy to see that for any A-algebra R, and any G ∈ GrA, we have a
canonical map

Prim(BG)⊗A R −→ Prim(BG ⊗A R). (3.2)

Now let G ∈ gr+
A, and assume that R is the residue field at some point of SpecA. To show

that (3.2) is an isomorphism, we may assume A to be local. But then (3.2) is clearly injective,
and both sides of (3.2) are finite R-modules of the same rank by Proposition 3.6.

Definition 3.8. Let A[F ] be the non-commutative polynomial ring over A with Fλ = λpF
for any λ ∈ A. Note that A[F ] ∼= spanA(xp

e | e ∈ N) ⊆ A[x] as A[F ]-modules via Fx = xp.
The category of A[F ]-modules, which are finite and locally free over A, is denoted by shtA.

Proposition 3.9. Let N be a set. The primitive elements in the affine algebra of GNa are

Prim(A[xn | n ∈ N ]) = spanA(xp
e

n | n ∈ N, e ∈ N),

the space of additive polynomials in A[xn | n ∈ N ]. In other words,

Hom(GNa ,Ga) ∼= A[F ]⊕N

as A[F ]-modules. In particular, there is a natural identification End(Ga) = A[F ].
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Proof. Of course, “⊇” holds by definition. Now it suffices to see that

Prim(A[x]) ⊆ spanA(xp
e

| e ∈ N),

since we may assume N to be finite, and use induction over #N via Proposition 2.12. Let
thus z =

∑
n∈N λnx

n ∈ Prim(A[x]). Then

∆(z) =
∑
n∈N

λn(xn ⊗ 1) +
∑
n∈N

λn(1⊗ xn).

On the other hand, since ∆ is an algebra morphism and x is primitive,

∆(z) =
∑
n∈N

λn(x⊗ 1 + 1⊗ x)n =
∑
n∈N

λn
∑
k≤n

(
n

k

)
(xk ⊗ xn−k).

Comparing coefficients, we see that if λn 6= 0, then
(
n
k

)
≡ 0 mod p for all 0 < k < n. But this

implies that n = pe for some e ∈ N, cf. [6], Theorem 3. �

Definition 3.10. We denote the Dieudonné Fp-module functor on gr+
A by

M : gr+
A −→ shtA, G 7−→ Hom(G,Ga).

Here, the A[F ]-module structure on M(G) is given as in Definition 3.8 by

Fx = xp ∈ Prim(BG).

Equivalently, this is the obvious left module structure on Hom(G,Ga) over End(Ga) = A[F ],
cf. Proposition 3.9. Conversely, let us define for M ∈ shtA the corresponding group scheme

G(M) = Spec(Sym(M)/f),

where f is the ideal f = (x⊗p − Fx | x ∈ M) in the symmetric algebra over A. The group
structure on G(M) is defined by Prim(BG(M)) ⊇M , by extension to the whole algebra.

Remark 3.11. The easy verification that the functorsM and G are well-defined is a special
case of Remark 6.2 and Remark 6.4, respectively.

Example 3.12. Proposition 3.9 implies for the standard subgroup schemes of Ga that

M(αps) ∼= A[F ]/(F s), and M(Fp) ∼= A[F ]/(F − 1).

Theorem 3.13. The functor M defines an exact anti-equivalence of categories.

Proof. Locally on SpecA, choose a basis x1, . . . , xN of M ∈ shtA. This yields the basis

{
N∏
i=1

xeii | 0 ≤ ei < p}

of BG(M) = Sym(M)/f, locally over SpecA. Therefore, we obtain

ordG(M) = prkM . (3.3)

Now, it is not hard to see that the functor G : shtA → gr+
A is left-adjoint to M. We will give

the details in Lemma 8.4. For G ∈ gr+
A and M ∈ shtA, consider the adjunction morphisms

uG : G −→ G(M(G)), and vM : M −→M(G(M)).

By construction, vM is the inclusion M ↪→ Prim(BG(M)). From (3.3) and Proposition 3.6, as
well as base change (Remark 3.7), we see that vM is an isomorphism.

Now consider the map u∗G, which extends the identity on Prim(BG) to a morphism

u∗G : Sym(Prim(BG))/(x⊗p − xp | x ∈ Prim(BG)) −→ BG.

Since BG is primitively generated, u∗G is surjective. By Proposition 3.6 as well as (3.3),

ordG(M(G)) = prk(PrimBG) = ordG.

Thus u∗G is an epimorphism between finite locally free modules of the same rank, and hence
bijective. Finally, we see that M is exact by (Lemma 8.4 and) additivity of the rank. �
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4. The category of Fq-shtukas

Let q = pr be a power of the prime p, and assume that S an Fq-scheme.

Definition 4.1. A finite Fq-shtuka over S is a pair (M,f), where M is a finite locally free
OS-module, and f is a q-linear endomorphism of M . Equivalently, f is a linearized map

f (q) : σ∗qM = M ⊗OS ,σq OS −→M,

where σq = σrp is the Frobenius of OS . A morphism Φ : (M,f) → (M ′, f ′) in the category
Fq- shtS of finite Fq-shtukas over S is an OS-module morphism such that the diagram

M M ′

M M ′

Φ

f f ′

Φ

commutes. We shall write Fq- shtA = Fq- shtS , when S = SpecA.

Remark 4.2. Note that (M,f) ∈ Fp- shtA is the same as the left A[F ]-module M , defined
by Fx = f(x) for x ∈M . Thus we recover shtA = Fp- shtA.

The definition comes from the following geometric example.

Example 4.3. Let X be a smooth projective geometrically irreducible curve over Fq. Then
a (right) shtuka (or F -sheaf) of rank d ∈ N over S is a diagram

L

E

(idX ×FS)∗L

i

τ
(4.1)

with L and E locally free sheaves of OX×S-modules of rank d, injective homomorphisms τ
and i, and such that coker(τ), resp. coker(i), is supported on the graph Γα, resp. Γβ , of
some sections α, β : S → X (called the zero, resp. the pole, of the shtuka).

Let D ⊆ X be a finite subscheme away from the pole, i.e. β(S) ⊆ X r D. Then i|D×S
is an isomorphism. Setting LD := L|D×S , we therefore obtain a morphism completing the
restriction to D × S of diagram (4.1),

f ′ = (i|D×S)−1 ◦ τ |D×S : (idD ×FS)∗LD −→ LD.
Denote by π : D×S → S the projection, then (π∗LD, f) is a finite Fq-shtuka over OS , where

f (q) : F ∗Sπ∗LD ∼= π∗(idD ×FS)∗LD
π∗f
′

−−−→ π∗LD.
Drinfel’d [4] introduced F -sheaves in the proof of the Langlands conjecture for GL2 over a
global field of characteristic p.

Let us remark here a simple dichotomy in the category Fq- shtk, where k is a perfect field.
We will later use it to generalize Theorem 1.2.

Lemma 4.4. Let k be a perfect field. For (M,f) ∈ Fq- shtk, there is a unique decomposition

(M,f) = (Mss, fss)⊕ (Mnil, fnil)

such that fss = f |Mss is bijective and fnil = f |Mnil
is nilpotent.

Proof (see [12], Lemma B.3.10). Since k is perfect, let us identify f (q) = f . Let

Mss =
⋂
n∈N

im(fn), and Mnil =
⋃
n∈N

ker(fn).

Then there is some N ∈ N with Mss = im(fN ) and Mnil = ker(fN ), so that in particular

dim(M) = dim(Mss) + dim(Mnil).

Now suppose that m ∈ Mss ∩Mnil. Then we have m = fN (m′) for some m′ ∈ M , and we
obtain f2N (m′) = fN (m) = 0. But since ker(f2N ) = ker(fN ), in fact m = fN (m′) = 0. �
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5. Fq-actions on group schemes

Definition 5.1. Let S be an Fq-scheme, and G ∈ GrS . An Fq-action on G is a ring morphism

[−]G : Fq −→ EndGrS (G), α 7−→ [α]G.

A morphism of group schemes with Fq-action ϕ : (G, [−]G) → (H, [−]H) is a morphism of
group schemes over S such that the diagram

G H

G H

ϕ

[α]G [α]H

ϕ

(5.1)

commutes for all α ∈ Fq. When there is no ambiguity, we will just write [α] for the action.

We denote by Fq- GrS the category of group schemes in GrS , together with an Fq-action.
For its objects, we will write G instead of (G, [−]G). The full subcategory of Fq- GrS of finite
group schemes is Fq- grS . We replace S by A in the notation, when S = SpecA. As before,
we consider the dual categories Fq- HopfA, resp. Fq- hopfA.

Example 5.2. When we consider Ga = SpecA[x] as an object of Fq- GrA, we mean that

[α]∗x = αx for all α ∈ Fq,

unless explicitly stated otherwise. The same extends to the group schemes αps ⊆ Ga and the
constant group Fq ⊆ Ga, as well as any product of these groups.

Remark 5.3. Let G,H ∈ Fq- GrA. Then G×H is endowed with the product Fq-action

[α]G×H = [α]G × [α]H .

Let ϕ,ψ : G→ H be morphisms in Fq- GrA. Then the diagram

G G×G H ×H H

G G×G H ×H H

diag

[α]G

ϕ×ψ

[α]G×G

mult

[α]H×H [α]H

diag ϕ×ψ mult

commutes for all α ∈ Fq, so that ϕ+ ψ ∈ HomFq- GrA(G,H) again.
Moreover, Fq- GrA is an Fq-linear category. Namely, HomFq- GrA(G,H) is given a vector

space structure by the obvious actions (which agree by definition) of α ∈ Fq via

[α]G ∈ EndFq- GrA(G), resp. [α]H ∈ EndFq- GrA(H).

Now consider an arbitrary fibre product diagram in Fq- GrA as in (5.2) below. Then

G′ H ′

G′ H ′

G H

G H

[α]H′

·y

[α]G

[α]H

(5.2)

defines a canonical Fq-action on G′, since all squares in (5.2) commute, for all α ∈ Fq. The
dual construction yields an Fq-action for pushouts.

For example, if A is a field, the Fq-action of BG descends to ker(ϕ) = Spec(BG/ϕ
∗(IH)BG)

(cf. [14], VII, Proposition 4.1), which is seen directly from the commutative diagram (5.1).
Similarly, the Fq-action on H restricts to coker(ϕ) = SpecC, where

C = {x ∈ BH | ∆(x)− 1⊗ x ∈ ker(ϕ∗)⊗BH},

see [7], I, §6.3. Indeed, by (5.1) again, for all x ∈ C, we have

∆([α]∗x)− 1⊗ [α]∗x = ([α]∗ ⊗ [α]∗)(∆(x)− 1⊗ x) ∈ ker(ϕ∗)⊗BH .
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Definition 5.4. Let G = SpecBG ∈ Fq- GrA. The eigenspaces of the F×q -action on the
augmentation ideal I = IG are given by

Ij := Ij(G) := {x ∈ IG | [α]∗x = αjx for all α ∈ Fq},
for 0 < j < q, identifying F×q ∼= Z/(q − 1). We also set Primj(BG) := Prim(BG) ∩ Ij .

Remark 5.5. Since ord(F×q ) is prime to p, the ideal IG decomposes into its eigenspaces as

IG =

q−1⊕
j=1

Ij . (5.3)

Indeed, we can write Fq[F×q ] = Fq[X]/(Xq−1 − 1) =
q−1⊕
j=1

Fqχj , with χj(α) = αj for α ∈ F×q .

This yields a system of orthogonal idempotents of EndA(IG), cf. [15], Lemma 2,

ej =
1

q − 1

∑
α∈F×q

χ−1
j (α)[α]∗, 0 < j < q.

Hence we obtain (5.3), since Ij = ejIG. In particular, it follows that the Ij are flat over A, as
direct summands of the flat A-module I. The analogous statements hold for the Primj(BG),
if Prim(BG) is flat, noting that Prim(BG) is stable under [α]∗ ∈ EndHopfA(BG), α ∈ Fq.

Definition 5.6. Let G ∈ Fq- GrS . We say that G is of Fq-additive type, if locally on S, there
exists an Fq-equivariant closed embedding

G ↪−→ GNa for some set N.

The full subcategory of Fq- GrA, resp. Fq- grA, of group schemes G of Fq-additive type is

denoted by Fq- Gr+
A, resp. Fq- gr+

A. For q = p, we drop Fq from the notation, as before.

Remark 5.7. Let G ∈ Fq- GrS be locally of finite presentation. Then

G is of Fq-additive type⇐⇒ IG = (Prim1(BG)), locally on S,

in analogy to Theorem 3.2.

Remark 5.8. Let G,H ∈ Fq- Gr+
A. If we have G ↪→ GNa and H ↪→ GLa in Fq- GrA, then

G×H ↪−→ GN∪La ,

cf. Remark 5.3. Therefore, G ×H ∈ Fq- Gr+
A. Conversely, the embeddings G,H ↪→ G ×H

respect the Fq-actions. Hence if G×H is of Fq-additive type, then so are G and H.
This does not generalize to arbitrary extensions, as the following example illustrates. That

is, Fq- Gr+
A is not a Serre subcategory of Fq- GrA (indeed, nor is Fq- gr+

A ⊆ Fq- grA).

Example 5.9. Let q 6= p, and consider the following short exact sequence

0 −→ αp −→ αq −→ H −→ 0

in Fq- grA. Note that αp, αq ∈ Fq- gr+
A. Applying HomFq- GrA(−,Ga), we get

0 −→ Prim1(BH) −→ Prim1(Bαq )
∼−−→ Prim1(Bαp).

Hence IH 6= (Prim1(BH)) = 0, and H is not of Fq-additive type, by Remark 5.7.

Theorem 5.10. Let G ∈ Fq- grA. Then G is of Fq-additive type if and only if it is of additive
type and the p-Frobenii

ft : Primpt(BG) −→ Primpt+1(BG), x 7−→ xp,

are surjective, 0 ≤ t < r − 1. Moreover, if G ∈ Fq- gr+
A, the primitive elements decompose as

Prim(BG) =

r−1⊕
s=0

Primps(BG)

into eigenspaces. Equivalently, Primj(BG) = 0 for all j 6= ps, s ∈ N.
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Proof. We may assume A to be local, and let ι : G ↪→ GNa be an embedding in Fq- GrA.
Proposition 3.9 implies that the additive polynomials decompose as desired,

P := Prim(A[x1, . . . , xN ]) =

r−1⊕
s=0

Ps,

with Ps = Primps(A[x1, . . . , xN ]). Let k be the residue field of A. We have the epimorphism

ι∗|P ⊗A k : P ⊗A k = Prim(k[x1, . . . , xN ]) −� Prim(BG ⊗A k)

by Theorem 1.1. Thus P ⊗A k � Prim(BG)⊗A k is surjective, as well, by Remark 3.7. Now
consider the filtration

Prim(BG) =: M ⊇Mp ⊇Mp2 ⊇ . . . ,

where Mpt := im((σtp)
∗M →M, x 7→ xp

t

). Then we may conclude that ι induces surjections

ι∗ : Pp
t

/Pp
t+1

−�Mpt/Mpt+1

for all t ≥ 0, by Nakayama’s lemma. Therefore,

ι∗(PrimA[x1, . . . , xN ]) = Prim(BG). (5.4)

But ι∗ respects the Fq-action, so in fact ι∗(Ps) = Primps(BG) for all 0 ≤ s < r. This settles
the second part, and moreover implies that under the epimorphism ι∗, we have

0 = Pt+1/(Pt)p −� Primpt+1(BG)/ft(Primpt(BG)).

Conversely, if all the ft are surjective, we have IG = (Prim(BG)) = (Prim1(BG)), and G is
of Fq-additive type by Remark 5.7. �

Remark 5.11. In the previous proof, we do not need to invoke Theorem 1.1. With the
above notation, we may assume k algebraically closed. Then Ext1

Grk
(coker ι ⊗ k,Ga,k) = 0,

cf. [12], Lemma B.3.15. This implies as before the surjectivity of

ι∗|P : Hom(GNa ,Ga) −→ Hom(G,Ga).

Lemma 5.12. Let G ∈ Fq- gr+
A, and let ft be the p-Frobenii from Theorem 5.10. The

following conditions are equivalent.

(i) The maps ft are bijective, for all 0 ≤ t < r − 1.

(ii) The map f ′ : Prim1(BG)→ Primpr−1(BG), x 7→ xp
r−1

, is injective.

(iii) The rank of Primps(BG) is the same for all 0 ≤ s ≤ r − 1.

(iv) ord(G) = qrk Prim1(BG).

Proof. The first two conditions are equivalent by Theorem 5.10. Furthermore, by Nakayama,
they are equivalent to (iii). Now, Proposition 3.6 tells us that rk Primps(BG) = rk Prim1(BG)
for all 0 ≤ s ≤ r − 1 if and only if

ord(G) = prk(PrimBG) = qrk(Prim1 BG).

Hence (iii) is equivalent to (iv). �

Definition 5.13. We say that the group scheme with Fq-action G ∈ Fq- gr+
A is balanced,

if the equivalent conditions in Lemma 5.12 hold for G. The full subcategory of Fq- gr+
A of

balanced group schemes will be called Fq- gr+,b
A .

Remark 5.14. In [19], Taguchi defines Fq- gr+,b
A using condition (iv) from Lemma 5.12. The

first two conditions will be useful to generalize the definition to infinite group schemes.

Remark 5.15. We have Fp- gr+,b
A = gr+

A, since the condition on the p-Frobenii is empty.
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Example 5.16. Consider G = αps = SpecA[x]/(xp
s

) with the usual Fq-action [α]∗x = αx
for α ∈ Fq. Then

αps is balanced⇐⇒ r|s.
Indeed, Prim(Bαps ) = spanA(x, xp, . . . , xp

s−1

) by Proposition 3.9, and therefore

Prim1(Bαps ) = spanA(xq
a

| 0 ≤ a < s/r),

since ps ≡ 1 mod q − 1⇐⇒ ps−1
q−1 ∈ Z⇐⇒ r|s.

Remark 5.17. Let G ∈ Fq- gr+
S . If S is connected, then

G is balanced⇐⇒ Gs is balanced for some point s ∈ S,
because Prim(BG) is locally free and stable under base change (Remark 3.7). Hence the
balanced locus of G ∈ Fq- gr+

S in S is a union of connected components. If S is noetherian,
it is thus closed and open.

Remark 5.18. If G ∈ Fq- gr+
S is étale, its Frobenius is an isomorphism. Therefore, G is

balanced by Lemma 5.12, (i).

Lemma 5.19. Let G,H ∈ Fq- gr+
A. If two of G, H and G ×H are balanced, then so is the

third.

Proof. Proposition 2.12 implies that

Primps(BG ⊗BH) = Primps(BG)⊗ 1 + 1⊗ Primps(BH)

for all 0 ≤ s ≤ r − 1. Then it is clear that if two of G, H and G × H satisfy condition (i)
from Lemma 5.12, the third does as well. �

Remark 5.20. A posteriori, Lemma 5.19 holds for general extensions 0→ G→ E → H → 0.
Namely, by Theorem 6.5, we obtain a short exact sequence

0 −→ Prim1(BH) −→ Prim1(BE) −→ Prim1(BG) −→ 0.

Then the statement follows using Lemma 5.12, (iv), together with Proposition 3.6.

6. The functors G and M

We continue to denote by A an Fq-algebra, for q = pr.

Definition 6.1. The Dieudonné Fq-functor is the contravariant functor

Mq =M : Fq- gr+,b
A −→ Fq- shtA, G 7−→ (Prim1(BG), x 7→ xq).

Recall that Prim1(BG) ∼= HomFq- grA(G,Ga), and that it is locally free over A (Remark 5.5).

Remark 6.2. M is well-defined, since ∆(xq) = (x⊗ 1 + 1⊗ x)q = xq ⊗ 1 + 1⊗ xq, and

[α]∗xq = αqxq = αxq for x ∈M, α ∈ Fq.

Definition 6.3. The Drinfel’d Fq-functor is defined to be the contravariant functor

Gq = G : Fq- shtA −→ Fq- gr+,b
A , (M,f) 7−→ Spec(Sym(M)/f),

where f is the ideal f = (x⊗q − f(x) | x ∈M). Comultiplication and Fq-action are given by

∆(x) = x⊗ 1 + 1⊗ x, and [α]∗x = αx for x ∈M, α ∈ Fq,

extended to the whole algebra.

Remark 6.4. Let (M,f) ∈ Fq- shtA. The Fq-action on G(M,f) is well-defined, since

[α]∗x⊗q = αqx⊗q = αf(x) = [α]∗f(x) for α ∈ Fq, x ∈M.

Furthermore, locally on SpecA, we can take a basis x1, . . . , xN of M and the projection

Sym(M) −� Sym(M)/f
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will define an embedding G(M,f) ↪→ GNa , which respects the Fq-actions. Moreover, note that

the products {
∏N
i=1 x

ei
i | 0 ≤ ei < q} form a basis of BG(M,f) = Sym(M)/f. Therefore

ord(G(M,f)) = qrkM , (6.1)

and indeed G(M,f) ∈ Fq- gr+,b
A by Lemma 5.12, (iv).

Theorem 6.5. The Drinfel’d Fq-functor G : Fq- shtA → Fq- gr+,b
A defines an exact anti-

equivalence of categories with quasi-inverse M.

Proof. The proof is the same as for Theorem 3.13, where we use (6.1) in place of (3.3). This
yields that the adjunction morphisms v(M,f) are bijective. On the other hand,

u∗G : Sym(Prim1(BG))/(x⊗q − xq | x ∈ Prim1(BG)) −→ BG

is surjective, since BG is generated as an algebra by Prim1(BG), cf. Remark 5.7. Finally,

ordG(M(G)) = qrk(Prim1 BG) = prk(PrimBG) = ordG,

by Proposition 3.6, and because G is balanced. �

Let us note some properties of the functor G (cf. [4], Proposition 2.1).

Proposition 6.6. Let (M,f) ∈ Fq- shtA, and I = IG(M,f) the augmentation ideal of G(M,f).
The cotangent space of G(M,f) is described by

I/I2 ∼= coker(f (q))

as an A-module, where f (q) : σ∗qM →M , as before. Moreover,

(a) The group scheme G(M,f) is étale ⇐⇒ f is bijective.

(b) The fibres of G(M,f) are connected ⇐⇒ f is nilpotent, locally on SpecA.

Proof. For the first part, we see that the composition τ : M ↪→ I � I/I2 is surjective, since
every element of I/I2 is represented by a linear polynomial in M . But

ker(τ) = M ∩ I2 = f(M).

Indeed, an element of M lies in I2 if and only if it is of the form

f(x) ≡ x⊗q ∈ I2 for some x ∈M.

The statements (a),(b) follow from the fact that f is a power of the Frobenius on Sym(M)/f.
Hence f is bijective⇐⇒ FrobG(M,f) is an isomorphism⇐⇒ G(M,f) is étale ([3], IV, §3, 5.3),
because G(M,f) is finite flat and finitely presented.

Analogously, f is locally nilpotent if and only if FrobG(M,f) is. But each fibre of G(M,f)
is connected if and only if its Frobenius is nilpotent (loc.cit.). �

Remark 6.7. If A is a field, Theorem 6.5 in particular says that Fq- gr+,b
A is an abelian

category. On the other hand, it follows from Example 5.9 that for q 6= p, the category Fq- gr+
A

is not abelian. The problem is of course that αp is not balanced, by Example 5.16.

Example 6.8. Let q 6= p. Take BG = A[x1, . . . , xr]/(x
p
1, . . . , x

p
r) with xi ∈ Primpi−1(BG).

Clearly, rk Primps(BG) is the same for all 0 ≤ s < r, and Primj BG = 0 for all j 6= ps. Then
the Hopf algebra morphism

u∗ : A[x]/(xq) −→ BG, x 7−→ x1

is compatible with the Fq-actions, i.e., it induces u : G → αq in Fq- grA. Setting I = (x) to
be the augmentation ideal of αq, we see that

ker(u) = SpecA[x2, . . . , xr]/(x
p
2, . . . , x

p
r) = Spec(BG/u

∗(I)BG)

is not balanced. Of course, G is not of Fq-additive type.

In Theorem 8.14, we will be able to describe the structure of our category over a perfect
field k. This allows the following fibrewise characterization.



16 THOMAS POGUNTKE

Corollary 6.9. Let G ∈ Fq- gr+
S be fibrewise connected. Then G is balanced if and only if it

is of the form
∏
αqsi on all geometric fibres over S.

Proof. We can check G to be balanced on the fibres, by Remark 5.17 and since the condition
is stable under base change (cf. Remark 3.7). By Theorem 8.14, a geometric fibre of G is
balanced if and only if it is of the form

∏
αqsi . �

The following result gives another perspective on the balance property (Remark 6.11).

Proposition 6.10. Assume that A is an Fqn-algebra, n ≥ 1. Let F : Fqn- gr+
A → Fq- gr+

A be
the forgetful functor. Then the following diagram commutes,

(M,f) ∈ Fqn- shtA Fqn- gr+
A

( n−1⊕
i=0

(σiq)
∗M,F

)
∈ Fq- shtA Fq- gr+

A,

Gqn

F

Gq

(6.2)

where F : (x0, . . . , xn−1) 7→ (x1, . . . , xn−1, f(x0)) is the matrix


0 1 0

. . .
. . .

. . . 1
f 0

.

Proof. We denote the scalar multiplication on (σiq)
∗M by λ.x = λq

i

x for λ ∈ A, x ∈M (the
usual action without the dot). Since f is qn-linear, we get

F (λ.(x0, . . . , xn−1)) = (λqx1, . . . , λ
qn−1

xn−1, λ
qnf(x0)) = λq.F (x0, . . . , xn−1),

for all (x0, . . . , xn−1) ∈M ′ :=
n−1⊕
i=0

(σiq)
∗M . We have to show that

Sym(M)/fM ∼= Sym(M ′)/fM ′ in Fq- hopfA,

where fM = (x⊗q
n − f(x) | x ∈M) and fM ′ = (x⊗q − F (x) | x ∈M ′). We define

ϕ : Sym(M) −→ Sym(M ′)/fM ′ via M 3 x 7−→ (x, 0, . . . , 0) ∈M ′,
extended to an algebra morphism. Note that for x ∈M , we have

ϕ(xq
i

) = (x, 0, . . . , 0)q
i

= F i(x, 0, . . . , 0) = (. . . , 0, x, 0, . . .) ∈ (σiq)
∗M ⊆M ′.

Now, ϕ factors through the quotient, because

ϕ(xq
n

− f(x)) = Fn(x, 0, . . . , 0)− (f(x), 0, . . . , 0) = 0.

Finally, ϕ : Sym(M)/fM → Sym(M ′)/fM ′ is an isomorphism in Fq- HopfA, since by definition,

ϕ(Prim1(Sym(M)/fM )) = Prim1(Sym(M ′)/fM ′),

and locally on Spec(A), it maps bases to bases. �

Remark 6.11. Consider the following diagram,

Fq- gr+
A Fq- shtA 3 (M,f)

Fp- gr+
A Fp- shtA 3

( r−1⊕
t=0

(σtp)
∗M,F

)
Mq

F

Mp

(6.3)

corresponding to the commutative diagram (6.2). Requiring (6.3) to commute recovers the
balance condition. Namely, for G ∈ Fq- gr+

A, we have

Prim(BG) ∼=
r−1⊕
t=0

(σtp)
∗ Prim1(BG)



GROUP SCHEMES WITH Fq-ACTION 17

if and only if all the (linearized) maps

(σtp)
∗ Prim1(BG) −→ Primpt(BG), x 7−→ xp

t

, (0 ≤ t < r)

are isomorphisms. This is equivalent to condition (ii) in Lemma 5.12.

Remark 6.12. The functor Σ : Fqn - shtA → Fq- shtA, (M,f) 7→
( n−1⊕
i=0

(σiq)
∗M,F

)
from the

above diagram (6.2) has a left adjoint. Namely, there are bifunctorial isomorphisms

HomFqn - shtA((M,fn), (M ′, f ′)) ∼−−→ HomFq- shtA((M,f),Σ(M ′, f ′)), (6.4)

for all (M,f) ∈ Fq- shtA and (M ′, f ′) ∈ Fqn - shtA. Indeed, for Φ: (M,fn)→ (M ′, f ′), set

Φ′ : (M,f) −→ Σ(M ′, f ′), x 7−→ (Φ(x),Φ(f(x)), . . . ,Φ(fn−1(x))) ∈
( n−1⊕
i=0

(σiq)
∗M ′, F ′

)
.

Then Φ′ is a morphism of shtukas, because f ′(Φ(x)) = Φ(fn(x)) for x ∈M , and thus

F ′(Φ′(x)) = (Φ(f(x)), . . . ,Φ(fn−1(x)), f ′(Φ(x))) = (Φ(f(x)), . . . ,Φ(fn(x))) = Φ′(f(x)).

Conversely, if Ψ: (M,f)→ Σ(M ′, f ′) lies in the right hand side of (6.4), we obtain a morphism

on the left by composition with the projection pr0 :
n−1⊕
i=0

(σiq)
∗M ′ →M ′, (xi) 7→ x0, say

Ψ′ := pr0 ◦Ψ: (M,fn) −→ (M ′, f ′), x 7−→ Ψ(x)0.

Applying pr0 to Ψ(fn(x)) = (F ′)n(Ψ(x)) = (F ′)n−1(. . . , f ′(Ψ′(x)) = (f ′(Ψ′(x)), . . .) yields

Ψ′(fn(x)) = f ′(Ψ′(x)).

By Theorem 6.5 and commutativity of (6.2), we can transfer (6.4) to an adjunction

HomFq- gr+,bA
(F(G), H) ∼−−→ HomFqn- gr+,bA

(G,Ω(H)).

That is, Ω: Fq- gr+,b
A → Fqn - gr+,b

A is a right adjoint to F : Fqn- gr+,b
A → Fq- gr+,b

A , the forgetful
functor. Unfortunately, it is not clear how to describe Ω intrinsically. One might guess that
it is given by Serre’s tensor construction [2], Theorem 7.2. This induces a functor

Fq- gr+
A −→ Fqn - gr+

A, G 7−→ G⊗Fq Fqn ,

where (G⊗Fq Fqn)(R) = G(R)⊗Fq Fqn on points. The Fqn -operation is on the right variable.
Then Ga ⊗Fq Fqn ∼= Gna , equivariantly, where Gna carries its usual (product) Fqn -action. This
indeed agrees with ”Ω(Ga)”= Gqn(N (Mq(Ga))), where N (M,f) = (M,fn) is the left adjoint
of Σ from above. Moreover, Fq⊗FqFqn ∼= Fqn = Ω(Fq). However, if n > 1, already as schemes,

αq ⊗Fq Fqn ∼= αnq 6∼= αqn = Gqn(N (Mq(αq))) = Ω(αq).

More precisely, since Serre’s tensor construction is exact, αq ⊗Fq Fqn ↪→ Ga⊗Fq Fqn , and this
is the product embedding αnq ↪→ Gna . On the other hand, the composition Ω = Gqn ◦N ◦Mq

maps αq ↪→ Ga to the embedding into the first coordinate αqn ↪→ Gna .

7. Quasi-balanced group schemes

Let A be an Fq-algebra, q = pr. For G ∈ Fq- gr+
A, consider the eigenspace decomposition

IG =

q−1⊕
j=1

Ij

for the F×q -action on the augmentation ideal of G, cf. (5.3).

Definition 7.1. A group scheme G ∈ Fq- gr+
A is called quasi-balanced if rk(Ij) is the same

for all 1 ≤ j ≤ q − 1.
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Remark 7.2. Let G ∈ Fq- gr+
A be quasi-balanced. By Proposition 3.6, rk(IG) = pN − 1,

where N = rk(Prim(BG)). Then we have pN−1
q−1 ∈ Z, and thus r|N , say rn = N . This yields

rk(Ij) = qn−1 + . . .+ q + 1 for all 1 ≤ j ≤ q − 1,

and of course ordG = qn. Note that the analogue of Remark 5.17 holds, i.e. for G ∈ Fq- gr+
S ,

the quasi-balanced locus of G in S is closed and open (if the base is noetherian).

Lemma 7.3. Every G ∈ Fq- gr+,b
A is quasi-balanced.

Proof. We may assume that A is a local ring. If x1, . . . , xn is a basis of Prim1(BG), then

{
n∏
i=1

xeii | 0 ≤ ei < q, (e1, . . . , en) 6= 0}

is a basis of IG (cf. Remark 6.4), since G is balanced. On this basis, α ∈ Fq acts via

[α]∗
n∏
i=1

xeii = α
∑
ei

n∏
i=1

xeii .

Therefore, it decomposes into eigenbases for Ij ,

{
n∏
i=1

xeii | 0 ≤ ei < q, (e1, . . . , en) 6= 0,

n∑
i=1

ei ≡ j mod q − 1}.

In order to count the ranks, we identify the bases with

E
(n)
j := {0 6= e = (e1, . . . , en) | 0 ≤ ei < q,

n∑
i=1

ei ≡ j mod q − 1}.

We claim that

#E
(n)
j = qn−1 + . . .+ q + 1 for all 1 ≤ j ≤ q − 1.

Let us prove this by induction on n. For n = 1, there is nothing to show. For n > 1, we have

E
(n)
j =

q−1∐
e=0

{e ∈ E(n)
j | en = e} =

q−1∐
e=0

{(e, e) | e ∈ E(n−1)
j−e } q {(0, . . . , 0, j)}.

Therefore indeed: #E
(n)
j = q(qn−2 + . . .+ q + 1) + 1 = qn−1 + . . .+ q + 1. �

Remark 7.4. For G ∈ gr+
A, i.e. q = p, the condition of being quasi-balanced is therefore

automatic. We can also see this concretely via p-adic expansion. Namely, let

ρ : Z/(pn − 1) −� Z/(p− 1)

be the projection, where ordG = pn, as above. Then we have the bijection

Ej = E
(n)
j

∼−−→ ρ−1(j), (e1, . . . , en) 7−→
n∑
i=1

eip
i,

and thus again #Ej = pn−1
p−1 = pn−1 + . . .+ p+ 1.

Lemma 7.5. Let G,H ∈ Fq- gr+
A. For 1 ≤ j ≤ q − 1, the eigenspaces in the product satisfy

rk Ij(G×H) =
∑

k+l≡j mod q−1
0≤k,l≤q−1

rk Ik(G) · rk Il(H), (7.1)

with the convention I0(−) := A.
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Proof. The product decomposes as follows,

BG ⊗A BH =
( q−1⊕
k=0

Ik(G)
)
⊗A

( q−1⊕
l=0

Il(H)
)

=
⊕
k,l

(
Ik(G)⊗A Il(H)

)
,

and, of course, whenever k + l ≡ j mod q − 1, we have

Ik(G)⊗A Il(H) ⊆ Ij(G×H),

by definition of the product Fq-action. �

Corollary 7.6. Let G,H ∈ Fq- grA. If two of G, H and G×H are quasi-balanced, then so
is the third.

Proof. Let G,H be quasi-balanced. By Remark 7.2, we have ordG = qn and ordH = qm for
some n,m ∈ N. Then for any 1 ≤ j ≤ q − 1, the product formula (7.1) becomes

rk Ij(G×H) =
∑

k+l≡j mod q−1
1≤k,l≤q−1

rk Ik(G) · rk Il(H) + rk Ij(G) + rk Ij(H)

= (q − 1)(qn−1 + . . .+ q + 1)(qm−1 + . . .+ q + 1) + rk Ij(G) + rk Ij(H)

= (qn − 1)(qm−1 + . . .+ q + 1) + (qn−1 + . . .+ q + 1) + (qm−1 + . . .+ q + 1)

= qn(qm−1 + . . .+ q + 1) + qn−1 + . . .+ q + 1

= qn+m−1 + . . .+ qn + qn−1 + . . .+ q + 1.

We conclude that G×H is quasi-balanced.
Conversely, assume that H and G×H are quasi-balanced. Since by Remark 7.2,

ordH = qm, and ord(G×H) = qn+m,

for some m,n ∈ N, we have ordG = qn. Applying (7.1) again, we get for 1 ≤ j ≤ q − 1 that

qn+m−1 + . . .+ q + 1 =
∑

1≤k≤q−1

rk Ik(G)(qm−1 + . . .+ q + 1) + rk Ij(G) + rk Ij(H)

= (qn − 1)(qm−1 + . . .+ q + 1) + rk Ij(G) + (qm−1 + . . .+ q + 1)

= qn+m−1 + . . .+ qn + rk Ij(G),

hence the claim. �

Remark 7.7. Let us consider group schemes of the form

G = Spec(A[x1, . . . , xh]/(xp
s1

1 , . . . , xp
sh

h )) =

h∏
i=1

αpsi ,

so that all xi ∈ Prim1(BG). Consider the standard basis of IG,

{
h∏
i=1

xeii | 0 ≤ ei < psi , (e1, . . . , eh) 6= 0}.

As always, it decomposes into eigenbases for the Ij . This yields

rk Ij =
∑

a≡j mod q−1
a6=0

na,

where

na := #{0 6= (e1, . . . , eh) | 0 ≤ ei < psi ,

h∑
i=1

ei = a}.

Note that na is precisely given by the coefficient of Xa in the polynomial

S(X) = (Xps1−1 + . . .+X + 1) · . . . · (Xpsh−1 + . . .+X + 1) ∈ Z[X]. (7.2)
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Example 7.8. Let q = 4, and consider the special case

G = Spec(A[x1, . . . , x6]/(xp1, . . . , x
p
6)).

Then G ∈ Fq- gr+
A is quasi-balanced, since

S(X) = (X + 1)6 = X6 + 6X5 + 15X4 + 20X3 + 15X2 + 6X + 1.

Hence rk Ij = 21 for all 1 ≤ j ≤ 3. But obviously G /∈ Fq- gr+,b
A , because Primp(BG) = 0.

Thus the converse to Lemma 7.3 is false in general.

However, this is essentially the “only” counter-example, as the following results show.

Proposition 7.9. Let G = αps1 × . . .× αpsh as in Remark 7.7.

(1) If q 6= 4, then G is quasi-balanced if and only if r|si for all 1 ≤ i ≤ h.

(2) If q = 4, then G is quasi-balanced if and only if 6|h′ := #{i | si 6≡ 0 mod r}.
Proof (joint with Sauermann). By Corollary 7.6, G is quasi-balanced if and only if G×αqm is
quasi-balanced, for m ∈ N. Eliminating the factors of the form αqm from G, we can therefore
assume that we have si 6≡ 0 mod r for all i. Then we have to show that

G is quasi-balanced if and only if h = 0 in case (1), resp. 6|h in case (2).

Note that for r = 1, the claims are vacuous.
First, let us assume that G is quasi-balanced. We keep the notation from Remark 7.7.

Then evaluating (7.2) at the primitive root of unity ζ = e
2πi
q−1 ∈ µq−1(C) yields

S(ζ) =
∑
a≥0

naζ
a =

q−1∑
j=0

rk(Ij)ζ
j = 1 + rk(I1)

q−1∑
j=1

ζj = 1 + rk(I1)
ζq−1 − 1

ζ − 1
= 1.

Let 0 < ti < r with si ≡ ti mod r. Then

1 = S(ζ) =

h∏
i=1

(ζp
si−1 + . . .+ ζ + 1) =

h∏
i=1

ζp
si − 1

ζ − 1
=

h∏
i=1

ζp
ti − 1

ζ − 1
. (7.3)

On the other hand, |ζj − 1| ≥ |ζ − 1| for all 1 ≤ j < q − 1. Hence by (7.3) we must have

|ζp
ti − 1| = |ζ − 1| for all 1 ≤ i ≤ h.

Since 0 < ti < r, this implies that pti ≡ −1 mod q − 1, and therefore

q = pti + 2, for 1 ≤ i ≤ h.
Thus q = 4 (unless h = 0), and ti = 1 for all i. In that case then, equation (7.3) reads

(ζ + 1)h = 1.

But ζ + 1 = e
2πi
3 + 1 = e

2πi
6 , and therefore 6|h.

Conversely, the “if”-direction in (1) is trivial (h = 0). In case (2), keeping in mind (7.3),

rk(I1) + rk(I2)ζ + rk(I3)ζ = S(ζ)− 1 = (ζ + 1)h − 1 = 0.

Conjugating this equation, we see that indeed rk(I1) = rk(I2) = rk(I3). �

Theorem 7.10. Let q 6= 4. Then G ∈ Fq- gr+
A is quasi-balanced if and only if it is balanced.

Proof. We have already seen “⇐” in Lemma 7.3. Now let G be quasi-balanced. Since the
condition is stable under base change, we can assume A to be a perfect field. As in (the proof
of) Theorem 8.14, resp. Theorem 1.2, we have an Fq-equivariant decomposition

G = π0(G)×H.
By Remark 5.18, π0(G) is balanced, hence quasi-balanced, and so H is quasi-balanced as well
by Corollary 7.6. Again as in Theorem 8.14,

BH ∼= A[x1, . . . , xh]/(xp
s1

1 , . . . , xp
sh

h ) in Fq- hopfA .

Therefore, by Proposition 7.9, since H is quasi-balanced, r|si for all 1 ≤ i ≤ h. Thus H is
balanced, and hence so is G. �
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8. The infinite case

In this section, we detail some of the difficulties one encounters when trying to transfer
the theory from the finite to the infinite case.

Definition 8.1. The category Fq- ShtA consists of pairs (M,f) of a flat A-module M together
with a q-linear endomorphism f of M . Morphisms in Fq- ShtA are defined as in Fq- shtA.
Note that again Fp- ShtA = ShtA.

The shtuka (M,f) is called locally finitely generated if locally over SpecA, there exist
some x1, . . . , xN ∈M such that

M = {
N∑
i=1

d∑
a=0

λaf
a(xi) | λa ∈ A, d ∈ N}.

We denote by Fq- ShtA,f.g. the full subcategory of Fq- ShtA of locally finitely generated shtukas.

Trying to define the functor M in general, the first problem to arise is the following.

Conjecture 8.2. Let G ∈ Gr+
A. Then the A-module Prim(BG) is flat.

Let us provisionally include the condition in the definition, and denote the corresponding

full subcategories by Gr�A, Fq- Gr�A, and so forth. Then we may define

Mq =M : Fq- Gr�A −→ Fq- ShtA, and Gq = G : Fq- ShtA −→ Fq- Gr�A,

as before. Recall that Mq(G) is flat if Prim(BG) is, cf. Remark 5.5.

Remark 8.3. The routine verifications in §6, together with the following, show that the two
functors are well-defined. Let (M,f) ∈ Fq- ShtA. We can write M = lim−→Mi, where the Mi

are finitely generated free A-modules, by [13], Théorème 1.2. For each i, choose a basis Ni
of Mi, and set N :=

∐
Ni. Denote by γi : Mi ↪→ Sym(Mi)→ lim−→ Sym(Mi). Then

A[xn | n ∈ N ] lim−→ Sym(Mi) ∼= Sym(M) Sym(M)/f,

xn γi(n), when n ∈ Ni,

yields G(M,f) ↪→ GNa , by universality Fq-equivariantly. Thus G(M,f) is of Fq-additive type.

The adjunction (cf. [12], Lemma B.3.9) holds in this generality.

Lemma 8.4. The functors G and M form an adjoint pair (G,M) of Fq-linear functors, that
is, there exist bifunctorial isomorphisms of Fq-vector spaces

HomFq- GrA(G,G(M,f)) ∼−−−→ HomFq- ShtA((M,f),M(G)).

In particular, G is right-exact and M is left-exact.

Proof. We use HomFq- GrA(G,G(M,f)) ∼= HomFq- HopfA(Sym(M)/f, BG). Now the map

HomFq- HopfA(Sym(M)/f, BG) −→ HomFq- ShtA((M,f),M(G)), ϕ 7−→ ϕ|M , (8.1)

is well-defined and bijective. Indeed, by definition, we have M ⊆ Prim1(Sym(M)/f), and
hence ϕ(M) ⊆ Prim1(BG). Furthermore, ϕ|M is a morphism of shtukas. Namely, the diagram

M Prim1(BG)

M Prim1(BG)

ϕ|M

f z 7→zq

ϕ|M

commutes, because ϕ(x⊗q − f(x)) = 0 for all x ∈M . The inverse map of (8.1) is given by

HomFq- ShtA((M,f),M(G)) −→ HomFq- HopfA(Sym(M)/f, BG), Φ 7−→ Φ̂,
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where Φ̂ is the extension of Φ to Sym(M), which descends to Sym(M)/f. Indeed, the diagram

M Prim1(BG)

M Prim1(BG)

Φ

f z 7→zq

Φ

commutes, and thus Φ̂(x⊗q − f(x)) = Φ(x)q − Φ(f(x)) = 0 for x ∈ M . Finally, Φ̂ clearly
respects the coalgebra structure and Fq-action, since it is universal.

Now, HomFq- GrA(−,Ga) is additive, and it follows from Proposition 2.12 that

Prim1(BG ⊗BH) = Prim1(BG)⊗ 1 + 1⊗ Prim1(BH).

Hence z 7→ zq in M(G × H) is indeed given by (x, y) 7→ (xq, yq) in M(G) ⊕M(H), and
thereforeM is additive. By adjunction, so is G. Note that it is evident that G sends surjective
morphisms to closed embeddings in Fq- GrA.

The Fq-linearity is trivial, as it reduces to the statement that [α]∗, for α ∈ Fq, acts on the
eigenspace Prim1(−) by scalar multiplication. �

In order to show the analogue of Theorem 6.5, we would like to restrict ourselves to group
schemes which are locally of finite presentation over the base. However, the following question
remains open.

Conjecture 8.5. Let G ∈ Gr�A be locally finitely presented over A. Then there exists a closed
embedding ι : G ↪→ GNa , N ∈ N, locally on SpecA, such that the induced morphism

ι∗ :Mp(GNa ) = A[F ]N −→Mp(G)

is surjective.

Remark 8.6. It seems reasonable to presume that if G satisfies Conjecture 8.5, then indeed
any embedding G ↪→ GNa , N ∈ N, induces a surjection on the primitive elements. Certainly,
if A = k is a field, this is true by exactness of M, cf. Theorem 1.1.

Moreover, recall that it holds for finite G over any base A, cf. (5.4).

Remark 8.7. The restricted functorM : Fq- Gr�A,f.p.→ Fq- ShtA,f.g. is well-defined, assuming
Conjecture 8.5 holds. For this, we have to see that for a surjective morphism as there,

ι∗ : A[x1, . . . , xN ] −� BG in Fq- HopfA,

the elements ι∗(x1), . . . , ι∗(xN ) ∈ Prim1(BG) form a system of generators under x 7→ xq. But
indeed, recall from Proposition 3.9 that

Prim1(A[x1, . . . , xN ]) = spanA(xq
a

i | 1 ≤ i ≤ N, a ∈ N).

On the other hand, Conjecture 8.5 implies thatM(ι) = ι∗|P1 surjects onto Prim1(BG), as in
the proof of Theorem 5.10.

Lemma 8.8. Assume Conjecture 8.5. For G ∈ Fq- Gr�A,f.p., the following are equivalent.

(i) ft : Primpt(BG)→ Primpt+1(BG), x 7→ xp, is bijective, for 0 ≤ t < r − 1.

(ii) The map f ′ : Prim1(BG)→ Primpr−1(BG), x 7→ xp
r−1

, is injective.

Proof. The claim tautologically follows from the analogue of Theorem 5.10, the key ingredient
in the proof of which is precisely Conjecture 8.5. �

Definition 8.9. We say G ∈ Fq- Gr�A,f.p. is balanced if the conditions in Lemma 8.8 hold.

We denote by Fq- Gr�,bA,f.p. the full subcategory of Fq- Gr�A,f.p. of balanced group schemes.

Remark 8.10. The functor G : Fq- ShtA,f.g. → Fq- Gr�,bA,f.p. is well-defined. In order to see

this, let (M,f) ∈ Fq- ShtA,f.g. and locally on SpecA, choose a system of generators x1, . . . , xN
of (M,f). Then this yields, locally over SpecA, an epimorphism

A[x1, . . . , xN ] −� Sym(M)/f.
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Indeed, all elements of Sym(M)/f are polynomial in the xi, as we can write any x ∈M as

x =

N∑
i=1

d∑
a=0

λaf
a(xi) =

N∑
i=1

d∑
a=0

λax
⊗qa
i in Sym(M)/f.

Keeping in mind Theorem 5.10, it then moreover follows that for all 0 ≤ s < r, the maps

M = Prim1(Sym(M)/f) −� Primps(Sym(M)/f), x 7−→ xp
s

,

are bijective. We conclude that G(M,f) is balanced, by Lemma 8.8, (ii).

Remark 8.11. Let G ∈ Fq- Gr�A,f.p. and ι : G ↪→ GNa . Let further R be the residue field at a

point s ∈ SpecA. Then ιs : Gs ↪→ GNa,s is a closed embedding as well. Therefore,

Prim(A[x1, . . . , xN ])⊗A R Prim(BG)⊗A R

Prim(R[x1, . . . , xN ]) Prim(BG ⊗A R)

(∗)

by Conjecture 8.5 (and recalling Remark 3.7). We can see for example from Proposition 3.9
that (∗) is an isomorphism. Thus, the primitive elements are stable under taking fibres.

Note that if we assume Conjecture 8.5, then we only need Conjecture 8.2 to hold for
locally finitely presented G. Indeed, we can then prove the adjunction of G and M as

functors between Fq- Gr+,b
A,f.p. and Fq- ShtA,f.g. by the identical argument.

Theorem 8.12. Assume that Conjectures 8.2 and 8.5 are true. The functor

G : Fq- ShtA,f.g. −→ Fq- Gr+,b
A,f.p.

defines an anti-equivalence of categories with quasi-inverse M.

Proof. We follow [3], IV, §3, 6.5. First of all, we may assume that A is a local ring, and in
fact even an Artin local ring, by Remark 8.11. We consider the short exact sequence

0 −→ G
uG−−−→ G(M(G)) −→ Q −→ 0, (8.2)

defined by the adjunction morphism. On the other hand, we once again have the isomorphism

v−1
M(G) =M(uG) :M(G(M(G))) ∼−−→M(G).

Since G is balanced, M(uG) extends to all primitive elements, i.e.

HomGrA(uG,Ga) : HomGrA(G(M(G)),Ga) ∼−−→ HomGrA(G,Ga).

Then applying Mp = HomGrA(−,Ga) to (8.2) yields the exact sequence

0 −→ HomGrA(Q,Ga) −→ HomGrA(G(M(G)),Ga) ∼−−→ HomGrA(G,Ga). (8.3)

The fibre of Q over the closed point of SpecA is unipotent by [3], IV, §2, 2.3, i.e. there is a
non-trivial morphism to the additive group.

Since A is an Artin ring, this lifts to Q → Ga, up to a Frobenius twist on Ga. But (8.3)
tells us that HomGrA(Q,Ga) = 0, hence Q must be trivial. �

Remark 8.13. In particular, if A = k is a field, then Fq- Gr+,b
k,f.p. is an abelian category, in

which Ga is an injective object.
Moreover, in this case, we can drop the conditions that our group schemes G are finitely

presented and that our k[F r]-modules are finitely generated, respectively. Indeed, we may
argue as above, applying Theorem 1.1 on the way.

In fact, we can use [3], III, §3, 7.5, in order to write G = lim←−Gi with Gi ∈ Fq- Gr+
k finitely

presented, compatibly with M and G. Namely, G→ Gi is an epimorphism (cf. loc.cit., 7.4),
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hence Gi inherits an Fq-action from G, by Remark 5.3. These agree in the limit,

G Gj Gi

G Gj Gi

[α] [α]j [α]i (8.4)

since the left square and the outer rectangle in (8.4) commute, and so the two compositions
in the right square agree up to G� Gj , hence must be equal.

Now choose an Fq-equivariant embedding G ↪→ GNa . Then we can take the pushout

G GNa

Gi H.
p·

(8.5)

But then H ∼= Gna , by [3], IV, §3, 6.8. To wit, Mp(H) ↪→Mp(GNa ) = k[F ]⊕N is injective by
left-exactness, hence Mp(H) ∼= k[F ]⊕n for some n, since k[F ] is left-Euclidean. Therefore,

H = Gp(Mp(H)) ∼= Gna .

From Remark 5.3, we know that the diagram (8.5) in fact lies in Fq- Gr+
k .

Finally, let us prove the following structure theorem, generalizing Theorem 1.2.

Theorem 8.14. If k is a perfect field, then G ∈ Fq- Gr+,b
k lies in Fq- Gr+,b

k,f.p. if and only if

G ∼= Gna × π0(G)×H,

with H a product of group schemes of the form αqs and where π0(G) is an étale sheaf of
finite-dimensional Fq-vector spaces. If k is algebraically closed, then

π0(G) ∼= (Fq)m

for some m ∈ N.

Proof. As in [3], IV, §3, 6.9, we use the fact that k[F r] is left-Euclidean to decomposeM(G)
into its k[F r]-torsion submodule M = M(G)tors and its torsionfree part. Furthermore,
applying Lemma 4.4 to M altogether yields the decomposition

G = G(M(G)) = G(M(G)/(M,f))× G(Mss, fss)× G(Mnil, fnil).

Then M(G)/(M,f) is free of finite rank n ∈ N, and G(M(G)/(M,f)) ∼= Gna . The finite
part of G consists of the (by Lemma 4.4 maximal) étale part π0(G) = G(Mss, fss) and the
connected part H = G(Mnil, fnil), cf. Proposition 6.6. By Theorem 1.2, as a group scheme,

H ∼= αps1 × . . .× αpsh = Spec(k[x1, . . . , xh]/(xp
s1

1 , . . . , xp
sh

h )).

By Theorem 5.10, the maps Prim1(BH) → Primps(BH), x 7→ xp
s

, are surjective. Thus H

can be written as above even in Fq- gr+,b
k . But then r|si for all i, cf. Example 5.16.

If k is algebraically closed, then π0(G) is constant. Furthermore, it is killed by p = F ◦ V
(cf. Remark 2.5) and of q-power order. Hence it is indeed a power of Fq = Spec(k[x]/(xq−x)).

Again as above, the Fq-action must be the canonical one. �

Remark 8.15. Note that Fpt is of Fq-additive type if and only if r|t.
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[3] M. Demazure and P. Gabriel. Groupes Algébriques. North-Holland Publishing Company, 1970.
[4] V. G. Drinfel’d. Varieties of modules of F -sheaves. Functional Analysis and Its Applications, 21(2):107–

122, 1987.

[5] G. Faltings. Group Schemes with Strict O-Action. Moscow Mathematical Journal, 2(2):249–279, 2002.
[6] N. J. Fine. Binomial Coefficients Modulo a Prime. The American Mathematical Monthly, 54(10):589–592,

1947.

[7] J.-M. Fontaine. Groupes p-divisibles sur les corps locaux. Astérisque, 47-48:1–262, 1977.
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