Summer term 2024 Elliptic curves and their moduli spaces Dr. Andreas Mihatsch

Exam dates: August 5 (1st), and September 16 (2nd). At 9 am. Location will be announced in due time.

Homework problems (due July 5)

Problem 1 (Gradings and \mathbb{G}_m -actions)

(a) Complete the proof of Proposition 3.14:¹ Let A be a ring together with a \mathbb{Z} -grading $A = \bigoplus_{i \in \mathbb{Z}} A_i$. That is, $A = \bigoplus_{i \in \mathbb{Z}} A_i$ as abelian group and $A_i A_j \subseteq A_{i+j}$. Prove that there is an action $\mu : \mathbb{G}_m \times \operatorname{Spec} A \to \operatorname{Spec} A$ with $\mu^*(a_i) = t^i \otimes a_i$ for all $a_i \in A_i$.

(b) Let k be a field and let $X = (\mathbb{A}^1_k \setminus \{0\}) \times_k \mathbb{A}^1_k$. Define a $\mathbb{G}_{m,k}$ -action

$$\mu: \mathbb{G}_{m,k} \times_k X \longrightarrow X$$

such that on k-valued points we obtain

$$\mu(k): \quad \lambda \cdot (x, y) = (\lambda x, \lambda^{-1} y).$$

Determine the corresponding \mathbb{Z} -grading on $\Gamma(X, \mathcal{O}_X)$.

Problem 2 (Quadratic twists over \mathbb{Q})

Suppose $a, b \in \mathbb{Q}$ with $4a^3 + 27b^2 \neq 0$ and $D \in \mathbb{Q}^{\times}$. Consider the two elliptic curves defined by the Weierstrass equations

$$E: y^2 = x^3 + ax + b,$$
 $E_D: Dy^2 = x^3 + ax + b.$

Assume that $a, b \in \mathbb{Q}^{\times}$ and that D is not a square. Show that then $E \not\cong E_D$.

Hint: First transform the second Weierstrass equation into simplified form. Then show that there is no substitution x' = ux, y' = vy with $u^3 = v^2$, where $u, v \in \mathbb{Q}^{\times}$, that transforms the first simple equation into the second.

Further Problems

Problem 3 (Gradings and μ_n -actions)

Recall that $\mu_n = \operatorname{Spec} \mathbb{Z}[t]/(t^n - 1)$ denotes the group scheme of *n*-th roots of unity. Show that for any ring A there is a bijection

$$\{\mu_n \text{-actions on Spec } A\} \longleftrightarrow \{\text{Gradings } A = \bigoplus_{i \in \mathbb{Z}/n\mathbb{Z}} A_i\}.$$

¹For simplicity, we take $R = \mathbb{Z}$.

Problem 4 (Pullback of $\Omega^1_{X/S}$)

Let $X \to S$ be a separated morphism of schemes and let $\sigma : S \to X$ be a section. Let \mathcal{I} be the ideal sheaf defining the closed subscheme $\sigma(S) \subseteq X$. Assume that X/S is smooth. Prove that there is an isomorphism

$$\mathcal{I}/\mathcal{I}^2 \xrightarrow{\sim} \sigma^*(\Omega^1_{X/S}), \quad f \longmapsto df.$$