Summer term 2024 Elliptic curves and their moduli spaces Dr. Andreas Mihatsch

Exam dates: August 5 (1st), and September 16 (2nd). Both at 9 am. Location will be announced in due time.

Homework problems (due June 28)

Problem 1 (Integral structure of End(E))

(a) Let ℓ be a prime. Consider the \mathbb{Z}_{ℓ} -algebra

$$R = \left\{ \begin{pmatrix} a & b \\ \ell c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}_{\ell} \right\}.$$

Prove that $R \not\cong M_2(\mathbb{Z}_\ell)$.

(b) Let $L = \text{Hom}(E_1, E_2)$ be the Hom-space between two elliptic curves over a field k. Let $\ell \neq \text{char}(k)$ be a prime. Show that $\phi \in L$ is divisible by ℓ in L if and only if it is divisible by ℓ in $\text{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}(E_1), T_{\ell}(E_2))$.

(c) Assume that $\operatorname{char}(k) = p$ and that E/k is such that $\operatorname{End}^0(E)$ is a quaternion algebra. Prove that

$$\mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} \operatorname{End}(E) \cong M_2(\mathbb{Z}_{\ell})$$

In particular, subrings as in (a) cannot occur as ℓ -adic completions of $\operatorname{End}(E)$.

Problem 2 (On elliptic curves with complex multiplication)

Let K be an imaginary-quadratic field. For i = 1, 2, let E_i be a complex elliptic curve with $\operatorname{End}^0(E_i) \cong K$. Show that $\operatorname{Hom}(E_1, E_2) \neq 0$.

Further Problems

Problem 3 (A *p*-adic argument)

Let k be a field of characteristic p > 0 and let E be an elliptic curve over k.

(a) Show that there are natural projection maps $\operatorname{End}(E[p^{n+1}]) \to \operatorname{End}(E[p^n])$.

(b) Show that there is a natural map

$$\operatorname{End}(E) \longrightarrow \lim_{n \to \infty} \operatorname{End}(E[p^n]).$$

Prove that this map is injective.

Hint: Follow the strategy of the ℓ -adic case from the lecture.