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Introduction

This thesis studies GL+
n (R)-homogeneous tempered distributions defined on the space Rn2

for n ≥ 1. For a function ϕ ∈ S(Rn2
), a matrix A ∈ GLn(R) and a parameter α ∈ C, we

define the dilated function Dα
Aϕ ∈ S(Rn2

)

Dα
Aϕ(V ) :=

1

|detA|α+nϕ(A−1V ),

where we identify V ∈ Rn×n with the point v = (v1, . . . , vn2) ∈ Rn2
by Vi,j = vi+(j−1)n.

From now on we will use the notation Rn×n for Rn2
with this intended identification.

Let GL+
n (R) be the subset of GLn(R) defined by

GL+
n (R) := {A ∈ GLn(R) : detA > 0}.

Definition 1. For α ∈ C, we say that a tempered distribution Λ ∈ S ′(Rn×n) is GL+
n (R)-

homogeneous of degree α if

Λ(Dα
Aϕ) = Λ(ϕ),

for every matrix A ∈ GL+
n (R) and every function ϕ ∈ S(Rn×n).

We denote by Xn
α the vector space of GL+

n (R)-homogeneous tempered distributions of
degree α.

In dimension n = 1, our definition coincides with the one of homogeneity under scalar
matrices {λIn : λ > 0}, see [7], since GL+

1 (R) = {λ ∈ R : λ > 0}.

Definition 2. For α ∈ C, we say that a tempered distribution Λ ∈ Xn
α is

• even, if for some matrix A ∈ GLn(R), detA < 0,

Λ(Dα
Aφ) = Λ(ϕ);

• odd, if for some matrix A ∈ GLn(R), detA < 0,

Λ(Dα
Aφ) = −Λ(ϕ).

We denote by Xn
α,even,X

n
α,odd the vector subspaces of even and odd elements of Xn

α .

It is easy to observe that

Xn
α = Xn

α,even ⊕Xn
α,odd,
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and we will elaborate on this in Lemma 20. Therefore, in order to give a complete classi-
fication for Xn

α , it is enough to describe the elements of Xn
α,even and Xn

α,odd.

The candidates are the tempered distributions associated to the homogeneous functions
|detV |α, sgn(detV )|detV |α. Let Inα,even, I

n
α,odd be defined, when it makes sense, by

Inα,even(ϕ) :=

ˆ
Rn×n
|detV |αϕ(V ) dV,

Inα,odd(ϕ) :=

ˆ
Rn×n

sgn(detV )|detV |αϕ(V ) dV,

(1)

for every ϕ ∈ S(Rn×n).

In dimension n = 1, the spaces X1
α,even and X1

α,odd are known to have dimension 1.
The result stated in Theorem 3 below can be recovered from [4] or [7]. We will focus on
the case of dimension n = 2, for which we are able to provide a complete description of the
spaces X2

α for arbitrary α ∈ C, see Theorem 5 below. The techniques and the arguments
that we develop in this context are expected to be useful also to tackle the problem in the
general case of an arbitrary n ≥ 1. However, this is beyond the scope of this work.

In the following statements, the Fourier transform has to be intended in the sense of
tempered distributions, namely as the map

·̂ : S ′(Rn×n)→ S ′(Rn×n), Λ̂(ϕ) := Λ(ϕ̂).

Theorem 3. For α ∈ C, both X1
α,even and X1

α,odd have dimension 1. In particular,

• X1
α,even is generated by

– for Re(α) > −1, I1
α,even;

– for Re(α) ≤ −1, (I1
−α−1,even)̂;

• X1
α,odd is generated by

– for Re(α) > −1, I1
α,odd;

– for Re(α) ≤ −1, (I1
−α−1,odd)̂.

The Fourier transform defines a bijection X1
α → X1

−α−1. The key observation is that
for α ∈ C we either have Re(α) > −1 or Re(−α− 1) > −1, hence either |x|α ∈ L1

loc(R) or
|x|−α−1 ∈ L1

loc(R). It holds the stronger property that the integral of their absolute value
over the ball BR(0) grows at most polynomially in R. Therefore at least one between I1

α,even

and I1
−α−1,even is well-defined as an element of S ′(R), and it has the appropriate degree of

GL+
1 (R)-homogeneity. Moreover, the two regions {Re(α) > −1} and {Re(α) < 0} overlap

and cover the whole complex plane, thus we have an existence result for every α ∈ C. The
result about having exactly dimension 1 is heavily based on the study of the tempered
distributions Γ ∈ X1

α supported at the origin. In particular, we will prove in Lemma
32 that Γ 6= 0 only if α ∈ Z, α ≤ −1. As a consequence, if Λ ∈ X1

α,even, then either

Λ = cI1
α,even or Λ̂ = cI1

−α−1,even, c ∈ C, and an analogous property holds for Λ ∈ X1
α,odd.

iv



α ∈ C

−4 −3 −2 −1 0 1 2

For −1 < Re(α) < 0, we can define nonzero elements of X1
α,even both via I1

α,even and,
through the Fourier transform, via I1

−α−1,even. Since the space has dimension 1, the two

tempered distributions are linearly dependent. An analogous result holds for X1
α,odd, and

the constants of linear dependence are established by the following lemma.

Lemma 4. For −1 < Re(α) < 0,

π−
α+1
2 Γ

(
α+ 1

2

)
(I1
−α−1,even)̂ = π

α
2 Γ

(
−α

2

)
I1
α,even,

π−
α+2
2 Γ

(
α+ 2

2

)
(I1
−α−1,odd)̂ = −iπ

α−1
2 Γ

(
−α− 1

2

)
I1
α,odd.

Moreover, for a fixed function ϕ ∈ S(R), the functions in the variable α ∈ C defined by
π−

α+1
2

1

Γ
(
−α

2

) I1
−α−1,even(ϕ̂) if Re(α) < 0,

π
α
2

1

Γ
(
α+1

2

) I1
α,even(ϕ) if Re(α) > −1,

iπ−
α+2
2

1

Γ
(
−α−1

2

) I1
−α−1,odd(ϕ̂) if Re(α) < 0,

π
α−1
2

1

Γ
(
α+2

2

) I1
α,odd(ϕ) if Re(α) > −1,

are holomorphic on C.

For n = 2, the problem gets more complicated, ultimately because the critical variety

M := {V ∈ R2×2 : detV = 0}

is not given only by the origin, and it has an interesting geometry. In fact, V ∈ M may
have rank 0 or 1. The only matrix with rank 0 is the zero matrix, while M \{0}, the subset
of matrices with rank 1, defines a smooth 3-dimensional submanifold of R2×2. The orbits
of the action of GL+

2 (R) onto R2×2, given by left multiplication by the inverse matrix,
fibrate M \ {0} into punctured planes. We have a 2-1 map

ν : (R2 \ {0})× (R/2πZ)→M \ {0}, ν(w, θ) =
(
w cos θ w sin θ

)
=

(
w1 cos θ w1 sin θ
w2 cos θ w2 sin θ

)
.

To state our theorem, we have to consider the differential operator det(∂i,j) of second
order algebraically mirroring the determinant, namely

det(∂i,j) := ∂1,1∂2,2 − ∂1,2∂2,1,
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which defines a map on the space of tempered distributions

det(∂i,j) : S ′(R2×2)→ S ′(R2×2), det(∂i,j)Λ(ϕ) = Λ(det(∂i,j)ϕ).

Our main theorem is the following complete classification result.

Theorem 5. For α ∈ C, X2
α,odd has dimension 1. For α 6= −1, X2

α,even has dimension 1,

while X2
−1,even is infinite dimensional. In particular,

• X2
α,even is generated by

– for Re(α) > −1, I2
α,even;

– for Re(α) < −1, (I2
−α−2,even)̂;

– for Re(α) = −1, α 6= −1, det(∂i,j)I
2
α+1,odd;

• there is a bijection µ : D′(R/πZ)→ X2
−1,even given by

(µ(F ))(ϕ) := F (ψϕ),

where, for every ϕ ∈ S(R2×2),

ψϕ(θ) :=

ˆ
R2\{0}

ϕ(ν(w, θ)) dw =

ˆ
R2\{0}

ϕ
(
w cos θ w sin θ

)
dw,

is a smooth π-periodic function on R;

• X2
α,odd is generated by

– for Re(α) > −1, I2
α,odd;

– for Re(α) < −1, (I2
−α−2,odd)̂;

– for Re(α) = −1, α 6= −1, det(∂i,j)I
2
α+1,even;

– for α = −1, p. v. 1
detV ,

where

p. v.
1

detV
(ϕ) := p. v.

ˆ
R2×2

ϕ(V )

detV
dV = lim

ε→0

ˆ
|detV |>ε

ϕ(V )

detV
dV. (2)

The Fourier transform defines a bijection X2
α → X2

−α−2. Unlike in the case n = 1, the
two reflected half planes defined by the conditions Re(α) > −1 and Re(−α − 2) > −1,
namely {Re(α) > −1} and {Re(α) < −1}, don’t cover the whole plane C. Instead, there
is a “gap” given by the line {Re(α) = −1}. Therefore, while it is enough to restrict to the
case Re(α) ≥ −1, the study of X2

α for Re(α) = −1 requires a deeper analysis. Outside
the critical line we either have |detV |α or |detV |−α−2 in L1

loc(R2×2), and the integral over
the ball BR(0) grows at most polynomially in R. Hence either I2

α,even or I2
−α−2,even is

well-defined as an element of S ′(R2×2). An analogous argument holds for the elements of
X2
α,odd.
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α ∈ C

−4 −3 −2 −1 0 1 2

To define the elements of X2
α for Re(α) = −1, α 6= −1, we observe that the differential

operator det(∂i,j) gives a map X2
α → X2

α−1. In particular, if α /∈ {−1, 0} this map is
nonzero, as we will prove in Lemma 26. Therefore we can use det(∂i,j) to describe nonzero
elements of X2

α for Re(α) = −1, α 6= −1.

α ∈ C

−4 −1 0 1 2−2−3

For −2 < Re(α) < −1, we can use the differential operator det(∂i,j) to define nonzero
elements of the spaces X2

α,even and X2
α,odd, which have dimension 1. The following lemma

establishes the constants of linear dependence between these alternative generators and
the ones enlisted in Theorem 5.

Lemma 6. For −2 < Re(α) < −1,

4π−α−2 Γ

(
α+ 4

2

)
Γ

(
α+ 3

2

)
(I2
−α−2,even)̂ =

= πα Γ
(
−α

2

)
Γ

(
−α+ 1

2

)
(det(∂i,j)I

2
α+1,odd),

4π−α−2 Γ

(
α+ 4

2

)
Γ

(
α+ 3

2

)
(I2
−α−2,odd)̂ =

= πα Γ
(
−α

2

)
Γ

(
−α+ 1

2

)
(det(∂i,j)I

2
α+1,even).

Moreover, for a fixed function ϕ ∈ S(R2×2), the functions of α ∈ C defined by
4π−α−2 1

Γ
(
−α

2

) 1

Γ
(
−α+1

2

) I2
−α−2,even(ϕ̂) if Re(α) < −1,

πα
1

Γ
(
α+4

2

) 1

Γ
(
α+3

2

) I2
α+1,odd(det(∂i,j)ϕ) if Re(α) > −2,

4π−α−2 1

Γ
(
−α

2

) 1

Γ
(
−α+1

2

) I2
−α−2,odd(ϕ̂) if Re(α) < −1,

πα
1

Γ
(
α+4

2

) 1

Γ
(
α+3

2

) I2
α+1,even(det(∂i,j)ϕ) if Re(α) > −2,
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are holomorphic on C.

To conclude the classification we observe that (2) defines an element of X2
−1,odd, while

for the even ones the claim follows by the analysis of elements of X2
−1 supported on M

and the fact that the function
1

|detV |
cannot be extended to an element of X2

−1,even.
An important difference between the cases of dimension n = 1 and n = 2 is encoded

by the following statement, which will be proven as part of Corollary 45.

Proposition 7. For α ∈ Z, α ≤ −2, let Λ ∈ X2
α, or let Λ ∈ X2

−1,even. Then supp(Λ) ⊂M .

In fact, in dimension n = 1, for α ∈ Z, α ≤ −1, one between Λ ∈ Xα,even and

Λ̃ ∈ Xα,odd, Λ, Λ̃ 6= 0, is not supported at the origin.
It is also interesting to consider the effect of the operator det(∂i,j) on the spaces X2

α

for α ∈ Z. In Corollary 47 we will prove it defines a bijection if and only if α /∈ {−1, 0}.
In the diagram, the arrows stand for the maps det(∂i,j), the hook denotes the injectivity,
the double pointer the surjectivity.

−3 −2 −1 0 1

X2
α,even

X2
α,odd

(|detV |)̂ δ {µ(F )} 1 |detV |

det(∂i,j)δ (sgn(detV ))̂ p. v. 1
detV sgn(detV ) detV

For n ≥ 3, the Fourier transform defines a bijection Xn
α → Xn

−α−n. The “gap” between
the two reflected half planes given by the conditions Re(α) > −1 and Re(−α − n) > −1
widens to a strip, where neither |detV |α nor |detV |−n−α is in L1

loc(Rn×n), hence not even
in S ′(Rn×n). For α ∈ {−n+ 1, . . . ,−1}, we define elements of Xn

α,even via integrals of the
restriction of ϕ over n(n+ α)-dimensional subspaces of Rn×n contained in M . Moreover,
through a principal value integral, we define an element of Xn

−1,odd, and by means of the
Fourier transform, an element of Xn

−n+1,odd. However, the problem of existence is unsolved
for −n+ 1 ≤ Re(α) ≤ −1 except for the stated cases.

α ∈ C

n = 3

−4 −3 −2 −1 0 1 2

Our interest in GL+
n (R)-homogeneous distributions arose from the study of the mul-

tilinear singular integral forms with determinantal kernel in [1] and in [8]. These forms

viii



generalize the Hilbert transform and are connected to the restriction problem for the
Fourier transform, in particular in the case of the sphere, as explained in [2] and [3]. We
want to have a better understanding of their invariances in order to tackle effectively the
conjecture about their boundedness.

A consequence of the classification theorem in dimension n = 2 is that the tempered
distribution studied in [1] is identified by its invariance properties. In fact, let Λ ∈ S ′(R6)
be defined by

Λ(ϕ) := p. v.

ˆ
R6

1

det

(
1 1 1
x y z

) ϕ(x, y, z) δ(x+ y + z) dx dy dz =

= lim
ε→0

ˆ
|det|>ε

1

det

(
1 1 1
x y z

) ϕ(x, y, z) δ(x+ y + z) dx dy dz,

(3)

where x, y, z ∈ R2. It possesses the following invariance properties:

• (modulation invariance) for each vector b ∈ R2 define

Mbϕ(x, y, z) := e2πib·(x+y+z)ϕ(x, y, z).

Then
Λ(Mbϕ) = Λ(ϕ),

for every vector b ∈ R2 and every function ϕ ∈ S(R6);

• for each matrix A ∈ GL2(R) define

BAϕ(x, y, z) :=
1

detA
ϕ(A−1x,A−1y,A−1z).

Then
Λ(BAϕ) = Λ(ϕ), (4)

for every matrix A ∈ GL2(R) and every function ϕ ∈ S(R6).

Corollary 8. Up to multiplication by a constant, the tempered distribution Λ defined in
(3) is the unique nonzero element of S ′(R6) satisfying the modulation invariance and the
property (4).

The thesis is organised as follows.
In the first chapter, we briefly recall some preliminaries, definitions and results from

the theory of distributions. Then, we study the effect on Xn
α of the Fourier transform, the

operator associated to the multiplication by detV and det(∂i,j). After that, for arbitrary
n ≥ 1, we prove an existence result for nonzero elements of Xn

α,even for Re(α) /∈ [−n+1,−1]
or α ∈ {−n + 1, . . . ,−1}, and of Xn

α,odd for Re(α) /∈ [−n + 1,−1] or α ∈ {−n + 1,−1}.
Finally, we prove an uniqueness result for n ≥ 1, namely that, away from M , a tempered
distribution Λ ∈ Xn

αeven∪Xn
α,odd coincides with the definitions in (1). The idea behind our

approach to obtain this result is simple enough to warrant discussion in the Introduction.
We differentiate the equalities given by the α-homogeneity conditions for functions φ ∈
D(Rn×n \M) and for matrices arbitrarily “ε-close” to the identity In, e.g.

A = (In + εEi,j)−1, (Ei,j)l,m = δi,lδj,m,

ix



where δi,l is the Kronecker delta of the couple (i, l). We divide the associated equality by
ε, and we take the limit as ε goes to zero, which yields

lim
ε→0

1

ε
Λ(Dα

Aφ− φ) = 0

By continuity of Λ, we move the limit to the argument of the distribution. In this way
we translate the information coming from homogeneity condition into properties of the
derivatives of Λ.

The second chapter is devoted to the proof of the classification results stated in The-
orem 3 and Theorem 5. In particular, the complete classification in the case n = 2 is
established by investigating α-homogeneous tempered distributions supported on M . In
Lemma 39, we prove that if Γ ∈ X2

α is supported on M , then α ∈ Z, α ≤ −1. In particu-
lar, if α = −1, then Γ is even and of the form appearing in Theorem 5. To conclude the
classification we show that the function defined on R2×2 \M

1

|detV |

cannot be extended to an element of X2
−1,even. In the last part of the chapter we prove

Lemma 6 and Corollary 8.

Acknowledgements. I would like to express my gratitude to my advisor Prof. Chris-
toph Thiele for his guidance, the inspiring discussions, and for giving me a lot of motivation
on the subject and plenty of helpful remarks to improve the content and the exposition of
this thesis.
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Chapter 1

Existence and uniqueness results
for n ≥ 1

1.1 Notation and preliminaries for tempered distributions

From now on, N = {0, 1, 2, . . . } will denote the set of nonnegative integers.
For a multi-index β = (β1, . . . , βd) ∈ Nd we define

• |β| = β1 + · · ·+ βd, β! = β1! . . . βd!;

• xβ = xβ11 . . . xβdd , ∂β = ∂β11 . . . ∂βdd .

Let Ω be an open subset of Rd. We have the following definitions.

Definition 9. We denote by D(Ω) the set of complex-valued smooth functions with com-
pact support in Ω. A sequence {φk}k ⊂ D(Ω) is said to converge to φ ∈ D(Ω) if the
following two conditions hold:

• there is a compact set K ⊂ Ω containing the supports of all φk;

• for each multi-index β we have ∂βφk → ∂βφ uniformly in x as k →∞.

This defines a topology on D(Ω).

A distribution is a continuous linear functional Λ: D(Ω)→ C. We denote by D′(Ω)
the vector space of distributions on Ω.

For a smooth function ϕ : Rd → C, N ∈ N, we define the norm

‖ϕ‖N := sup
x∈Rd
|β|,|γ|≤N

∣∣xγ(∂βϕ)(x)
∣∣, (1.1)

where β, γ ∈ Nd are multi-indices.

We note that, for N ∈ N, there exists CN,d such that for every x ∈ Rd we have

|x|N ≤ CN,d
∑
|γ|=N

|xγ |.

1



1.1 Notation and preliminaries for tempered distributions

In fact, the function F : Sd−1 → (0,∞), F (x) =
∑
|γ|=N |xγ | is continuous and strictly

positive. Since it attains a minimum, there exists CN,d such that∑
|γ|=N

|xγ | = F (x) ≥ 1

CN,d
> 0.

We get the claim for an arbitrary x by considering F for x
|x| .

Therefore, for every N ∈ N, there exists CN such that

‖ϕ‖N ≤ sup
x∈Rd
|β|,k≤N

|x|k
∣∣(∂βϕ)(x)

∣∣ ≤ CN‖ϕ‖N . (1.2)

Definition 10. We denote by S(Rd) the set of complex-valued smooth functions such that
‖ϕ‖N < ∞ for every N . The elements of S(Rd) are called Schwartz functions. A
sequence {ϕk}k ⊂ S(Rd) is said to converge to ϕ ∈ S(Rd) if ‖ϕ−ϕk‖N → 0, as k →∞,
for every N ∈ N. This defines a topology on S(Rd).

A tempered distribution is a continuous linear functional Λ: S(Rd) → C. We
denote by S ′(Rd) the vector space of tempered distributions on Rd.

For every open subset Ω ⊂ Rd, a tempered distribution Λ ∈ S ′(Rd) defines a distribu-
tion Λ̃ ∈ D′(Ω) by

Λ̃(φ) := Λ(φ),

for every φ ∈ D(Ω), where we identify φ ∈ D(Ω) with the function φ ∈ S(Rd) obtained by
letting φ(x) = 0 for x ∈ Rd \ Ω. A priori Λ̃ is only a linear functional, the continuity is
implied by the following statement.

Proposition 11. Let {φk}k ⊂ D(Ω) be a sequence converging to φ ∈ D(Ω). Then {φk}k
converges to φ also in S(Rd), under the identification of the functions φk, φ with elements
of S(Rd) described above.

Proof. By the definition of convergence in D(Ω), there exists a compact set K ⊂ Ω such
that supp(φk), supp(φ) ⊂ K. Moreover, for each multi-index β, we have

sup
x∈K

∣∣∣(∂β(φk − φ))(x)
∣∣∣→ 0, as k →∞.

Now let N ∈ N. Since K ⊂ BR(0) for some R ≥ 1, then, for every multi-index γ such that
|γ| ≤ N ,

sup
x∈K
|xγ | ≤ (sup

x∈K
|x|)|γ| ≤ RN .

This implies that

‖φk − φ‖N ≤ R
N max
|β|≤N

sup
x∈K

∣∣∣(∂β(φk − φ))(x)
∣∣∣→ 0, as k →∞,

proving the claim.

A well known characterization of the tempered distributions in terms of the norms
(1.1) is given by the following result.

2



CHAPTER 1. Existence and uniqueness results for n ≥ 1

Proposition 12. Let Λ be a complex-valued linear functional on S(Rd). Then it is a
tempered distribution if and only if there exist N ∈ N and a constant c > 0 such that

|Λ(ϕ)| ≤ c‖ϕ‖N ,

for every ϕ ∈ S(Rd).

Proof. The sufficient condition trivially follows from the definition of S ′(Rd).
The necessary condition is proven by contradiction. Assume otherwise. Then the

conclusion fails and, for each k, there is ψk ∈ S(Rd) with ‖ψk‖k = 1, while |Λ(ψk)| ≥ k.

Take ϕk = ψk√
k
. Then ‖ϕk‖N ≤ ‖ϕk‖k as soon as k ≥ N , and thus ‖ϕk‖N ≤

1√
k
→ 0 as

k →∞. Instead, |Λ(ϕk)| ≥
√
k →∞, contradicting the continuity of Λ.

In an analogous way we can prove the following characterization of the distributions.

Proposition 13. Let Λ be a complex-valued linear functional on D(Ω). Then it is a
distribution if and only if for every compact set K ⊂ Ω, there exist NK ∈ N and a
constant cK > 0 such that

|Λ(φ)| ≤ cK sup
|γ|≤NK

sup
x∈K

∣∣∣∂γφ(x)
∣∣∣,

for every φ ∈ D(Ω), supp(φ) ⊂ K.

Definition 14. For a distribution Λ ∈ D′(Ω), we say that Λ vanishes in an open subset
of Ω if Λ(φ) = 0 for all test functions φ ∈ D(Ω) which have their supports in that open set.
We define the support of a distribution Λ ∈ D′(Ω) as the complement of the largest
open set on which Λ vanishes.

We define the support of a tempered distribution Λ ∈ S ′(Rd) as the support of
the associated distribution Λ̃ ∈ D′(Rd).

A rather classical result, which will be useful in our analysis, is the classification of
tempered distributions supported at the origin. In proving it we will follow [7].

Proposition 15. Let Γ ∈ S ′(Rd), supp(Γ) = {0}. Then there exist N ∈ N, cβ ∈ C, such
that

Γ =
∑
|β|≤N

cβ∂
βδ,

where δ is the Dirac delta function.

Proof. The argument is based on the following result.

Lemma 16. Let Γ1 ∈ S ′(Rd), supp(Γ1) = {0}, satisfy, for some N ∈ N, the following
conditions:

• |Γ1(ϕ)| ≤ c‖ϕ‖N , for every ϕ ∈ S(Rd);

• for a function η ∈ D(Rd) with η(x) = 0 on (B2(0))c, and η(x) = 1 on B1(0),

Γ1(xγη) = 0,

for every multi-index γ with |γ| ≤ N .
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1.1 Notation and preliminaries for tempered distributions

Then Γ1 = 0.

Proof of Lemma. In fact, let η ∈ D(Rd) as in the statement and write ηε−1(x) = η(xε ).
Then, since Γ1 is supported at the origin, Γ1(ηε−1ϕ) = Γ1(ϕ). Moreover, by the same
token Γ1(ηε−1xβ) = Γ1(ηxβ) = 0 for every |β| ≤ N , and hence

Γ1(ϕ) = Γ

ηε−1

ϕ(x)−
∑
|β|≤N

∂βϕ(0)

β!
xβ

 .

If R(x) = ϕ(x)−
∑
|β|≤N

∂βϕ(0)
β! xβ is the remainder, then |R(x)| ≤ c|x|N+1 and |∂γR(x)| ≤

cγ |x|N+1−|γ|, when |γ| ≤ N . However |∂γηε−1(x)| ≤ cγε
−|γ| and ∂γηε−1 = 0 if |x| ≥ 2ε.

Thus by Leibnitz’s rule, ‖ηε−1R‖N ≤ cε, and our first assumption gives |Γ1(ϕ)| ≤ c′ε,
which yields the desired conclusion upon letting ε→ 0.

Proceeding with the proof of the proposition, we now apply the above lemma to

Γ1 = Γ−
∑
|β|≤N

cβ∂
βδ,

where N is the index that guarantees the conclusion of Proposition 12, while the cβ are
chosen so that

cβ =
(−1)β

β!
Γ(xβη).

Then since (∂βδ)(xγψ) = (−1)|β|β! if β = γ, and zero otherwise, we see that Γ1 = 0, which
proves the proposition.

The following statement establishes a sufficient condition for locally integrable func-
tions to define tempered distributions.

Proposition 17. Let f ∈ L1
loc(Rd) such that for some N ∈ N,

ˆ
|x|≤R

|f(x)| dx = O(RN ), as R→∞.

Then Λf ∈ S ′(Rd), where, for every ϕ ∈ S(Rd),

Λf (ϕ) =

ˆ
Rd
f(x)ϕ(x) dx.

Proof. By hypothesis, there exist R̃ > 0, C > 0 such that, for R ≥ R̃,

ˆ
|x|≤R

|f(x)|dx ≤ CRN .
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CHAPTER 1. Existence and uniqueness results for n ≥ 1

Then, for every ϕ ∈ S(Rd),

|Λf (ϕ)| =

∣∣∣∣∣
ˆ
Rd
f(x)ϕ(x) dx

∣∣∣∣∣ ≤
ˆ
Rd
|f(x)ϕ(x)|dx ≤

≤
ˆ
|x|≤R̃

|f(x)|‖ϕ‖∞ +

∞∑
i=1

ˆ
2i−1R̃≤|x|≤2iR̃

|f(x)ϕ(x)| dx ≤

≤ K‖ϕ‖0 +

∞∑
i=1

ˆ
2i−1R̃≤|x|≤2iR̃

|f(x)| 1

|x|N+1
|x|N+1|ϕ(x)|dx ≤

≤ K‖ϕ‖0 +K
∞∑
i=1

1

(2i−1R̃)N+1
‖ϕ‖N+1

ˆ
|x|≤2iR̃

|f(x)| dx ≤

≤ K‖ϕ‖0 +K
∞∑
i=1

1

(2i−1R̃)N+1
‖ϕ‖N+1C(2iR̃)N ≤ C‖ϕ‖N+1

∞∑
i=1

1

2i
≤

≤ C‖ϕ‖N+1.

By Proposition 12, this condition implies the claim.

One tool we need in our analysis is a rather classical result, which can be found in [4].

Lemma 18. Let u ∈ D′(Y × I) where Y is an open set in Rd−1 and I an open interval
on R. If ∂du = 0 then

u(φ) =

ˆ
u0(φ(·, xd)) dxd = u0

(ˆ
φ(·, xd) dxd

)
, φ ∈ D(Y × I),

where u0 ∈ D′(Y ). Thus u is a distribution u0 in x′ = (x1, . . . , xd−1) independent of xd.

Proof. Choose ψ0 ∈ D(I) with
´
I ψ0(t) dt = 1 and define

u0(χ) = u(χ0),

where, for χ ∈ D(Y ),
χ0(x) = χ(x′)ψ0(xd).

It is obvious that u0 ∈ D′(Y ). For φ ∈ D(Y × I), we define

(Iφ)(x′) =

ˆ
I
φ(x′, xd) dxd.

Thus we have
φ(x)− (Iφ)(x′)ψ0(xd) = ∂dΦ,

where Φ ∈ C∞(Y × I) is defined by

Φ(x′, xd) =

ˆ xd

−∞
(φ(x′, s)− (Iφ)(x′)ψ0(s)) ds.

Since ˆ ∞
−∞

(φ(x′, s)− (Iφ)(x′)ψ0(s)) ds = 0,
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1.2 Properties of Xn
α for arbitrary n ≥ 1, α ∈ C

we have Φ ∈ D(Y × I). Hence

u(φ) = u(∂dΦ + (Iφ)0) = u((Iφ)0) = u0(Iφ) =

ˆ
I
u0(φ(·, xd)) dxd,

since u(∂dΦ) = −∂du(Φ) = 0.

In particular, we need the following related result.

Lemma 19. Let F ∈ D′(Ω), where Ω is an open connected set in Rd. If ∂iF = 0 for every
i ∈ {1, . . . , d}, then there exists c ∈ C such that, for every function φ ∈ D(Ω),

F (φ) = c

ˆ
Ω
φ(x) dx.

Proof. The proof is a standard application of Lemma 18. Let Q = I1×· · ·×Id ⊂ Ω, where
Ii is an open interval in R. Then, by repeatedly applying Lemma 18 for every interval, we
obtain that there exists cQ ∈ C such that, for every function φ ∈ D(Q),

F (φ) = cQ

ˆ
Q
φ(x) dx.

Moreover, let Q′ = I ′1 × · · · × I ′d ⊂ Ω, I ′i as above, such that Q ∩ Q′ 6= ∅. Then the
constant cQ′ associated to Q′ is equal to cQ. In fact, for a function ψ ∈ D(Q ∩ Q′) such
that

´
ψ 6= 0, we have

cQ

ˆ
Q
ψ(x) dx = F (ψ) = cQ′

ˆ
Q′
ψ(x) dx.

Now for a function ϕ ∈ D(Ω) such that supp(ϕ) ⊂ Ω, let {Qk}k be a finite collection of
cubes of the form described above such that supp(ϕ) ⊂ ∪kQk and for every i there exists
j such that Qi ∩Qj 6= ∅. In particular, there exists c ∈ C such that cQk = c for every k.
There exists a partition of the unity {ηk}k such that ηk ∈ D(Qk),

∑
k ηk(x) = 1 for every

x ∈ supp(ϕ) (see [5]). We have

F (ϕ) =F

(∑
k

ηkϕ

)
=
∑
k

ck

ˆ
Qk

ηk(x)ϕ(x) dx =

=c

ˆ
∪kQk

∑
k

ηk(x)ϕ(x) dx = c

ˆ
Ω
ϕ(x) dx.

1.2 Properties of Xn
α for arbitrary n ≥ 1, α ∈ C

Let Rn×n be the set of square matrices with n rows and columns and coefficients in R.
We consider the bijection

Rn×n → Rn
2
, V 7→ v = (v1, . . . , vn2), vi+(j−1)n = Vi,j . (1.3)

From now on, we will use the notation Rn×n for Rn2
with this intended identification.

Thus, we let dV = dV1,1 dV2,1 . . . dVn,n, and for f : Rn2 → R we let ∂i,jf = ∂i+(j−1)nf .

6



CHAPTER 1. Existence and uniqueness results for n ≥ 1

Moreover, let 〈A,B〉HS denote the Hilbert-Schmidt inner product of the matrices A,B ∈
Rn×n, namely

〈A,B〉HS := Tr(ATB) =
n∑
i=1

n∑
j=1

ATi,jBj,i =
n∑
i=1

n∑
j=1

Aj,iBj,i.

We note that it is equal to the inner product of the two vectors in Rn2
associated to the

matrices under the identification (1.3).

Lemma 20. For n ≥ 1, α ∈ C,

Xn
α = Xn

α,even ⊕Xn
α,odd.

Proof. For Λ ∈ S ′(Rn×n), let Λref ∈ S ′(Rn×n) be defined by

Λref(ϕ) := Λ(ϕref), ϕref(V ) := ϕ(B−1V ), B = B−1 =

(
In−1 0

0 −1

)
,

for every ϕ ∈ S(Rn×n). In particular, ϕref = Dα
Bϕ for every α ∈ C. Then, for Λ ∈ Xn

α ,
Λ 6= 0, we have

Λ + Λref

2
∈ Xn

α,even,
Λ− Λref

2
∈ Xn

α,odd,

and at least one of the two is different from 0. For example,

Λ + Λref

2
(Dα

Bϕ) =
Λ(Dα

Bϕ) + Λref(Dα
Bϕ)

2
=

Λ(ϕref) + Λref(ϕref)

2
=

Λref + Λ

2
(ϕ).

Moreover, suppose Λ ∈ Xn
α,even ∩Xn

α,odd. Then

Λ = Λref = −Λ,

where we used first the property of being even and then the one of being odd. This implies
Λ = 0.

For a fixed n ≥ 1, we define the differential operator det(∂i,j) of n-th order,

det(∂i,j) := det


∂1,1 ∂2,1 . . . ∂n,1
∂1,2 ∂2,2 . . . ∂n,2

...
...

. . .
...

∂1,n ∂2,n . . . ∂n,n

 . (1.4)

We also define the critical variety M

M := {V ∈ Rn×n : detV = 0} =
n−1⋃
k=0

Mk, Mk := {V ∈ Rn×n : rk(V ) = k},

and we divide Rn×n \M into

M+ := {V ∈ Rn×n : detV > 0}, M− := {V ∈ Rn×n : detV < 0}.

7



1.3 The effect of the Fourier transform, detV and det(∂i,j)

We observe that M+ and M− are two orbits of the action of GL+
n (R) on Rn×n given, for

A ∈ GL+
n (R), by

Rn×n → Rn×n, V 7→ A−1V. (1.5)

Moreover, the action preserves the rank of the matrices in M , restricting to

Mk →Mk, V 7→ A−1V.

Every Mk is fibrated by the orbits of the action into Grassmanians Gr(n− k, n). In fact,
an element V ∈Mk is characterized by n−k and only n−k independent linear conditions
that are satisfied by its columns. These conditions are respected by the action, and every
matrix satisfying them can be sent to every other matrix satisfying them through some
invertible matrix. Therefore, Mk is fibrated by the orbits into

M0 = {0}, Mk =
⋃

n−k dimensional
subspaces of Rn

(Rnk \ Rn(k−1)) = Gr(n− k, n)× (Rnk \ Rn(k−1)).

1.3 The effect of the Fourier transform, detV and det(∂i,j)

We consider the following maps defined on S ′(Rn×n):

• the Fourier Transform in the sense of tempered distributions, namely

·̂ : S ′(Rn×n)→ S ′(Rn×n), Λ̂(ϕ) = Λ(ϕ̂);

• the multiplication by the polynomial detV ,

detV : S ′(Rn×n)→ S ′(Rn×n), (detV Λ)(ϕ) = Λ(ϕ),

where, for a function ϕ ∈ S(Rn×n),

ϕ(V ) := detV ϕ(V ).

• the differential operator det(∂i,j) of n-th order defined in (1.4),

det(∂i,j) : S ′(Rn×n)→ S ′(Rn×n), (det(∂i,j)Λ)(ϕ) = (−1)nΛ(det(∂i,j)ϕ).

The second and the third operators are parallel in the following sense. For a function
ϕ ∈ S(Rn×n), under the identification of Υ ∈ Rn×n with the point υ = (υ1, . . . , υn2) ∈ Rn2

in the space of frequencies,

(det(∂i,j)ϕ)̂(Υ) = (2πi)n det Υϕ̂(Υ),

hence

det(∂i,j)Λ̂ = (−2πi)n(det ΥΛ)̂. (1.6)

The maps defined above are well behaved when restricted to the vector spaces Xn
α,even

and Xn
α,odd, as explained by the following results.
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CHAPTER 1. Existence and uniqueness results for n ≥ 1

Lemma 21. For α ∈ C, the Fourier transform restricts to a bijection Xn
α → Xn

−α−n. In
particular, we have the bijections

·̂ : Xn
α,even → Xn

−α−n,even,

·̂ : Xn
α,odd → Xn

−α−n,odd.

Proof. For a matrix A ∈ GLn(R) and a function ϕ ∈ S(Rn×n),

(D−α−nA ϕ)̂(Υ) =

ˆ
Rn×n

1

|detA|−α
ϕ(A−1V )e−2πi〈V,Υ〉HS dV =

=

ˆ
Rn×n

1

|detA|−α
ϕ(U)e−2πi〈AU,Υ〉HS |detA|n dU =

=
1

|detA−1|α+n

ˆ
Rn×n

ϕ(U)e−2πi〈U,ATΥ〉
HS dU =

=
1

|detA−T |α+n ϕ̂(ATΥ) =

=
1

|detB|α+n ϕ̂(B−1Υ) = (Dα
Bϕ̂)(Υ),

where B = A−T . Then, for every matrix A ∈ GLn(R) and every function ϕ ∈ S(Rn×n),

Λ̂(D−α−nA ϕ) = Λ((D−α−nA ϕ)̂) = Λ(Dα
Bϕ̂).

Moreover, we observe that the map from GLn(R) to itself given by A 7→ A−T is a bijection,
and it respects the connected components, sending GL+

n (R) to itself. The very definition
of the Fourier transform for tempered distribution and the fact that it is a bijection
complete the proof of the equivalence of the conditions Λ ∈ Xn

α,even and Λ̂ ∈ Xn
−α−n,even

(resp. the conditions Λ ∈ Xn
α,odd and Λ̂ ∈ Xn

−α−n,odd). In fact, for a tempered distribution
Λ ∈ Xn

α,even ∪Xn
α,odd, let σΛ : GLn(R) 7→ {−1, 1} be defined by

σΛ(A) = (sgn(detA))par(Λ),

where par(Λ) is the parity of Λ, namely if Λ is even then par(Λ) = 0, if Λ is odd then
par(Λ) = 1. It is easy to observe that σΛ(A) = σΛ(A−T ).

Then, for every matrix A ∈ GLn(R) and every function ϕ ∈ S(Rn×n),

Λ(Dα
A−T ϕ̂) = σΛ(A−T )Λ(ϕ̂) =⇒ Λ̂(D−α−nA ϕ) = σΛ(A)Λ̂(ϕ),

Λ(Dα
A−T ϕ̂) = σ

Λ̂
(A−T )Λ(ϕ̂) ⇐= Λ̂(D−α−nA ϕ) = σ

Λ̂
(A)Λ̂(ϕ).

Since the Fourier transform defines a bijection on the space of tempered distributions,
we obtain the claim.

Lemma 22. For α ∈ C, the multiplication by detV restricts to a map Xn
α → Xn

α+1. In
particular,

detV : Xn
α,even → Xn

α+1,odd,

detV : Xn
α,odd → Xn

α+1,even.
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Lemma 23. For α ∈ C, the differential operator det(∂i,j) restricts to a map Xn
α → Xn

α−1.
In particular,

det(∂i,j) : Xn
α,even → Xn

α−1,odd,

det(∂i,j) : Xn
α,odd → Xn

α−1,even.

Proof. The proofs of these two lemmata are parallel, as explained in (1.6), therefore, by
Lemma 21, we can restrict to the case of the operator detV .

For a matrix A ∈ GLn(R) and a function ϕ ∈ S(Rn×n), we denote by ϕA−1 the function

ϕA−1(V ) := ϕ(A−1V ).

Thus we have

Dα+1
A ϕ(V ) =

1

|detA|α+1+nϕA−1(V ) =
1

|detA|α+1+n detV ϕ(A−1V ) =

=
1

|detA|α+n sgn(detA)ϕ(A−1V ) = sgn(detA)Dα
Aϕ(V ).

Then the desired implication follows from the definition of detV as a map in S ′(Rn×n).
Let σΛ be defined as before. Then, for every matrix A ∈ GLn(R) and every function

ϕ ∈ S(Rn×n),

Λ(Dα
Aϕ) = σΛ(A)Λ(ϕ) =⇒ (detV Λ)(Dα+1

A ϕ) = σΛ(A) sgn(detA)(detV Λ)(ϕ).

α ∈ R−n
2

−n
2
− 1−n

2
− 2 −n

2
+ 1 −n

2
+ 2

Xn
α,even

Xn
α,odd

·̂

detV

In the case of the Fourier transform we have bijections because the map

·̂ : S(Rn×n)→ S(Rn×n)

defines a bijection on the set of Schwartz functions.
In the other two cases we have to be more careful. Due to the parallelism between detV

and det(∂i,j) showed by (1.6), we can restrict to comment on detV . A direct consequence
of the proof is that for every matrix A ∈ GLn(R) and every function ϕ ∈ S(Rn×n),

Λ(Dα
Aϕ) = σdetV Λ(A)Λ(ϕ) ⇐ (detV Λ)(Dα+1

A ϕ) = σdetV Λ(A) sgn(detA)(detV Λ)(ϕ).
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This implies that for Λ ∈ S ′(Rn×n), if detV Λ ∈ Xn
α+1,even (resp. detV Λ ∈ Xn

α+1,odd),
then Λ is homogeneous of degree α and even (resp. odd) when applied to the functions of
the form ϕ, for ϕ ∈ S(Rn×n). However, the map

detV : S(Rn×n)→ S(Rn×n), ϕ→ ϕ,

doesn’t define a bijection, in particular it is not surjective. In fact, for every ϕ ∈ S(Rn×n),
the function ϕ is zero on M . This may prevent detV to define a bijection. For example,
the Dirac delta function δ is an element of Xn

−n, but detV δ = 0.
We conclude observing that the maps

detV : Xn
α → Xn

α+1, det(∂i,j) : Xn
α+1 → Xn

α ,

are trying to be one the inverse of the other.

1.4 Existence results

1.4.1 Outside the critical variety M

The candidates for elements of Xn
α are Inα,even, Inα,odd defined in (1) in the Introduction.

The following lemma describes the sufficient and necessary condition on α ∈ C to have
local integrability of the homogeneous functions defining them, namely

|detV |α, sgn(detV )|detV |α.

Lemma 24. |detV |β ∈ L1
loc(Rn×n) if and only if Re(β) > −1.

Proof. Let K ⊂ Rn×n be a compact set. We want to study the finiteness of
ˆ
Rn
. . .

ˆ
Rn
|det(Vi,1 . . . Vi,n)|βχK(V ) dVi,1 . . . dVi,n,

where we can assume that β ∈ R. Without loss of generality, let K = BR1 × · · · ×BRn for
some Ri > 0, where BRi is the closed ball in Rn centred in the origin with radius Ri.

The subset M has measure zero, so we can restrict to Rn×n\M to compute the integral,
and therefore we can assume

Rn = span{Vi,1, . . . , Vi,n}.

We change the variables to spherical coordinates for Vi,1 ∈ Rn, obtaining

ˆ
BR1
×···×BRn

|det(Vi,1 . . . Vi,n)|β dVi,1 . . . dVi,n =

=

ˆ
BR2
×···×BRn

ˆ
BR1

|det(Vi,1 . . . Vi,n)|β dVi,1 . . . dVi,n ≤

≤
ˆ
BR2
×···×BRn

ˆ
Sn−1

ˆ R1

0
|det(eθ1 , Vi,2, . . . , Vi,n)|βr(n−1)+β

1 dr1 dσ(θ1) dVi,2 . . . dVi,n ≤

≤ Rn+β
1

ˆ
BR2
×···×BRn

ˆ
Sn−1

|det(eθ1 , Vi,2, . . . , Vi,n)|β dσ(θ1) dVi,2 . . . dVi,n,
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where in the last inequality we used the fact that the function r
(n−1)+β
1 is locally integrable

if and only if β > −n. Moreover, under this condition, we observe that the integral grows
polynomially in R1. From now on we suppose to be in the case β > −n.

We change the variables to spherical coordinates for Vi,j+1 ∈ Rn, taking the first j
axes in span{eθ1 , . . . , eθj}. An analogous argument provides

ˆ
BR2
×···×BRn

ˆ
Sn−1

|det(eθ1 , Vi,2, . . . , Vi,n)|β dσ(θ1) dVi,2 . . . dVi,n ≤

≤
n∏
j=2

Rn+β
j

ˆ
Sn−1

. . .

ˆ
Sn−1

|det(eθ1 , . . . , eθn)|β dσ(θ1) . . . dσ(θn).

We change the angle variables in this way: for 1 < j ≤ n, let θj = θ̃j + τj , where
τj ∈

[
−π

2 ,
π
2

)
is the angle between eθj and its projection onto the j−1 dimensional subspace

of Rn spanned by eθ1 , . . . , eθj−1
. This angle is the only important part in defining the value

of the determinant. In fact, the question of local integrability boils down to the study of
the finiteness of ˆ π

2

0
. . .

ˆ π
2

0

n∏
j=2

|sin τj |β+n−j dτ2 . . . dτn.

To conclude, we observe that near 0 the integrability of |sin τn|β is the same of |τn|β,
since

lim
τ→0

sin τ

τ
= 1.

In particular we have local integrability if β > −1.

To prove the other implication, let β ≤ −1. Let K be the closure of M+ ∩ (B2(0) \
B1(0)). It is compact and the integral

ˆ
Rn
. . .

ˆ
Rn
|det(Vi,1 . . . Vi,n)|βχK(V ) dVi,1 . . . dVi,n,

is bounded from below by

c

ˆ π
2

0
. . .

ˆ π
2

0

n∏
j=2

(sin τj)
β+n−j dτ2 . . . dτn,

where c > 0. To end the proof, we observe that (sin τn)β is not integrable near 0.

We recover the existence of an odd tempered distribution in Xn
−1 by means of a prin-

cipal value integral, exploiting the cancellation property.

Lemma 25. The definition

Λ(ϕ) := p. v.

ˆ
Rn×n

ϕ(V )

detV
dV = lim

ε→0

ˆ
|detV |>ε

ϕ(V )

detV
dV,

gives a nonzero element of Xn
−1,odd.

12



CHAPTER 1. Existence and uniqueness results for n ≥ 1

Proof. In the proof we follow the idea of [8]. For V ∈ Rn×n \M , let Ṽ ∈ Rn×n be defined
by

Ṽi,j = Vi,j , for j 6= n,

Ṽi,n = 2
n−1∑
j=1

Vi,j · Vi,n
|Vi,j |2

Vi,j − Vi,n.

In particular, we note that

Vi,n −
n−1∑
j=1

Vi,j · Vi,n
|Vi,j |2

Vi,j

is the component of Vi,n perpendicular to the hyperplane spanned by {Vi,1, . . . , Vi,n−1}.
Then

det Ṽ = −detV, |Vi,n| = |Ṽi,n|,
(〈
V − Ṽ , V − Ṽ

〉
HS

) 1
2

= 2
|detV |

|Vi,1 ∧ · · · ∧ Vi,n−1|
.

In the case n = 1, for V = x, we define Ṽ = −x and |Vi,1 ∧ · · · ∧ Vi,n−1| = 1. We observe
that

|Λ(ϕ)| =

∣∣∣∣∣limε→0

ˆ
|detV |>ε

1

detV
ϕ(V ) dV

∣∣∣∣∣ ≤ lim
ε→0

ˆ
detV >ε

∣∣∣∣∣ϕ(V )− ϕ(Ṽ )

detV

∣∣∣∣∣ dV =

= lim
ε→0

ˆ
detV >ε
|Vin |≤1

∣∣∣∣∣ϕ(V )− ϕ(Ṽ )

detV

∣∣∣∣∣ dV + lim
ε→0

ˆ
detV >ε
|Vi,n|>1

∣∣∣∣∣ |Vi,n|n+1ϕ(V )− |Ṽi,n|n+1ϕ(Ṽ )

|Vi,n|n+1 detV

∣∣∣∣∣ dV ≤
≤ 2 lim

ε→0

ˆ
detV >ε
|Vi,n|≤1

|∇ϕ(Vi,1 . . . Vi,n−1Wi,n)|
|Vi,1 ∧ · · · ∧ Vi,n−1|

dV+

+ 2 lim
ε→0

ˆ
detV >ε
|Vi,n|>1

|∇(|Vi,n|n+1ϕ)(Vi,1 . . . Vi,n−1Wi,n)|
|Vi,n|n+1|Vi,1 ∧ · · · ∧ Vi,n−1|

dV =

= 2

ˆ
detV >0
|Vi,n|≤1

|∇ϕ(Vi,1 . . . Vi,n−1Wi,n)|
|Vi,1 ∧ · · · ∧ Vi,n−1|

dV+

+ 2

ˆ
detV >0
|Vi,n|>1

|∇(|Vi,n|n+1ϕ)(Vi,1 . . . Vi,n−1Wi,n)|
|Vi,n|n+1|Vi,1 ∧ · · · ∧ Vi,n−1|

dV.

To bound these integrals we observe that

• |Vi,n|−n−1 is integrable over (B1(0))c;

• |Vi,1 ∧ · · · ∧ Vi,n−1|−1 is integrable over

{(Vi,1 . . . Vi,n−1) ∈ Rn(n−1) : |Vi,1 ∧ · · · ∧ Vi,n−1| ≤ 1}.

In the case n = 2 then |Vi,1 ∧ · · · ∧ Vi,n−1|−1 = |x|−1, x ∈ R2, which is integrable
over {x ∈ R2 : |x| ≤ 1}. For n ≥ 3 the same change of variables we used in Lemma
24 leads to consider the finiteness of

ˆ π
2

0
. . .

ˆ π
2

0

n−1∏
j=2

|sin τj |−1+n−j dτ2 . . . dτn−1,

which is integrable, since j is at most n− 1.

13



1.4 Existence results

We conclude by (1.2), the well known bounds for the integrals of Schwartz functions in
terms of the norms in (1.1), and Proposition 12.

Once proven that the limit is well-defined, the claim about being in Xn
−1,odd is trivial.

Λ(D−1
A ϕ) = lim

ε→0

ˆ
|detV |>ε

1

|detA|n−1

1

detV
ϕ(A−1V ) dV =

= lim
ε→0

ˆ
|detU |> ε

|detA|

sgn(detA)

detU
ϕ(U) dU = lim

δ→0

ˆ
|detU |>δ

sgn(detA)

detU
ϕ(U) dU =

= sgn(detA)Λ(ϕ).

Lemma 26. For Re(α) = −1, α 6= −1, X2
α,even and X2

α,odd have at least dimension 1.

Proof. We have I2
α+1,even ∈ X2

α+1,even, then det(∂i,j)I
2
α+1,even ∈ X2

α,odd. To conclude we

have to show this distribution is different from zero. Let η ∈ D(R2×2\M) such that η ≥ 0,
η 6= 0, and define

η̃(V ) = |detV |−αη(V ).

Then, for α 6= −1,

(det(∂i,j)I
2
α+1,even)(η̃) =

ˆ
R2×2\M

|detV |α+1(det(∂i,j)η̃)(V ) dV =

=

ˆ
R2×2\M

(det(∂i,j)|detV |α+1)η̃(V ) dV =

=

ˆ
R2×2\M

(α+ 1)(α+ 2)|detV |α|detV |−αη(V ) dV =

= (α+ 1)(α+ 2)

ˆ
R2×2\M

η(V ) dV 6= 0,

since

det(∂i,j)((detV )β) = (∂1,1∂2,2 − ∂1,2∂2,1)((V1,1V2,2 − V1,2V2,1)β) =

= ∂1,1(β((V1,1V2,2 − V1,2V2,1)β−1V2,2)) + ∂1,2(β((V1,1V2,2 − V1,2V2,1)β−1V1,2)) =

= 2β(detV )β−1 + β(β − 1)(detV )β−1 = β(β + 1)(detV )β−1.

An analogous argument holds for X2
α,even.

Remark 27. We conjecture a more general result.

Conjecture 28. Let n ≥ 2. For −n+ 1 ≤ Re(α) ≤ −1, α /∈ Z, X2
α,even and X2

α,odd have
at least dimension 1.

Upon proving the following identity on Rn×n \M

det(∂i,j)(detV )α =

n−1∏
j=0

(α+ j)(detV )α−1,

an analogous argument yields the conjectured claim.

14



CHAPTER 1. Existence and uniqueness results for n ≥ 1

1.4.2 Inside the critical variety M

We recover the existence of even tempered distributions in Xn
α for α ∈ Z, −n+1 ≤ α ≤ −1

by means of integrals of the restriction of ϕ on M over nk-dimensional subspaces of Rn×n

contained in Mk.

Lemma 29. For n ≥ 1, for 0 ≤ k ≤ n− 1, R ∈ GLn(R), the definition

ΓR,k(ϕ) :=

ˆ
Rn×k

ϕ((Vi,1 . . . Vi,k 0)R) dVi,1 . . . dVi,k,

gives a nonzero element of Xn
−n+k,even.

Proof. Without loss of generality we can assume R = In. Then, for every Rn, we split it
into B1(0) ⊂ Rn and (B1(0))c ⊂ Rn. For the integral over the subset

K = B1
1(0)× · · · ×Bj

1(0)× (Bj+1
1 (0))c × . . . (Bk

1 (0))c

we have the bound
ˆ
K
|ϕ(Vi,1 . . . Vi,k 0)|dVi,1 . . . dVi,k =

=

ˆ
K
|ϕ(Vi,1 . . . Vi,k 0)||Vi,j+1|n+1 . . . |Vi,k|n+1 1

|Vi,j+1|n+1 . . . |Vi,k|n+1 dVi,1 . . . dVi,k ≤

≤ C‖ϕ‖N

(ˆ
B1

1(0)
dVi,1

)j (ˆ
(Bj+1

1 (0))c
|Vi,j+1|−n−1 dVi,j+1

)k−j
,

for some N ∈ N big enough by (1.2). Then |ΓR,k(ϕ)| is bounded by ‖ϕ‖N and is well-
defined as an element of S ′(Rn×n) by Proposition 12.

The claim about being in Xn
−n+k,even is trivial. In fact,

ΓR,k(D
α
Aϕ) =

ˆ
Rn×k

1

|detA|k
ϕ(A−1(Vi,1 . . . Vi,k 0)R) dVi,1 . . . dVi,k =

=

ˆ
Rn×k

ϕ((Ui,1 . . . Ui,k 0)R) dUi,1 . . . dUi,k = ΓR,k(ϕ),

where, for j ∈ {1, . . . , k}, we changed the variables according to Ui,j = A−1Vi,j .

For n = 1, the corresponding tempered distribution in the case k = 0 is δ, the Dirac
delta function, which gives rise to a one dimensional space. On the other hand, for n ≥ 2,
1 ≤ k ≤ n− 1, the space Xn

α,even is infinite dimensional, due to the fact that Mk contains

infinite distinct copies of Rnk \ Rn(k−1).

We are ready to prove the existence result.

Theorem 30. For Re(α) /∈ [−n + 1,−1], Xn
α,even and Xn

α,odd have at least dimension 1.
For α ∈ {−n+1, . . . ,−1}, Xn

α,even has at least dimension 1. For α ∈ {−n+1,−1}, Xn
α,odd

has at least dimension 1. Moreover, for n = 2, for Re(α) = −1, α 6= −1, X2
α,even and

X2
α,odd have at least dimension 1.
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1.5 Uniqueness result

Proof. By Lemma 24, the functions |detV |α, sgn(detV )|detV |α, are locally integrable
and satisfy the property

´
BR(0)|f | = O(RN ) for Re(α) > −1. Therefore, by Proposition

17, they define nonzero elements of Xn
α,even, Xn

α,odd for Re(α) > −1. By Lemma 21, we
recover the same result for Re(α) < −n+ 1.
By Lemma 25, we define a nonzero element of Xn

−1,odd, and by Lemma 21 we recover the
same result for Xn

−n+1,odd.
By Lemma 29, we define nonzero elements of Xn

α,even for α ∈ Z, −n+ 1 ≤ α ≤ −1.
Moreover, for n = 2, by Lemma 28, we define nonzero elements of X2

α,even, X2
α,odd for

Re(α) = −1, α 6= −1.

1.5 Uniqueness result

We say that, for a function f ∈ C∞(Rn×n \M), the tempered distribution Λ ∈ S ′(Rn×n)
agrees with f away from M if for every function φ ∈ S(Rn×n), supp(φ)∩M = ∅, we have

Λ(φ) =

ˆ
Rn×n

f(V )φ(V ) dV.

The behaviour of Λ ∈ Xn
α on M+ and M− is established by the following result.

Proposition 31. Let α ∈ C, Λ ∈ Xn
α . Then, away from the critical variety M , Λ agrees

with a function

c+detV α on M+, c−(−detV )α on M−, (1.7)

where c+, c− ∈ C. If Λ is even (resp. odd), then c+ = c− (resp. c+ = −c−)

Proof. We note that Λ defines a distribution Λ̃ ∈ D′(Rn×n \M) as shown in Proposition
11. Moreover, the function |detV |−α is well-defined and smooth on Rn×n \M . Thus

Γ̃ := |detV |−αΛ̃ ∈ D′(Rn×n \M).

The α-homogeneity of Λ implies a 0-homogeneity for Γ̃. In fact, for every matrix A ∈
GL+

n (R), for every function φ ∈ D(Rn×n \M),

Γ̃(D0
Aφ) =

(
|detV |−αΛ̃

)
(D0

Aφ) =
1

|detA|n
Λ̃
(
|detV |−αφA−1

)
=

= Λ

(
1

(detA)α+n
|detA−1V |−αφA−1

)
= Λ

(
Dα
A(|detV |−αφ)

)
=

= Λ(|detV |−αφ) = Λ̃(|detV |−αφ) = (|detV |−αΛ̃)(φ) = Γ̃(φ).

Therefore for every matrix A ∈ GL+
n (R) and every function φ ∈ D(Rn×n \M),

Γ̃(D0
Aφ) = Γ̃(φ).

We consider the homogeneity conditions for the matrices A such that A−1 = In + εEi,j ,
where, for i, j ∈ {1, . . . , n}, Ei,j is the matrix defined by

(Ei,j)l,m = δi,lδj,m,

where δi,l is the Kronecker delta of the couple (i, l). We have two cases for A−1 = In+εEi,j :

16



CHAPTER 1. Existence and uniqueness results for n ≥ 1

• i = j, then A−1 = In + εEi,i. The homogeneity condition reads

Γ̃ ((1 + ε)nφA−1 − φ) = 0,

for every function φ ∈ D(R2×2 \M). We divide by ε and we take the limit as ε goes
to 0, obtaining

lim
ε→0

1

ε
Γ̃ ((1 + ε)nφA−1 − φ) = 0.

In D(Rn×n \M), an easy computation shows that

lim
ε→0

(1 + ε)nφA−1 − φ
ε

→ nφ+
n∑
k=1

Vi,k∂i,kφ.

Since Γ̃ is continuous in D(Rn×n \M), then, for every φ ∈ D(Rn×n \M),

Γ̃

(
nφ+

n∑
k=1

Vi,k∂i,kφ

)
= 0.

This yields the following equation in the sense of distributions on Rn×n \M ,

n∑
k=1

Vi,k∂i,kΓ̃ = 0;

• i 6= j, then A−1 = In + εEi,j . A similar argument yields the following equation in
the sense of distributions on Rn×n \M ,

n∑
k=1

Vj,k∂i,kΓ̃ = 0.

Therefore, we obtain the system of equations in the sense of distributions on Rn×n \M ,

n∑
k=1

Vj,k∂i,kΓ̃ = 0, for every (i, j) ∈ {1, . . . , n}2.

Suppose to order both the variables ∂l,mΓ̃ and the equations associated to (i, j) in the
following way:

(1, 1), (1, 2), (1, 3), . . . , (1, n), (2, 1), . . . , (n, n).

Then the matrix of the coefficients is given by
V 0 . . . 0
0 V . . . 0
...

...
. . .

...
0 0 . . . V

 , on Rn×n \M.
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1.5 Uniqueness result

Now let co(V) denote the matrix of cofactors of V . Its entries are smooth functions on
Rn×n. Therefore, the matrix multiplication

co(V) 0 . . . 0
0 co(V) . . . 0
...

...
. . .

...
0 0 . . . co(V)



V 0 . . . 0
0 V . . . 0
...

...
. . .

...
0 0 . . . V

 = (detV )In2 ,

stands for algebraic operations between the equations of the system. We finally observe
that the function detV is always different from 0 on Rn×n \M , so that we obtain the
system

∂i,jΓ̃ = 0, for every (i, j) ∈ {1, . . . , n}2.

In the two connected open sets M+, M− we can apply Lemma 19 to obtain that

Γ̃ = c+ on M+, Γ̃ = c− on M−,

where c+, c− ∈ C. Therefore, away from the critical variety M , the tempered distribution
Λ agrees with a function

c+(det(x y))α on M+, c−(−det(x y))α on M−.

The even/odd condition for a matrix with determinant −1, e.g.

A = A−1 =

(
In−1 0

0 −1

)
,

provides us the relation between the two constants. Assume that φ ∈ S(Rn×n) such that
φ ≥ 0, φ 6= 0, supp(φ) ⊂M+. Let σ = 1 if Λ is even and σ = −1 if it is odd. Then,

ˆ
M+

c+(detV )αφ(V ) dV = Λ(φ) = σΛ(Dα
Aφ) = σΛ(φA−1) =

= σ

ˆ
M−

c−(−detV )αφ(A−1V ) dV = σ

ˆ
M+

c−(detU)αφ(U) dU,

implying c+ = σc−.
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Chapter 2

Classification theorems for n = 1, 2

For n = 1, 2, Theorem 30 gives an existence result for elements of Xn
α,even, Xn

α,odd for
every α ∈ C. The problem of classification is strictly related to the study of tempered
distributions Γ ∈ Xn

α supported on the critical variety M .

For example, for Re(α) > −1, let Λ ∈ Xn
α,even: by Proposition 31, there exists c ∈ C

such that the tempered distribution

Γ := Λ− cInα,even ∈ Xn
α,even

is supported on the critical variety M . In order to prove that Xn
α,even has dimension 1, it

is enough to show that Γ = 0.

An analogous argument holds for X2
α,odd.

2.1 The case n = 1

To prepare the proof of the classification result we study the case of Γ ∈ X1
α supported at

the origin. In particular, we have the following result.

Lemma 32. Let α ∈ C, Γ ∈ X1
α such that supp(Γ) = {0}. Then α = −1− k, k ∈ N and

Γ = c∂kδ, where c ∈ C.

Proof. By Proposition 15, there exist N ∈ N, {ci}0≤i≤N ∈ C, such that

Γ =

n∑
i=0

ci∂
iδ.

Therefore, the Fourier transform Γ̂, which by Lemma 21 belongs to X1
−α−1, is given

by a polynomial function with natural exponents. By Proposition 31 there exists k ∈ N
such that −α− 1 = k, and Γ̂ = c′xk, where c′ ∈ C. Hence Γ = c∂kδ.

We are ready to prove the classification theorem for n = 1.

Proof of Thm. 3. By Lemma 21, without loss of generality we can assume Re(α) ≥ −1
2 .

By Theorem 30, X1
α,even and X1

α,odd have at least dimension 1, in particular I1
α,even ∈

X1
α,even, I1

α,odd ∈ X1
α,odd.
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2.1 The case n = 1

Now suppose to have Λ ∈ X1
α,even. By Proposition 31, there exists c ∈ C such that

Γ = Λ− cI1
α,even ∈ X1

α,even, supp(Γ) ⊂ {0}.

By Lemma 32, we conclude Γ = 0. Therefore X1
α,even has dimension 1.

An analogous argument prove the claim for X1
α,odd.

Proof of Lemma 4. To compute the constant in the first case, we choose the function

ϕ(x) = e−πx
2
,

for which
ϕ̂(ξ) = e−πξ

2
.

To compute the constant in the second case, we choose the function

φ(x) = xe−πx
2
,

for which
φ̂(ξ) = −iξe−πξ2 .

We observe that for β ∈ C, Re(β) > −1, under the change of variable x ≥ 0 into
√

t
π ,

ˆ
R
|x|βe−πx2 dx = 2

ˆ ∞
0

xβe−πx
2

dx = π−
β+1
2

ˆ ∞
0

t
β−1
2 e−t dx = π−

β+1
2 Γ

(
β + 1

2

)
.

Then, for −1 < Re (α) < 0, in the first case we have
ˆ
R
|ξ|−α−1e−πξ

2
dξ = π

α
2 Γ

(
−α

2

)
,

ˆ
R
|x|αe−πx2 dx = π−

α+1
2 Γ

(
α+ 1

2

)
.

In the second case we haveˆ
R

sgn(ξ)|ξ|−α−1(−i)ξe−πξ2 dξ = −iπ
α−1
2 Γ

(
−α− 1

2

)
,

ˆ
R

sgn(x)|x|αxe−πx2 dx = π−
α+2
2 Γ

(
α+ 2

2

)
.

The functions defined on the two open half planes are holomorphic because:

• the exponential function is holomorphic on C;

• the function Γ is holomorphic and nonzero on {β ∈ C : Re(β) > 0};

• for a fixed function ϕ ∈ S(R), the function

f : {Re(α) < 0} → C, f(α) :=

ˆ
R
|ξ|−α−1ϕ̂(ξ) dξ,

is continuous and complex-differentiable. Let

g : {Re(α) < 0} → C, g(α) :=

ˆ
R
|ξ|−α−1 lg(|ξ|−1)ϕ̂(ξ) dξ.

20



CHAPTER 2. Classification theorems for n = 1, 2

For every α in the domain, g(α) is finite. In fact, for α ∈ {Re(α) < 0} there exists
ε > 0 such that α+ε ∈ {Re(α) < 0}. Then, |ξ|ε lg(|ξ|−1) is bounded when |det ξ| ≤ 1
and |ξ|ε lg(|ξ|) ≤ C|ξ|2ε when |ξ| ≥ 1. To conclude we observe that

f(α)− f(α0) = g(α0)(α− α0) + o(|α− α0|),

by Lebesgue Dominated Convergence Theorem.
The same argument can be used to prove holomorphicity of the function

h : {Re(α) > −2} → C, h(α) :=

ˆ
R

sgn(x)|x|αϕ(x) dx.

The two functions coincide on the intersection, therefore they define a holomorphic func-
tion on C. An analogous argument can be used for the other claim about holomorphi-
city.

2.2 The case n = 2

Our strategy is the following:

• in Lemma 33 we characterize the elements of X2
α supported at the origin;

• in Proposition 39 we prove that if Γ ∈ X2
α, supp(Γ) ⊂M , then α ∈ Z, α < 0;

• in particular, for α ∈ {−2,−1}, we produce elements of X2
α supported on M in

Lemma 40 and 42, which we will need in proving Theorem 5 and Corollary 45;

• these results allow us to conclude that the spaces X2
α,even,X2

α,odd for α ∈ C, α 6= −1,

and X2
−1,odd have dimension 1, as stated in Theorem 43;

• finally, we show that there exists no Λ ∈ X2
−1,even extending the function 1

|detV | .

Lemma 33. Let α ∈ C, Γ ∈ X2
α such that supp(Γ) = {0}. Then α = −2− k, k ∈ N and

Γ = c det(∂i,j)
kδ. Moreover, if k is even (resp. odd) then Γ is even (resp. odd).

Proof. By Proposition 15, there exist N ∈ N, {cβ}0≤|β|≤N ∈ C, such that

Γ =
∑
|β|≤N

cβ∂
βδ.

Therefore, the Fourier transform Γ̂, which by Lemma 21 belongs to X2
−α−2, is given

by a polynomial function with natural exponents. By Proposition 31 there exists k ∈ N
such that −α− 2 = k, and Γ̂ = c′(detV )k, where c′ ∈ C, which has the same parity of k.
Hence Γ = cdet(∂i,j)

kδ, and it has the same parity of k too.
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2.2 The case n = 2

2.2.1 The structure of M

Lemma 34. The map

ν :
(
R2 \ {0}

)
× (R/2πZ)→M \ {0}, ν(w, θ) = (w cos θ w sin θ), (2.1)

is 2-1. Moreover, for every fixed θ ∈ R/2πZ, the image of the punctured plane
(
R2 \ {0}

)
×

{θ} is an orbit of the action (1.5) of GL+
2 on R2×2.

Proof. Let V ∈M , V 6= 0. Therefore the two columns Vi,1, Vi,2 ∈ R2 are linearly dependent
and not both 0. In fact, there exists one and only one θ ∈ [0, π) such that

sin θVi,1 = cos θVi,2. (2.2)

At least one between cos θ and sin θ is nonzero. Without loss of generality we can assume
cos θ 6= 0, and the system

w =
1

cos θ
Vi,1 (2.3)

has one and only one nonzero solution in R2 \ {0}.
Therefore the map (2.1) is surjective. Moreover, if we let θ ∈ R/2πZ, the linear relation

in (2.2) has two solutions, θ and θ+ π. In the second case, the unique solution to (2.3) is
−w.

The action defined in (1.5) preserves the linear dependence between the columns of
V ∈M \ {0}. In fact, for θ ∈ R/2πZ such that (2.2) holds,

sin θA−1Vi,1 = cos θA−1Vi,2

Now let v, w ∈ R2 \ {0}. Then there exists A ∈ GL+
2 (R) such that A−1w = v. Therefore,

for a fixed θ ∈ R/2πZ, the set ν((R2 \ {0})× {θ}) is an orbit of the action (1.5).

Remark 35. From now on we will write

ϕ̃(w, θ) = ϕ(ν(w, θ)),

for the restriction of a function on M \ {0}. Moreover, for a function ψ on (R2 \ {0})×
(R/2πZ) and a matrix A ∈ GL+

2 (R), we define

ψA−1(w, θ) = ψ(A−1w, θ).

For w ∈ R2 \ {0} and θ ∈ R/2πZ, in the point

M \ {0} 3 ν(w, θ) =

(
w1 cos θ w1 sin θ
w2 cos θ w2 sin θ

)
,

the tangent vectors with respect to the manifold M \ {0} are

−→
P (w, θ) :=

(
cos θ sin θ

0 0

)
,
−→
Q(w, θ) :=

(
0 0

cos θ sin θ

)
,

−→
M(w, θ) :=

1

|w|

(
−w1 sin θ w1 cos θ
−w2 sin θ w2 cos θ

)
.
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Therefore the normal direction with respect to the manifold M \ {0} in ν(w, θ) is

−→
N (w, θ) :=

1

|w|

(
w2 sin θ −w2 cos θ
−w1 sin θ w1 cos θ

)
,

in particular
−→
N (w, θ) =

−→
N (−w, θ + π). (2.4)

Lemma 36. For A ∈ GL+
2 (R), we have

−→
MA(w, θ) := A−1−→M(w, θ) =

|A−1w|
|w|

−→
M(A−1w, θ),

−→
NA(w, θ) := A−1−→N (w, θ) = n(w,A)

−→
N (A−1w, θ) +m(w,A)

−→
M(A−1w, θ). (2.5)

In particular, for A−1 =

(
a b
c d

)
, we have

n(w,A) =
|w|
|A−1w|

detA−1,

m(w,A) =
(b2 + d2 − a2 − c2)w1w2 + (ab+ cd)(w2

1 − w2
2)

|w||A−1w|
.

Proof. Let A−1 =

(
a b
c d

)
, then we have the vectors

−→
MA(w, θ) =

1

|w|

(
−(aw1 + bw2) sin θ (aw1 + bw2) cos θ
−(cw1 + dw2) sin θ (cw1 + dw2) cos θ

)
,

−→
NA(w, θ) =

1

|w|

(
(aw2 − bw1) sin θ −(aw2 − bw1) cos θ
(cw2 − dw1) sin θ −(cw2 − dw1) cos θ

)
,

−→
M(A−1w, θ) =

1

|A−1w|

(
−(aw1 + bw2) sin θ (aw1 + bw2) cos θ
−(cw1 + dw2) sin θ (cw1 + dw2) cos θ

)
,

−→
N (A−1w, θ) =

1

|A−1w|

(
(cw1 + dw2) sin θ −(cw1 + dw2) cos θ
−(aw1 + bw2) sin θ (aw1 + bw2) cos θ

)
.

First, we observe
−→
MA(w, θ) =

|A−1w|
|w|

−→
M(A−1w, θ).

We also have −→
NA(w, θ) ⊥HS

−→
P (A−1w, θ),

−→
Q(A−1w, θ).

Since for every (w, θ) ∈ (R2 \ {0})× (R/2πZ) we have that

{
−→
P (A−1w, θ),

−→
Q(A−1w, θ),

−→
M(A−1w, θ),

−→
N (A−1w, θ)}

is an orthonormal basis of R2×2, then

−→
NA(w, θ) ∈ span{

−→
N (A−1w, θ),

−→
M(A−1w, θ)}.
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In particular, −→
NA(w, θ) = n(w,A)

−→
N (A−1, θ) +m(w,A)

−→
M(A−1, θ),

where n(w,A),m(w,A) are independent on θ, since we have the same dependence on θ in

the corresponding entries of the matrices
−→
NA(w, θ),

−→
N (A−1, θ),

−→
M(A−1, θ). We have

1

|A−1w|

(
cw1 + dw2 −(aw1 + bw2)
−(aw1 + bw2) −(cw1 + dw2)

)(
n(w,A)
m(w,A)

)
=

1

|w|

(
aw2 − bw1

cw2 − dw1

)
,

hence (
n(w,A)
m(w,A)

)
=

1

|w||A−1w|

(
cw1 + dw2 −(aw1 + bw2)
−(aw1 + bw2) −(cw1 + dw2)

)(
aw2 − bw1

cw2 − dw1

)
.

To conclude we observe that

(cw1 + dw2)(aw2 − bw1)− (aw1 + bw2)(cw2 − dw1) =

= (ad− bc)(w2
1 + w2

2) = detA−1|w|2,
−(aw1 + bw2)(aw2 − bw1)− (cw1 + dw2)(cw2 − dw1) =

= (b2 + d2 − a2 − c2)w1w2 + (ab+ cd)(w2
1 − w2

2).

In particular:

1. for A−1 = (1 + ε)I2, we have

n(w,A) =
|w|
|A−1w|

(1 + ε)2 = (1 + ε),

m(w,A) = 0;

2. for A−1 = I2 + ε(E1,2 − E2,1), we have

n(w,A) =
|w|
|A−1w|

(1 + ε2) =
√

1 + ε2,

m(w,A) = 0;

3. for A−1 = I2 + εE1,1, we have

n(w,A) =
|w|
|A−1w|

(1 + ε),

m(w,A) = −(2ε+ ε2)w1w2

|w||A−1w|
.

4. for A−1 = I2 + εE1,2, we have

n(w,A) =
|w|
|A−1w|

,

m(w,A) =
εw2

1 − εw2
2 + ε2w1w2

|w||A−1w|
.
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Let ∂iNϕ denote the i-th order normal derivative of ϕ with respect to the manifold

M \ {0}, and ∂iMϕ the i-th order derivative of ϕ in the direction
−→
M(w, θ).

Lemma 37. For A ∈ GL+
2 (R), we have

(∂iN (Dα
Aϕ))˜(w, θ) =

1

(detA)α+2

i∑
j=0

(
i

j

)
n(w,A)i−jm(w,A)j

((
∂jM∂

i−j
N ϕ

)̃ )
(A−1w, θ).

Proof. For V ∈ R2×2, let ∇iϕ(V ) be the multilinear map

∇iϕ(V ) : R2×2 × · · · × R2×2︸ ︷︷ ︸
i copies

→ C

such that, for (l,m)j ∈ {1, 2} × {1, 2},〈
∇iϕ(V ),

(
E(l,m)1 , . . . , E(l,m)i

)〉
= ∂(l,m)1 . . . ∂(l,m)iϕ(V ).

Then, for A ∈ GL+
2 (R), we have〈

∇i(ϕA−1)(V ),
(
E(l,m)1 , . . . , E(l,m)i

)〉
=
〈
∇iϕ(A−1V ),

(
A−1E(l,m)1 , . . . , A−1E(l,m)i

)〉
.

In fact, for A−1 =

(
a b
c d

)
,

(∂1,1ϕA−1)(V ) = ((a∂1,1 + c∂2,1)ϕ)(A−1V ) =
〈
∇ϕ(A−1V ), A−1E1,1

〉
,

(∂1,2ϕA−1)(V ) = ((a∂1,2 + c∂2,2)ϕ)(A−1V ) =
〈
∇ϕ(A−1V ), A−1E1,2

〉
,

(∂2,1ϕA−1)(V ) = ((b∂1,1 + d∂2,1)ϕ)(A−1V ) =
〈
∇ϕ(A−1V ), A−1E2,1

〉
,

(∂2,2ϕA−1)(V ) = ((b∂1,2 + d∂2,1)ϕ)(A−1V ) =
〈
∇ϕ(A−1V ), A−1E2,2

〉
.

Thus we have

(∂iN (Dα
Aϕ))˜(w, θ) =

1

(detA)α+2

〈
(∇iϕ)˜(A−1w, θ),

(−→
NA(w, θ)

)i〉
,

1

(detA)α+2

((
∂jM∂

i−j
N ϕ

) ˜) (A−1w, θ) =

=
1

(detA)α+2

〈
(∇iϕ)˜(A−1w, θ),

((−→
N (A−1w, θ)

)i−j
,
(−→
M(A−1w, θ)

)j)〉
.

Substituting the equality for
−→
NA(w, θ) from (2.5), and exploiting the linearity properties

of ∇iϕ(V ), we obtain

(∂iN (Dα
Aϕ))˜(w, θ) =

1

|detA|α+2

〈
(∇iϕ)˜(A−1w, θ),

(−→
NA(w, θ)

)i〉
=

=
1

|detA|α+2

〈
(∇iϕ)˜(A−1w, θ),

(
n(w,A)

−→
N (A−1w, θ) +m(w,A)

−→
M(A−1w, θ)

)i〉

=
1

(detA)α+2

i∑
j=0

(
i

j

)
n(w,A)i−jm(w,A)j

((
∂jM∂

i−j
N ϕ

) ˜) (A−1w, θ).
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2.2.2 The α-homogeneous tempered distributions supported on M

We start recalling a theorem from [6].

Theorem 38 (Theorem XXXVII, Ch. III. for (d − 1)-dimensional submanifolds of Rd).
Let M be a (d − 1)-dimensional submanifold of Rd. For a smooth function ϕ on Rd, let
∂iNϕ denote the i-th order normal derivative of ϕ with respect to the manifold M. Every
distribution Γ supported on M admits a unique decomposition into a locally finite linear
combination of the form

Γ(ϕ) =
k∑
i=0

Γi(∂
i
Nϕ),

where Γi are distributions in D′(M).

The Theorem is proven locally by a parametrization argument that allows to restrict
to the easier case of a (d−1)-dimensional hyperplane in Rd. The proof in this case follows
the same strategy of the one of Proposition 15. The claim is necessarily “local”: a bound
on the order k of normal derivatives that may be involved in defining Γ can be obtained
only from N , the index that guarantees the conclusion of Proposition 13, which is local.

Proposition 39. Let α ∈ C, Γ ∈ X2
α, supp(Γ) ⊂M . Then α ∈ Z, α < 0.

Proof. We note that Γ defines a distribution Γ̃ ∈ D′(R2×2 \ {0}) as shown in Proposition
11. Moreover, by Theorem 38, the distribution Γ̃ has locally the form

Γ̃(φ) =
k∑
i=0

Γi((∂
i
Nφ)˜),

where Γi ∈ D′((R2 \ {0})× (R/2πZ)). By (2.4), we have that

(∂iNφ)˜(w, θ) = (∂iNφ)˜(−w, θ + π).

Without loss of generality we can assume Γi to have the same periodicity, namely, for
every ψ ∈ D((R2 \ {0})× (R/2πZ)), we can assume

Γi(ψ) = Γi(τπψ−I2),

where

τπψ−I2(w, θ) = ψ(−w, θ + π).

Therefore all the Γi are determined by their behaviour against the functions ψ ∈ D((R2 \
{0})× (R/2πZ)) such that ψ(w, θ) = ψ(−w, θ + π).

Moreover, we can restrict to the local case. In fact, the arguments and the techniques
we use are always local, and the global claim can be proven locally.

The α-homogeneity condition for a function φ ∈ D(R2×2 \ {0}) is given by

k∑
i=0

Γi((∂
i
Nφ)˜) =

k∑
i=0

Γi((∂
i
N (Dα

Aφ))˜).
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For every j ≥ 0, ψ ∈ D((R2 \ {0})× (R/2πZ)) such that ψ(w, θ) = ψ(−w, θ+π), there
exists a function φj ∈ D(R2×2 \ {0}) such that{

(∂iNφj)˜= 0 for every i ≥ 0, i 6= j,

(∂jNφj)˜= ψ.

In fact, let Ω ⊂ (R2 \ {0}) × (R/2πZ) be an open neighbourhood of supp(ψ) such that
Ω ⊂ (R2 \ {0})× (R/2πZ) is compact. Now let U ⊂ R2×2 \ {0} be an open neighbourhood
of ν(Ω) such that on U we can put coordinates R3 × [−ε, ε] through the bijection σ in a
way that ν(Ω) ⊂ σ(R3 × {0}), and

lim
h→0

σ(x, h)− σ(x, 0)

|σ(x, h)− σ(x, 0)|
=
−→
N (σ(x, 0)).

Then, for a function η ∈ D(R2×2 \ {0}) such that supp(η) ⊂ U , supp(η) ∩ (M \ {0}) ⊃ Ω,
η ≡ 1 on W ⊂ U a open neighbourhood of ν(Ω), we define{

φj(V ) = 0 if V /∈ σ(R3 × [−ε, ε]),
φj(σ(x, y)) = ψ(σ(x, 0))η(σ(x, y))y

j

j! otherwise.

Thus the normal derivatives ∂jN of φi only depends on the last part. In particular, if i 6= j

then (∂iNφj)˜= 0, if i = j then (∂jNφj)˜= ψ.
For every ψ ∈ D((R2 \ {0})× (R/2πZ)) such that ψ(w, θ) = ψ(−w, θ + π),

Γk(ψ) =
k∑
i=0

Γi((∂
i
Nφk)˜) =

k∑
i=0

Γi((∂
i
N (Dα

Aφk))˜) =

=
k∑
i=0

Γi

(
n(w,A)i

1

(detA)α+2
((∂iNφk)˜)A−1

)
= Γk

(
n(w,A)k

(detA)α+2
ψA−1

)
.

We consider the matrices A−1 for which we explicitly computed n(w,A):

1. A−1 = (1 + ε)I2, then, for every ψ ∈ D((R2 \ {0}) × (R/2πZ)) such that ψ(w, θ) =
ψ(−w, θ + π),

Γk(ψ) = Γk((1 + ε)k+2(α+2)ψA−1).

By a limit argument

Γk((k + 2(α+ 2))ψ + ∂1ψw1 + ∂2ψw2) = 0,

which yields
(k + 2(α+ 2)− 2)Γk = w1∂1Γk + w2∂2Γk.

2. A−1 = I2 + ε(E1,2 − E2,1), then an analogous limit argument yields

w1∂2Γk = w2∂1Γk;

3. A−1 = I2 + εE1,1, then an analogous limit argument yields

(k + (α+ 2)− 1)Γk − k
w2

1

w2
1 + w2

2

Γk = w1∂1Γk.
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4. A−1 = I2 + εE1,2, then an analogous limit argument yields

−k w1w2

w2
1 + w2

2

Γk = w2∂1Γk.

We obtain locally the following system of equations in the sense of distributions
(k + 2(α+ 2)− 2)Γk = w1∂1Γk + w2∂2Γk

w1∂2Γk = w2∂1Γk

(k + (α+ 2)− 1)Γk − k
w2

1

w2
1+w2

2
Γk = w1∂1Γk

−k w1w2

w2
1+w2

2
Γk = w2∂1Γk.

(2.6)

For k 6= −1−α, there are 3 linearly independent equations, then by algebraic manipulations
we can recover the system 

∂1Γk = 0

∂2Γk = 0

Γk = 0.

Let Γ ∈ X2
α, supp(Γ) ⊂M , α 6= −1−k. Then, away from the origin, Γ agrees with the

zero distribution. Therefore supp(Γ) ⊂ {0}, and by Lemma 33 we prove the claim.

Lemma 40. Let Γ ∈ X2
−1, supp(Γ) ⊂ M . Then Γ is even and there exists a unique

F ∈ D′(R/πZ) such that

Γ(ϕ) = (µ(F ))(ϕ) := F (ψϕ), (2.7)

where, for every ϕ ∈ S(R2×2),

ψϕ(θ) :=

ˆ
R2\{0}

ϕ(ν(w, θ)) dw =

ˆ
R2\{0}

ϕ
(
w cos θ w sin θ

)
dw,

is a smooth π-periodic function on R.

Proof. From (2.6), we have locally the system of equations in the sense of distributions{
w1∂1Γ0 + w2∂2Γ0 = 0

w2∂1Γ0 − w1∂2Γ0 = 0.

By multiplying the first equation by w1 and the second by w2 and adding them we obtain
the equation

(w2
1 + w2

2)∂1Γ0 = 0,

in the sense of distributions. Since the function w2
1 +w2

2 is nonzero on (R2\{0})×(R/2πZ),
it yields ∂1Γ0 = 0. In an analogous way we prove ∂2Γ0 = 0.

Then, by Lemma 19, Γ0 agrees with a constant function locally on every punctured
plane (R2 \ {0}) × (R/2πZ). Since M \ {0} is connected, we recover a global result on
every punctured plane (R2 \ {0})× (R/2πZ), namely, for every φ ∈ D(R2×2 \ {0}),

Γ(φ) = G

(ˆ
R2

φ
(
w cos θ w sin θ

)
dw

)
,
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for G ∈ D′(R/2πZ).
An easy computation proves that, for ϕ ∈ S(R2×2), ψϕ ∈ C∞(R/2πZ). Moreover, ψϕ

is π-periodic, since

ψϕ(θ) =

ˆ
R2

ϕ
(
w cos θ w sin θ

)
dw =

ˆ
R2

ϕ
(
−w cos θ −w sin θ

)
dw =

=

ˆ
R2

ϕ
(
w cos(θ + π) w sin(θ + π)

)
dw = ψϕ(θ + π).

Therefore, we can choose G such that G = τπG, where, for a smooth 2π-periodic
function ψ on R,

(τπG)(ψ) = G(τπψ),

for τπψ(θ) = ψ(θ − π). For Γ ∈ X2
−1, supp(Γ) ⊂ M , let G̃ ∈ D′(R/2πZ) such that

Γ(φ) = G̃(ψφ). We define

G =
G̃+ τπG̃

2
,

thus τπG = G, and, since ψϕ = τπψϕ, we have G(ψϕ) = G̃(ψϕ). In particular, there exists
F ∈ D′(R/πZ) such that

2F (ψϕ) = G(ψϕ),

where as an argument of F the function ψϕ is considered as π-periodic, as an argument
of G as 2π-periodic.

We observe that µ(F ) defined in (2.7) gives an element of S ′(R2×2). In fact, by
Proposition 13, there exists N ∈ N such that, for ψ ∈ D(R/πZ), we have

|F (ψ)| ≤ C sup
0≤i≤N

sup
θ∈R/πZ

|∂iθψ(θ)|.

We observe that

(∂iMϕ)˜(w, θ) =
1

|w|i
∂iθϕ̃(w, θ),

Then, for every θ ∈ R/πZ,

|∂iθψϕ(θ)| ≤
ˆ
R2

|∂iθϕ̃(w, θ)| dw ≤

≤
ˆ
|w|≤1

|w|i|(∂iMϕ)˜(w, θ)|dw +

ˆ
|w|>1

|w|i|(∂iMϕ)˜(w, θ)||w|3

|w|3
dw ≤

≤ C‖ϕ‖i + C ′‖ϕ‖i+3,

since |w| = 〈ν(w, θ), ν(w, θ)〉HS.
Thus, for every ϕ ∈ S(R2×2),

|(µ(F ))(ϕ)| ≤ C‖ϕ‖N+3.

Therefore µ(F ) ∈ S ′(R2×2) by Proposition 13.
Moreover, µ(F ) is even. Consider the matrix A−1 = E1,1 − E2,2. Then

ψϕ(θ) =

ˆ
R2

ϕ

((
w1

w2

)
cos θ

(
w1

w2

)
sin θ

)
dw1 dw2 =

=

ˆ
R2

ϕ

((
w1

−w2

)
cos θ

(
w1

−w2

)
sin θ

)
dw1 dw2 = ψϕA−1 (θ),
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which yields
(µ(F ))(D−1

A ϕ) = F (ψϕA−1 ) = F (ψϕ) = (µ(F ))(ϕ).

Now let Γ ∈ X2
−1, supp(Γ) ⊂M , then, away from the origin, it agrees with some µ(F )

described above. Therefore the difference Γ−µ(F ) is supported at the origin. By Lemma
33 we prove surjectivity.

To conclude the injectivity of the map

µ : D′(R/πZ)→ {Γ ∈ X2
−1,even : supp(Γ) ⊂M},

we observe that for every ψ ∈ D(R/πZ) there exists ϕ ∈ S(R2×2) such that ψ = ψϕ.
In fact, let η ∈ D(R2 \ {0}) such that supp(η) ⊂ {w ∈ R2 : 1 ≤ |w| ≤ 2, w2 > 0},´
η(w) dw = 1, η(w) = η(−w), and define φ ∈ D((R2 \ {0})× (R/2πZ)) by

φ(w, θ) = η(w)ψ(θ).

Then let ϕ = φ0 under the construction described in the proof of Proposition 39.

Remark 41. In identifying D′(R/2πZ) with the topological dual of C∞(R/2πZ) there is
the subtle step of having a measure on the manifold R/2πZ (see [4]).

Lemma 42. The definition

Γ(ϕ) :=

ˆ 2π

0

ˆ
R2

(∂Nϕ)˜(w, θ)

|w|
dw dθ, (2.8)

gives a nonzero element of X2
−2,odd.

Proof. For every ϕ ∈ S(R2×2), we have the bound

|Γ(ϕ)| =

∣∣∣∣∣
ˆ 2π

0

ˆ
R2

(∂Nϕ)˜(w, θ)

|w|
dw dθ

∣∣∣∣∣ ≤ 2π sup
θ∈R/2πZ

∣∣∣∣∣
ˆ
R2

(∂Nϕ)˜(w, θ)

|w|
dw

∣∣∣∣∣ ≤
≤ 2π sup

θ∈R/2πZ

(ˆ
|w|≤1

|(∂Nϕ)˜(w, θ)|
|w|

dw +

ˆ
|w|>1

|(∂Nϕ)˜(w, θ)||w|2

|w|3
dw

)
≤

≤ C‖ϕ‖1 + C ′‖ϕ‖3,

where for |w| ≤ 1 we use the property of local integrability of 1
|w| and the boundedness of

|∂Nϕ|, while for |w| > 1 we exploit the fast decay properties of the Schwartz functions.
Then, by Proposition 12, Γ ∈ S ′(R2×2).

To show it is nonzero, let φ1 ∈ D(R2×2\{0}) associated to ψ ∈ D((R2\{0})×(R/2πZ))
such that ψ(w, θ) = ψ(−w, θ + π), ψ ≥ 0, ψ 6= 0. Then

Γ(φ1) =

ˆ 2π

0

ˆ
R2

ψ(w, θ)

|w|
dw dθ > 0.

To show it belongs to X2
−2, we observe that, for A ∈ GL+

2 (R),

Γ(D−2
A ϕ) =

ˆ 2π

0

ˆ
R2

(n(w,A)(∂Nϕ)˜ +m(w,A)(∂Mϕ)˜)(A−1w, θ)

|w|
dw dθ =

=

ˆ 2π

0

ˆ
R2

detA−1(∂Nϕ)˜(A−1w, θ)

|A−1w|
dw dθ+

+

ˆ 2π

0

ˆ
R2

m(w,A)(∂Mϕ)˜(A−1w, θ)

|w|
dw dθ.
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If we change the variable from w into Av in the first integral, we recover Γ(ϕ). To conclude,
we observe that

ˆ 2π

0

ˆ
R2

m(w,A)(∂Mϕ)˜(A−1w, θ)

|w|
dw dθ =

ˆ
R2

ˆ 2π

0

m(w,A)∂θϕ̃(A−1w, θ)

|w||A−1w|
dθ dw =

=

ˆ
R2

m(w,A)

|w||A−1w|

ˆ 2π

0
∂θϕ̃(A−1w, θ) dθ dw = 0.

The tempered distribution is odd. In fact, n(w,A) = |w|
|A−1w| detA−1, thus for A−1 =

E1,1 − E2,2 we have n(w,A) = −1.

Theorem 43. For α ∈ C, α 6= −1, the spaces X2
α,even, X2

α,odd have dimension 1. The

space X2
−1,odd has dimension 1.

Proof. By Lemma 21, without loss of generality we can assume Re(α) ≥ −1.
By Theorem 30, we have that the space X2

α,even has at least dimension 1. Moreover,
for Re(α) ≥ −1, α 6= −1, we are able to produce an element Λ such that supp(Λ) = R2×2.
Suppose to have Λ′ ∈ X2

α,even. By Proposition 31, there exists c ∈ C such that

Γ = Λ′ − cΛ ∈ X2
α,even, supp(Γ) ⊂M.

By Lemma 39, we conclude Γ = 0, hence that X2
α,even has dimension 1.

An analogous argument prove the claim for X2
α,odd, for Re(α) ≥ −1, α 6= −1. For

X2
−1,odd we also need Lemma 40, in particular that if Γ ∈ X2

−1, supp(Γ) ⊂ M , then Γ is
even.

2.2.3 Non extendibility of |detV |−1 to an element of element of X2
−1,even

In this section we prove the following statement.

Proposition 44. There exists no element of X2
−1,even that, away from the critical variety

M , agrees with the the function

f(V ) :=
1

|detV |
. (2.9)

Proof. We first extend (2.9) to a tempered distribution. Then we analyse what it lacks
for being homogeneous of degree −1. This ”lack” has to be taken care by a tempered
distributions supported on the critical variety M . To conclude we prove that such a
tempered distribution cannot exist.

Consider the following linear functional defined, for ϕ ∈ S(R2×2), by

Λ(ϕ) :=

ˆ
|det(x y)|≥1

ϕ(x, y)

|det(x, y)|
dx dy +

ˆ
|det(x y)|<1

x 6=0

ϕ(x, y)− ϕ(x, x·y|x|2x)

|det(x, y)|
dx dy.

It is a tempered distribution. In fact we have the following bounds

∣∣∣∣∣
ˆ
|det(x y)|≥1

ϕ(x, y)

|det(x, y)|
dx dy

∣∣∣∣∣ ≤
ˆ
|det(x y)|≥1

|ϕ(x, y)|dx dy ≤
ˆ
R2×2

|ϕ(x, y)|dx dy ≤ C‖ϕ‖5,
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∣∣∣∣∣
ˆ
|det(x y)|<1

ϕ(x, y)− ϕ(x, x·y|x|2x)

|det(x, y)|
dx dy

∣∣∣∣∣ ≤
ˆ
|det(x y)|<1

x 6=0

|∇ϕ(x, ỹ) · (0, y − x·y
|x|2x)|

|det(x, y)|
dx dy ≤

≤
ˆ
|det(x y)|<1

|∇ϕ(x, ỹ)|
|x|

dx dy ≤ C‖ϕ‖5.

To prove the second inequality we observe∣∣∣∣(0, y − x · y
|x|2

x

)∣∣∣∣ =

∣∣∣∣y − x · y
|x|2

x

∣∣∣∣ =

√(
y1 − x1

x · y
|x|2

)2

+

(
y2 − x2

x · y
|x|2

)2

=

=

√(
x2
y1x2 − x1y2

|x|2

)2

+

(
x1
y2x1 − x2y1

|x|2

)2

=
|det(x y)|
|x|

.

We observe that

Λ(D−1
A ϕ) =

1

detA

ˆ
|det(x y)|≥1

ϕ(A−1x,A−1y)

|det(x y)|
dx dy+

+
1

detA

ˆ
|det(x y)|<1

ϕ(A−1x,A−1y)− ϕ(A−1x, x·y|x|2A
−1x)

|det(x y)|
dx dy =

=

ˆ
|det(vz)|≥ 1

detA

ϕ(v, z)

|det(vz)|
dv dz+

+

ˆ
|det(vz)|< 1

detA

ϕ(v, z)− ϕ(v, Av·Az|Av|2 v)

|det(vz)|
dv dz =

= Λ(ϕ) +

ˆ
|det(vz)|<1

ϕ(v, v·z|v|2 v)− ϕ(v, Av·Az|Av|2 v)

|det(vz)|
dv dz−

−
ˆ

1≤|det(vz)|< 1
detA

ϕ(v, Av·Az|Av|2 v)

|det(vz)|
dv dz.

Now we consider the following cases:

1. A−1 = (1 + ε)I2, then

Λ(D−1
A ϕ)− Λ(ϕ) = −

ˆ
1≤|det(vz)|<(1+ε)2

ϕ(v, z)

|det(vz)|
dv dz;

2. A−1 = I2 + ε(E1,2 − E2,1), then

Λ(D−1
A ϕ)− Λ(ϕ) = −

ˆ
1≤|det(vz)|<(1+ε2)

ϕ(v, z)

|det(vz)|
dv dz;

3. A−1 = I2 + εE1,2, then

Λ(D−1
A ϕ)− Λ(ϕ) =

ˆ
|det(vz)|<1

ϕ(v, v·z|v|2 v)− ϕ(v, Av·Az|Av|2 v)

|det(vz)|
dv dz;
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4. A−1 = (1 + ε)E1,1 + 1
1+εE

2,2, then

Λ(D−1
A ϕ)− Λ(ϕ) =

ˆ
|det(vz)|<1

ϕ(v, v·z|v|2 v)− ϕ(v, Av·Az|Av|2 v)

|det(vz)|
dv dz.

If the function in (2.9) was extendible to an element of X2
−1,even, then it would differ from

Λ for a tempered distribution Γ supported on M . In particular this last one should take
care of the “lack” for being homogeneous of degree −1 of Λ, i.e.

Λ(D−1
A ϕ)− Λ(ϕ) = Γ(ϕ)− Γ(D−1

A ϕ).

Therefore we want to differentiate the equation in the four cases:

1. in the first case,

−
ˆ

1≤|det(vz)|<(1+ε)2

ϕ(v, z)

|det(vz)|
dv dz =

= −
ˆ
v∈R2\{0}

ˆ
a∈R

ˆ
1≤|b|<(1+ε)2

ϕ(v, av)

|b|
dbda dv =

= −
ˆ
v∈R2\{0}

ˆ
a∈R

2 log(1 + ε)2ϕ(v, av) da dv =

= −
ˆ
w∈R2\{0}

ˆ
θ∈R/2πZ

log(1 + ε)2ϕ
(
w cos θ w sin θ

)
dθ dw,

where we performed the following two changes of variables:

• for v ∈ R2 \ {0} fixed,

z = av + b
ṽ

|v|2
,

(
z1

z2

)
=

(
v1 − v2

|v|2

v2 − v1
|v|2

)(
a
b

)
, a, b ∈ R; (2.10)

• v = w cos θ, av = w sin θ, w ∈ R2 \ {0}, θ ∈
(
−π

2 ,
π
2

)
, for which

Jv,a(w, θ) =

 cos θ 0 0
0 cos θ 0

−w1 sin θ −w2 sin θ 1
cos2 θ

 .

Therefore

Γ(ϕ̃)− Γ((1 + ε)2ϕ̃A−1) = −
¨

log(1 + ε)2ϕ̃dw dθ.

Dividing both terms of the inequality by ε and letting ε go to 0 yields

Γ(2ϕ̃+ ∂1ϕ̃w1 + ∂2ϕ̃w2) = −2

¨
ϕ̃dw dθ,

in particular we have the following equation in the sense of distributions on (R2 \
{0})× (R/2πZ)

−w1∂1Γ− w2∂2Γ = 2;
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2.2 The case n = 2

2. in the second case, the same argument as in the first case provides

Γ(ϕ̃)− Γ((1 + ε2)ϕ̃A−1) = −
¨

log(1 + ε2)ϕ̃dw dθ,

and, by differentiating in ε, we have the following equation in the sense of distribu-
tions on (R2 \ {0})× (R/2πZ)

w2∂1Γ− w1∂2Γ = 0;

3. in the third case we perform the same change of coordinates as in (2.10)

ˆ
|det(vz)|<1

ϕ
(
v, v·z|v|2 v

)
− ϕ

(
v, Av·Az|Av|2 v

)
|det(vz)|

dv dz =

=

ˆ
v∈R2\{0}

ˆ
a∈R

ˆ
|b|<1

ϕ
(
v, v·z|v|2 v

)
− ϕ

(
v,
(
a+ b

εv21−εv22+ε2v1v2

|v|2((v1+εv2)2+v22)

)
v
)

|b|
dbdadv.

Differentiating inside the integral yields

ˆ
v∈R2\{0}

ˆ
a∈R

ˆ
|b|<1
−

∂3ϕ(v, av)b
v21−v22
|v|4 v1

|b|
+
∂4ϕ(v, av)b

v21−v22
|v|4 v2

|b|

dbdadv.

We finally observe that in both of summands we have the dependence on b given by
b
|b| = sgn(b) and we are integrating over the interval |b| < 1 symmetric with respect
to the origin.
Therefore we have the following equation in the sense of distributions on (R2\{0})×
(R/2πZ)

w2∂1Γ = 0;

4. in the fourth case, the same argument as in the third case provides the following
equation in the sense of distributions on (R2 \ {0})× (R/2πZ)

w1∂1Γ− w2∂2Γ = 0.

Therefore, away from the origin, Γ has to satisfy the following system of equations in the
sense of distributions, 

−w1∂1Γ− w2∂2Γ = 2

w2∂1Γ + w1∂2Γ = 0

w2∂1Γ = 0

w1∂1Γ− w2∂2Γ = 0,

which is equivalent, through algebraic manipulations, to
w1∂1Γ = −1

w2∂2Γ = −1

w2∂1Γ = 0

w1∂2Γ = 0.
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It has no solutions. In fact, for example for ψ ∈ D({w ∈ R2 : w1w2 > 0} × (R/2πZ)), in
general we have

0 = w2∂1Γ(ψ) = −w1∂1Γ

(
−w2

w1
ψ

)
= −

ˆ 2π

0

ˆ
R2

w2

w1
ψ(w, θ) dw dθ 6= 0.

A priori our Γ only depends on the values of ϕ and its tangential derivatives with respect
to M . However we can easily observe that the lack of Λ from being in X2

−1 only depends
on the values of the function on M . Therefore assuming a distribution locally of the form

Γ(ϕ) =

n∑
i=0

Γi(∂
i
Nϕ),

the computations we made in studying α-homogeneous distributions supported on M
implies that n = −1 − α = 0. In fact, for ψ ∈ D((R2 \ {0}) × (R/2πZ)) such that
ψ(w, θ) = ψ(−w, θ + π), for i > 0, let φi such that (∂jNφi)˜ = 0 for j 6= i, (∂iNφi)˜ = ψ.
Then, for every matrix A ∈ GL+

2 (R),

Λ(φi) = Λ(D−1
A φi),

so that Γi(ψ) = 0 for every ψ ∈ D((R2 \ {0})× (R/2πZ)) such that ψ(w, θ) = ψ(−w, θ +
π).

We are ready to prove the classification theorem for n = 2.

Proof of Thm. 5. By Lemma 21, without loss of generality we can assume Re(α) ≥ −1.

We distinguish two cases:

• X2
α,even, X2

α,odd for Re(α) ≥ −1, α 6= −1, and X2
−1,odd;

• X2
−1,even.

In the first case, the spaces have dimension at least 1 by Theorem 30, which a posteriori
provides the explicit generators, and they have dimension 1 by Theorem 43.

In the second one, let Λ ∈ X2
−1,even. By Proposition 31, away from M , Λ agrees

with the function c|detV |−1, for some c ∈ C. By Proposition 44, we have c = 0. Hence
supp(Λ) ⊂M , and by Lemma 39 we conclude the classification result.

2.2.4 Corollaries

Corollary 45. Let α ∈ C, Λ ∈ X2
α, Λ 6= 0. Then supp(Λ) ⊂ M if and only if one of the

following conditions holds:

• α ∈ Z, α ≤ −2;

• α = −1, and Λ ∈ X2
−1,even.

Proof. The necessary condition follows from Lemma 39 and Lemma 40.

The sufficient condition is proven by the following argument.

By Theorem 43, the spaces X2
α,even, X2

α,odd, for α ∈ Z, α ≤ −2, have dimension 1.
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For α = −2, we have two explicit generators, namely the Dirac delta function δ for
X2
α,even, the tempered distribution Γ defined in (2.8) for X2

α,odd. They both have support
inside M .

By Lemma 21 and Theorem 43, δ̂ = 1 ∈ X2
0,even and Γ̂ = c sgn(detV ) ∈ X2

0,odd, for

c ∈ C \ {0}. For k ∈ N, the generators of X2
k,even, X2

k,odd are defined by applying k
times the map described in Lemma 22 to the tempered distributions associated to the
functions 1 and sgn(detV ). By (1.6), generators of X2

−2−k,even, X2
−2−k,odd are obtained

by applying k times the map described in Lemma 23 to δ and Γ. To conclude, we observe
that supp(det(∂i,j)Λ) ⊂ supp(Λ).

The claim about Λ ∈ X2
−1,even follows by Theorem 5.

Corollary 46. The Fourier transform of the tempered distribution Λ defined in (2) is
−Λ. For F ∈ D′(R/πZ), the Fourier transform of µ(F ) is

µ̂(F )(ϕ) = F (τψϕ),

where τψϕ(θ) = ψϕ(θ − π
2 ).

Proof. The first claim follows by the fact that Λ ∈ X2
−1,odd, and this space has dimension

1 by Theorem 43. Since we have Λ̂ ∈ X2
−1,odd by Lemma 21, thus there exists c ∈ C \ {0}

such that Λ̂ = cΛ. Let ϕ(x, y) = det(x y)e−π|x,y|
2

, for which ϕ̂ = −ϕ. Then

cΛ(ϕ) = Λ̂(ϕ) = Λ(ϕ̂) = −Λ(ϕ),

and c = −1.
For the second claim, we use the well known result that integrating a function on a

subspace is equal to integrating the Fourier transform of the function on the perpendicular
subspace. Since

cos
(
θ − π

2

)
= sin θ, sin

(
θ − π

2

)
= − cos θ,

we have
ν
(
(R2 \ {0})× {θ}

)
⊥HS ν

(
(R2 \ {0})×

{
θ − π

2

})
.

Thus

µ̂(F )(ϕ) = F

(ˆ
R2

ϕ̂
(
w cos θ w sin θ

)
dw

)
=

= F

(ˆ
R2

ϕ
(
w cos

(
θ − π

2

)
w sin

(
θ − π

2

))
dw

)
= F (τψϕ).

Corollary 47. For α ∈ C, the map

det(∂i,j) : X2
α → X2

α−1

defines a bijection with inverse

detV

α(α+ 1)
: X2

α−1 → X2
α,

except for the cases:
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• α = 0, then
det(∂i,j)(1) = 0, det(∂i,j)(sgn(detV )) = 8π2cµ(1),

where c ∈ C \ {0}, but the map is not surjective;

• α = −1, then

det(∂i,j)

(
p. v.

1

detV

)
= 4π2δ, det(∂i,j)(µ(F )) = 0

for every F ∈ D′(R/πZ).

Proof. By Lemma 21 and (1.6), it is enough to consider the case Re(α) ≥ −1.
Let α /∈ {−1, 0}. By Theorem 5, the spaces X2

α have dimension 2, and we show
generators whose support is R2×2. Away from M , as seen in the proof of Lemma 26,

det(∂i,j)|detV |α = α(α+ 1) sgn(detV )|detV |α−1.

Multiplying by detV we obtain α(α+ 1)|detV |α. Thus the maps are bijections, and one
is the inverse of the other. An analogous argument holds for sgn(detV )|detV |α.

For α = 0, we have trivially det(∂i,j)(1) = 0. On the other hand, let Γ be the tempered
distribution defined in (2.8). By Corollary 46 and (1.6) we have

det(∂i,j)(sgn(detV )) = det(∂i,j)(cΓ̂) = −4π2c(detV Γ)̂= 8π2cµ̂(1) = 8π2cµ(1),

where c ∈ C\{0} since the Fourier transform of sgn(detV ) is a nonzero element of X2
−2,odd,

which is generated by Γ. To prove the second to last equality, we observe

(∂Nϕ)˜(w, θ) = (∂Nϕ)˜(w, θ) + lim
ε→0

det
(
ν(w, θ) + ε

−→
N (w, θ)

)
ε

ϕ̃(w, θ) =

= 0 + lim
ε→0

det

(
w1 cos θ − εw2

|w| sin θ w1 sin θ + εw2
|w| cos θ

w2 cos θ + εw1
|w| sin θ w2 sin θ − εw1

|w| cos θ

)
ε

ϕ̃(w, θ) = −|w|ϕ̃(w, θ),

thus

(detV Γ)̂(ϕ) = Γ(ϕ̂) =

ˆ 2π

0

ˆ
R2

(∂N ϕ̂)˜(w, θ)

|w|
dw dθ =

=

ˆ 2π

0

ˆ
R2

−|w|˜̂ϕ(w, θ)

|w|
dw dθ = −2(µ(1))(ϕ̂) = −2µ̂(1)(ϕ).

The map is clearly not surjective because it goes from a 1-dimensional space to an infinite-
dimensional one.

For α = −1, let Λ be the tempered distribution defined in (2). By Corollary 46 and
(1.6) we have

det(∂i,j)Λ = −det(∂i,j)Λ̂ = 4π2 (detV Λ) ̂= 4π21̂ = 4π2δ.

On the other hand,

det(∂i,j)(µ(F )) = det(∂i,j)(µ̂(F ))̂= −4π2(detV µ̂(F ))̂= 0,

since for every ϕ ∈ S(R2×2), then ϕ is zero on M .
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2.3 Proof of Lemma 6

Proof. To compute the constant in the first case, we choose the function

ϕ(x, y) = e−π|x,y|
2

,

for which

ϕ̂(ξ, η) = e−π|ξ,η|
2

,

det(∂i,j)ϕ(x, y) = 4π2 det(x y)e−π|x,y|
2

.

To compute the constant in the second case, we choose the function

φ(x, y) = det(x y)e−π|x,y|
2

,

for which

φ̂(ξ, η) = −det(ξ η)e−π|ξ,η|
2

,

det(∂i,j)φ(x, y) = 4π2(det(x y))2e−π|x,y|
2

− 2π|x, y|2e−π|x,y|
2

+ 2e−π|x,y|
2

.

We need to compute the value of some integrals, namely

Lemma 48. For β ∈ C, Re(β) > −1, then

ˆ
R2×2

|det(x y)|βe−π|x,y|
2

dx dy = π−1−βΓ

(
β + 2

2

)
Γ

(
1

2

)
Γ

(
β + 1

2

)
,

ˆ
R2×2

|det(x y)|β|x, y|2e−π|x,y|
2

dx dy = π−2−β(β + 2)Γ

(
β + 2

2

)
Γ

(
1

2

)
Γ

(
β + 1

2

)
.

Then, for −2 < Re (α) < −1, in the first case we have

(I2
−α−2,even)̂(ϕ) =

ˆ
R2×2

|det(ξ η)|−α−2ϕ̂(ξ, η) dξ dη =

=

ˆ
R2×2

|det(ξ η)|−α−2e−π|ξ,η|
2

dξ dη = πα+1 Γ
(
−α

2

)
Γ

(
1

2

)
Γ

(
−α+ 1

2

)
,

(det(∂i,j)I
2
α+1,odd)(ϕ) =

ˆ
R2×2

|det(x y)|α+1 sgn(det(x y)) det(∂i,j)ϕ(x, y) dx dy =

= 4π2

ˆ
R2×2

|det(x y)|α+2e−π|x,y|
2

dx dy = 4π−α−1 Γ

(
α+ 4

2

)
Γ

(
1

2

)
Γ

(
α+ 3

2

)
.

In the second case we have

(I2
−α−2,odd)̂(φ) =

ˆ
R2×2

sgn(det(ξ η))|det(ξ η)|−α−2φ̂(ξ, η) dξ dη =

= −
ˆ
R2×2

|det(ξ η)|−α−1e−π|ξ,η|
2

dξ dη = −πα Γ

(
−α− 1

2

)
Γ

(
1

2

)
Γ
(
−α

2

)
=

=
α+ 1

2
πα Γ

(
−α+ 1

2

)
Γ

(
1

2

)
Γ
(
−α

2

)
,
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( det(∂i,j)I
2
α+1,even)(φ) =

ˆ
R2×2

|det(x y)|α+1 det(∂i,j)φ(x, y) dx dy =

=

ˆ
R2×2

|det(x y)|α+1(4π2(det(x y))2e−π|x,y|
2

− 2π|x, y|2e−π|x,y|
2

+ 2e−π|x,y|
2

) dx dy =

= π−α−2

[
4Γ

(
α+ 5

2

)
Γ

(
1

2

)
Γ

(
α+ 4

2

)
− 2(α+ 3)Γ

(
α+ 3

2

)
Γ

(
1

2

)
Γ

(
α+ 2

2

)
+

+ 2π−α−2Γ

(
α+ 3

2

)
Γ

(
1

2

)
Γ

(
α+ 2

2

)]
=

= 2(α+ 1)π−α−2 Γ

(
α+ 4

2

)
Γ

(
1

2

)
Γ

(
α+ 3

2

)
,

where we used the property, for Re(β) > −1,

βΓ(β) = Γ(β + 1). (2.11)

The functions defined on the two open half planes are holomorphic because:

• the exponential function is holomorphic on C;

• the function Γ is holomorphic and nonzero on {β ∈ C : Re(β) > 0};

• for a fixed function ϕ ∈ S(R2×2), the function

f : {Re(α) < −1} → C, f(α) :=

ˆ
R2×2

|det Υ|−α−2ϕ̂(Υ) dΥ,

is continuous and complex-differentiable. Let

g : {Re(α) < −1} → C, g(α) :=

ˆ
R2×2

|det Υ|−α−2 lg(|det Υ|−1)ϕ̂(Υ) dΥ.

For every α in the domain, g(α) is finite. In fact, for α ∈ {Re(α) < −1} there exists
ε > 0 such that α+ε ∈ {Re(α) < −1}. Then, |det Υ|ε lg(|det Υ|−1) is bounded when
|det Υ| ≤ 1 and |det Υ|ε lg(|det Υ|) ≤ C|det Υ|2ε when |det Υ| ≥ 1. To conclude we
observe that

f(α)− f(α0) = g(α0)(α− α0) + o(|α− α0|),
by Lebesgue Dominated Convergence Theorem.
The same argument can be used to prove holomorphicity of the function

h : {Re(α) > −2} → C, h(α) :=

ˆ
R2×2

sgn(detV )|detV |α+1 det(∂i,j)ϕ(V ) dV.

The two functions coincide on the intersection, therefore they define a holomorphic func-
tion on C. An analogous argument can be used for the other claim about holomorphi-
city.

Proof of Lemma 48. For Re(β) > −1 the integral is well-defined by Lemma 24.ˆ
R2×2

|det(x y)|βe−π|x,y|
2

dx dy = 2

ˆ
M+

(det(x y))βe−π|x,y|
2

dx dy =

= 2

ˆ
x∈R2\{0}

ˆ
{y∈R2 : (x,y)∈M+}

(det(x y))βe−π|y|
2

dy e−π|x|
2

dx.
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2.4 Proof of Corollary 8

For a fixed x ∈ R2 \ {0}, we change the variable y into(
y1

y2

)
=

1

|x|

(
x1 −x2

x2 x1

)(
a
b

)
.

We have |y|2 = y2
1 + y2

2 = a2 + b2, det(x y) = b|x|, dy1 dy2 = da db. Moreover, (x, y) ∈M+

if and only if {(a, b) ∈ R× (0,∞)}. Then,

ˆ
R2×2

|det(x y)|βe−π|x,y|
2

dx dy = 2

ˆ
R2\{0}

ˆ
R

ˆ ∞
0

(b|x|)βe−π(a2+b2) dbda e−π|x|
2

dx.

We change the variable x into spherical coordinates. Thus,

ˆ
R2×2

|det(x y)|βe−π|x,y|
2

dx dy = 8π

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

(br)βe−πb
2

db e−πa
2

da e−πr
2
r dr =

= 8π

ˆ ∞
0

rβ+1e−πr
2

dr

ˆ ∞
0

e−πa
2

da

ˆ ∞
0

bβe−πb
2

db =

= 8ππ−
β
2

1

2π

ˆ ∞
0

t
β
2 e−t dt π

1
2

1

2π

ˆ ∞
0

u−
1
2 e−u du π−

β−1
2

1

2π

ˆ ∞
0

s
β−1
2 e−s ds =

= π−1−βΓ

(
β + 2

2

)
Γ

(
1

2

)
Γ

(
β + 1

2

)
.

For the second claim we proceed with the same changes of variables, obtaining

ˆ
R2×2

|det(x y)|β|x, y|2e−π|x,y|
2

dx dy =

= 8π

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

(br)β(r2 + a2 + b2)e−πb
2

db e−πa
2

da e−πr
2
r dr =

= π−2−β

[
Γ

(
β + 4

2

)
Γ

(
1

2

)
Γ

(
β + 1

2

)
+ Γ

(
β + 2

2

)
Γ

(
3

2

)
Γ

(
β + 1

2

)
+

+ Γ

(
β + 2

2

)
Γ

(
1

2

)
Γ

(
β + 3

2

)]
=

= π−2−β(β + 2)Γ

(
β + 2

2

)
Γ

(
1

2

)
Γ

(
β + 1

2

)
.

In the last equality we used the property (2.11).

2.4 Proof of Corollary 8

Proof. We prove the uniqueness of the Fourier transform of the tempered distribution
Λ ∈ S ′(R6) defined in (3) in the Introduction. First of all, we study the properties of Λ̂
corresponding to the ones of Λ:

• the modulation invariance is equivalent to the translation invariance in the space of
frequencies. For a vector b ∈ R2, a function ϕ ∈ S(R6), define

Tbϕ̂(ξ, η, ζ) = ϕ̂(ξ − b, η − b, ζ − b) = M̂bϕ(ξ, η, ζ).
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CHAPTER 2. Classification theorems for n = 1, 2

Then

Λ̂(Tbϕ) = Λ(T̂bϕ) = Λ(M−bϕ̂) = Λ(ϕ̂) = Λ̂(ϕ),

for every vector b ∈ R2 and every function ϕ ∈ S(R6),

• the invariance (4) for A ∈ GL2(R) is equivalent to the property

Λ̂

(
1

|detA|
BAϕ

)
= Λ

(
1

|detA|
B̂Aϕ

)
= Λ(BA−T ϕ̂) = Λ(ϕ̂) = Λ̂(ϕ),

for every matrix A ∈ GL2(R) and every function ϕ ∈ S(R6).

We differentiate the equality associated to the translation invariance in the directions

v1 = (w1, w1, w1),

v2 = (w2, w2, w2),

where w1, w2 ∈ R2, w1 = (1, 0), w2 = (0, 1). For ε > 0, we consider the equalities

Λ̂(Tεviϕ) = Λ̂(ϕ), for i ∈ {1, 2},

for every ϕ ∈ S(R6). Dividing by ε and taking the limit as ε goes to 0 we obtain

∂viΛ̂ = 0, for i ∈ {1, 2}.

Therefore, by Lemma 18, we can assume Λ̂ to be of the form

Λ̂(ϕ) = F (ϕ̃),

where F ∈ S ′(R2×2), and ϕ̃ ∈ S(R2×2) is defined by

ϕ̃

(
x1 x2

y1 y2

)
:=

ˆ
R2

ϕ

((
a+ x1 + x2

b+ y1 + y2

)
,

(
a− x1

b− y1

)
,

(
a− x2

b− y2

))
da db,

Now we observe that for a matrix A ∈ GL2(R) and a function ϕ ∈ S ′(R6),

1

|detA|
(BAϕ)˜ (x1 x2

y1 y2

)
=

=
1

detA

1

|detA|

ˆ
R2

ϕ

(
A−1

(
a+ x1 + x2

b+ y1 + y2

)
, A−1

(
a− x1

b− y1

)
, A−1

(
a− x2

b− y2

))
dadb =

=
1

detA

ˆ
R2

ϕ

((
s
t

)
+A−1

(
x1 + x2

y1 + y2

)
,

(
s
t

)
−A−1

(
x1

y1

)
,

(
s
t

)
−A−1

(
x2

y2

))
ds dt =

=
1

detA
ϕ̃

(
A−1

(
x1 x2

y1 y2

))
= D−1

A ϕ̃

(
x1 x2

y1 y2

)
.

Hence, we have

F (D−1
A ϕ̃) = F

(
1

|detA|
(BAϕ)˜) = Λ̂

(
1

|detA|
BAϕ

)
= Λ̂(ϕ) = F (ϕ̃).
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2.4 Proof of Corollary 8

Now let η ∈ D(R2) so that supp(η) ⊂ B1(0),
´
R2 η = 1. Then, for every φ ∈ S(R2×2),

there exists ϕ ∈ S(R6) such that

φ

(
x1 x2

y1 y2

)
= ϕ̃

(
x1 x2

y1 y2

)
,

namely

ϕ(x+ y + av1 + bv2) = φ

(
x1 x2

y1 y2

)
η(a, b).

The function is clearly smooth, while for the boundedness of the Schwartz norms is enough
to observe that, on the support of φ,

|x+ y + av1 + bv2|2 ≤ 2(x2
1 + y2

1 + x2
2 + y2

2 + x1x2 + y1y2 + 1).

Thus the equality above implies that

F (D−1
A φ) = F (φ),

for every matrix A ∈ GL2(R) and every function φ ∈ S(R2×2).
Therefore F ∈ X2

−1,odd, and we conclude uniqueness up to multiplication by a constant
by Theorem 5.
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