
Solutions for exercises, Algebra I (Commutative Algebra) – Week 11

Exercise 55. (Union of associated prime ideals, 3 points)
Passing to the quotient A/a, the setting becomes (0) admits a primary decomposition ∩ni=1qi
and we want to show that ∪i

√
qi = {a ∈ A, a is a zero− divisor}. Let a 6= 0 be a zero-divisor

and b 6= 0 such that ab = 0 ∈ ∩ni=1
√
qqi. If ∀i, a /∈ √qi, those ideals being primes, we have

b ∈ √qi, ∀i. If there is a i0 such that b /∈ qi0 then 0 6= b ∈ A/qi0 and ab = 0 ∈ A/qi0 i.e. a is

a zero-divisor in A/qi0 , which, since qi0 is primary means that a is nilpotent i.e. ak ∈ qi0 for
some k > 0; contradicting a /∈ √qi0 .
Otherwise, b ∈ qi, ∀i i.e. b ∈ ∩ni=1qi = (0), b = 0; contradiction. So a ∈ √qi for some i.

Conversely, according to Proposition 14.8, for a given i, there is a a ∈ A such that
√
qi =√

(0 : a) =
√

Ann(a) (in particular a 6= 0). So ∀x ∈ √qi, there is a k > 0 such that xk ∈
Ann(a) i.e. xka = 0 and a 6= 0. So there is a k − 1 ≥ ` ≥ 0 such that x`a 6= 0 but
x(x`a) = x`+1a = 0. So x is a zero-divisor.

Exercise 56. (Products of coprime ideals, 2 points)
The case n = 2 is proved in the lecture notes (see p.6 footnote 3). So let n ≥ 2 be a integer
such that for any set a1, . . . , an of n pairwise coprime ideals (i.e. ai + aj = (1) for any i 6= j)
we have the equality:

∏n
i=1 ai = ∩ni=1ai.

Let a1, . . . , an+1 be a set of n + 1 pairwise coprime ideals. Then by induction hypothesis∏n
i=1 ai = ∩ni=1ai. Since ai + an+1 = (1) for any i ≤ n, we can write 1 = ai + xi where ai ∈ ai

and xi ∈ an+1. Taking the product, we get

1 = Πn
i=1ai +

n−1∑
i=0

∑
K⊂{1,...,n},#K=i

(
∏
i∈K

ai)(
∏

j∈{1,...,n}\K

xj).

Now Πn
i=1ai ∈ a1 · · · an and in the second term, {1, . . . , n}\K is always nonempty; thus

(
∏
i∈K

ai)(
∏

j∈{1,...,n}\K
xj) ∈ an+1. So (1) = Πn

i=1ai + an+1 i.e. Πn
i=1ai and an+1 are coprime

so by the case n = 2, Πn
i=1ai ∩ an+1 = Πn+1

i=1 ai but we also had (induction hypothesis)

Πn
i=1ai = ∩ni=1ai so Πn+1

i=1 ai = Πn
i=1ai ∩ an+1 = ∩n+1

i=1 ai; completing the induction step.

Exercise 57. (Primary decomposition, 4 points)

1. Using Lecture 10, we have

V (a) = V (xy) ∩ V (x− yz) = (V (x) ∪ V (y)) ∩ V (x− yz)

= (V (x) ∩ V (x− yz)) ∪ (V (y) ∩ V (x− yz))

= V ((x) + (x− yz)) ∪ V ((y) + (x− yz))

= V ((x) + (yz)) ∪ V ((y) + (x))

= (V (x) ∩ V (yz)) ∪ V (x, y)

= (V (x) ∩ (V (y) ∪ V (z))) ∪ V (x, y)

= (V (x, y) ∪ V (x, z)) ∪ V (x, y)

= V (x, y) ∪ V (x, z)

Solutions to be handed in before Monday June 29, 4pm.



2. From V (a) = V (x, y) ∪ V (x, z) = V ((x, y) ∩ (x, z)) we get
√
a =

√
(x, y) ∩ (x, z) =√

(x, y)∩
√

(x, z) = (x, y)∩ (x, z) since (x, y) and (x, z) are prime ideals (the associated
quotients are resp. k[z] and k[y] which are both integral domains).

3. We have (xy, x−yz) = (xy−y(x−yz), x−yz) = (zy2, x−yz). We can look at k[x, y, z]/a
as two successive quotients A′ := k[x, y, z]/(x − yz) and A′/(zy2) ' k[x, y, z]/a. Now,
A′ ' k[yz, y, z] ' k[y, z] and in A′/(zy2), (0) = (y2)∩(z); thus a = (y2)∩(z) mod (x−yz)
i.e. a = (x−yz, y2)∩(x−yz, z). But (x−yz, z) = (x, z) so it is a prime (hence primary)
ideal.
Again looking at successive quotients we get k[x, y, z]/(y2, x − yz) ' k[y, z]/(y2). Any
element of k[y, z]/(y2) can be written uniquely as f1(z) + yf2(z) with fi ∈ k[z]; so such
element is a zero-divisor there is g1+yg2 6= 0 such that f1g1+y(f1g2+f2g1) = 0 mod(y2).
Thus we must have f1g1 = 0 ∈ k[z] and f1g2+f2g1 = 0 ∈ k[z]; which with the condition
that g1 or g2 is not 0 (and k[z] is integral) yields f1 = 0. So f = yf2 mod (y2); but then
f is nilpotent since f2 = y2f2

2 mod (y2) = 0 mod (y2). So (y2, x− yz) is primary. Since
z /∈ (y2, x− yz) and y2 /∈ (x, z) the decomposition is minimal.

Exercise 58. (Example of a primary ideal, 3 points)
By definition of m, for any polynomial f =

∑n
i=0 aix

i ∈ Z[x] we have f = a0 mod2 thus
f /∈ m if and only if f(0) = a0 is odd. So given f =

∑n
i=0 aix

i /∈ m, we can write a0 as 2k + 1.
But then 1 = f − x(

∑n
i=1 aix

i−1)− 2k i.e. 1 ∈ m + (f). Thus m is maximal.
We have Z[x]/(4, x) ' Z[x]/(4)⊗Z[x]Z[x]/(x) ' Z/4Z⊗ZZ[x]/(x) ' Z/4Z (using tensor iden-
tity 5 of sheet 6 for the first isomorphism) and the isomorphism is given by f 7→ f(0) mod 4.
So only zero-divisors in Z[x]/q ' Z/4Z are 0 and 2 which are nilpotent i.e. q is a primary
ideal. Moreover

√
q is the contraction of the nilradical of Z[x]/q; since RZ[x]/q ' (2) we get√

q = (2, x) = m.

We have m2 = (4, 2x, x2) and mk = (2k, 2k−1x, . . . , 2k−ixi, . . . , xk) for k ≥ 2 which are readily
seen not to contain x ∈ q.

Exercise 59. (Case of radical ideals, 2 points)
Let a = ∩ni=1qi be a minimal primary decomposition; we get a =

√
a = ∩ni=1

√
qi and the√

qi are prime ideals. If there is a non minimal prime ideals among the
√
qi’s, we can assume√

q1 ⊂
√
q2. Then a = ∩ni=1

√
qi = ∩i 6=2

√
qi and for any a ∈ ∩i 6=2qi ⊂ ∩i 6=2

√
qi = a since

a = ∩ni=1qi, we get a ∈ qi for any i; in particular a ∈ q2 thus ∩i 6=2qi ⊂ q2 i.e. the primary
decomposition is not minimal; contradiction. So all the

√
qi are minimal.

Exercise 60. (Primary decomposition, 3 points)
We have A/p1 ' k[z], A/p2 ' k[y] and A/m ' k; so p1 and p2 are prime ideals (in particular
primary) and m is maximal. So by Lemma 14.4 (ii), m2 is primary.
We have a = p1p2 = (x2, xz, xy, yz); thus we immediately get a ⊂ p1 ∩ p2. Moreover m2 =
(x2, xy, xz, y2, yz, z2) thus from the generators we see that a ⊂ m2 i.e. a ⊂ p1 ∩ p2 ∩ m2. Let
f ∈ p1∩p2∩m2. Since f ∈ m2 we can write f = x2f1 +xyf2 +xzf3 +y2f4 +yzf5 +z2f6; then
f ∈ p1 (since x2 = xx, xy, xz, y2, yz, yz ∈ p1) if and only if f6 ∈ p1; write it f6 = xg1 + yg2.
Likewise f ∈ p2 if and only if f4 ∈ p2; write it as f4 = xg3 + zg4. then

f = x2f1 + xy(f2 + yg3) + xz(f3 + zf6) + yz(f5 + yf4 + zf6) ∈ a.

So a = p1 ∩ p2 ∩m2.
Likewise p1 ∩m2 = (x2, xy, xz, yz, y2) which is not contained in p2 because y2 /∈ p2.
Likewise p2 ∩m2 = (x2, xy, xz, yz, z2) which is not contained in p1 because z2 /∈ p1.
An element f ∈ p2 can be written f = xf1 + zf2 and it is in p1 if and only if f2 ∈ p1 so
p1 ∩ p2 = (x, xz, yz). In particular, we see x /∈ m2 so p1 ∩ p2 6=⊂ m2. Thus a = p1 ∩ p2 ∩m2 is
a minimal primary decomposition.

We have pi (
√
m2 = m, so m is an embedded component and pi are isolated components.
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