Solutions for exercises, Algebra I (Commutative Algebra) — Week 10

Exercise 49. (Associated primes, 4 points)

1. Let p € Ass(N); there is a n € N, such that Ann(n) = p; since n € M, we get
p € Ass(M) i.e. Ass(N) C Ass(M).
Now, let p € Ass(M) and m € M such that Ann(m) = p. If m = 0 € M/N, then
m € N and we get p € Ass(N). Otherwise, m # 0 € M/N and Va € p, am =am =0
so p C Ann(m). Conversely if Ann(m) = p, then p € Ass(M/N). Otherwise, consider
a € Ann(m)\p then am = 0 € M/N ie. am € N; a direct calculation shows that
p C Ann(am). Now if b € Ann(am), bam = 0 € M thus ba € Ann(m) = p; but since
a¢p,bepie p= Ann(&n}); thus p € Ass(N) i.e. Ass(M) C Ass(IN) U Ass(M/N).

eN

2. Let p € Ass(M) and consider m € M such that Ann(m) = p. If = 0 € M, there is a
a ¢ p, such that am = 0 € M i.e. a € Ann(m) = p. Contradiction. Thus T # 0 € M,.
In particular M, # 0 i.e. p € Supp(M).

3. Let us denote ¢ : M = [ cass(ar) Mp-

Let first prove that Ass(M) # 0 as soon as M # 0 (using Noetherianess of A): take
0# m € M, then 0 € Ann(m) # A. If Ann(m) is prime, we can find a,b € A\Ann(m)
such that ab € Ann(m) i.e. am # 0 and bm # 0 but abm = 0. Then b € Ann(am)
and for any ¢ € Ann(am), cam = acm = a -0 = 0 i.e. Ann(m) C Ann(am); thus
Ann(m) € Ann(m) + (b) C Ann(am). Next, if Ann(am) # A is not prime, we can
repeat the process and find a ¢ € A such that Ann(m) C Ann(am) C Ann(acm) # A.
So we can construct inductively, an ascending chain of proper ideals. As S is Noetherian,
the chain has to stop so we reach a 0 # m’ € (m) (the cyclic submodule generated by
m) for which Ann(m') is a prime ideal i.e. such that Ann(m’) € Ass(M).

Now, if ker(y) # 0, take 0 # m € ker(yp); then since m # 0, Ann(m) # A and if Ann(m)
is not a prime ideal, we can proceed as above to find a m’ € (m) such that Ann(m’) is
a prime ideal i.e. Ann(m’) € Ass(M). But since m’ € (m) we can write m’ = am; thus
o(m’) = ap(m) = 0 i.e. m’ € ker(yp). But looking at the component corresponding to
Ann(m’), we get a contradiction by the previous question. So ker(¢) = 0.

Exercise 50. (Discrete valuation rings (or not), 6 points)

1. Z is not local (for any prime number p > 0, (p) is maximal) thus not a discrete valuation
ring.

2. We have seen (solution for exercise 8) the non-zero ideals of k[[z]] are of the form (z%)
for some d > 0. So k[[z]] is a principal ideal domain, in particular any ideal in k[[z]]
is finitely generated (by one element) thus k[[z]] is Noetherian. Among the ideals (z%)
of k[[z]], only (x) is prime; thus Spec(k[[z]]) = {(0), (z)}. So MaxSpec(k[[z]]) = {(x)}
i.e. k[[z]] is local. Observe that (z)/(x)? = (z)/(2?) ~ k - T. So according to Corollary
11.16 k[[x]] is a discrete valuation ring.
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3. We have Spec(k[z];) ~ D(x); since k[x] has infinitely many maximal ideals (irreducible
elements) and D(x) consists of all maximal ideals of k[z| but (z), k[x], is not local
hence not a discrete valuation ring.

4. the ring k[z?, 23] is an integral domain as subring of an integral domain. We have
xr = xz € Q(k[z?%,23]) and z is annhilated by Y2 — 2% € k[2%,23][Y] so it is integral
over k[z?, 23] but x ¢ k[z?, 23] (looking at the expansions in k[x]). So k[z?, 23]
normal. In particular it cannot be a discrete valuation ring.

5. We have Spec(Fs[z,y]/(2? —y)) ~ V((z% — y)) C Spec(F3[z,y]). The ideal (2? —y) C
(22 —y,z) = (y, ) satisfies F3[x,y]/(2* — y,x) ~ F3 so it is a maximal ideal of F3[x, ]
i.e. (Z) € MaxSpec(F3[z,y]/(z* — y)) is maximal.

Likewise the ideal (z2—y) C (z2—y,x—1) = (1—y, z—1) satisfies F3[x, y] /(22 —y, z—1) ~

F3 i.e. is maximal; thus (Z — 1) € MaxSpec(F3[z,y]/(z? — y)). But (z — 1) # ().

Otherwise z — 1 € (a: —y,z) = (y,z) but evaluating the polynomials at (0,0), we get

a contradiction.

So Fslx,y]/(z? — ) is not local, in particular not a discrete valuation ring.

is not

For any field, the constant map v : K* — Z, a — 0 satisfies Lemma 13.4 (i) and (ii); but
{v(-) > 0} U{0} = K is not a discrete valuation ring.

As soon as the valuation v : K* — 7Z is not constant, by the property (ii) of Lemma 13.4
(and v(1) =v(1-1) =v(1)+v(1) so v(1) = 0) v(K*) C Z is a non-zero subgroup of Z i.e. of
the form (d) for some d > 0. Then looking at v : K* — Z, a — Ej) we get a surjective group
homomorphism and {a € K*, v(a) > 0} = {a € K*, v(a ) >0} so {0} U{a € K*, v(a) > 0}
is a discrete valuation ring.

Exercise 51. (Rings that are not Dedekind rings, 5 points)

1. Let us consider the ideal (z1,x2) C A. It is fractional as an ideal of A. If it is invertible,
consider M C k(xy1,x2) its inverse. It is finitely generated by Remark 14.12 (ii) and
(iii). Let us denote fi,..., fx € k(z1,22) a set of generators of M as A-module. Then
for any i, f;x1 € A thus the only denominator that can appear in the f;’s is z1. But
we also have fizg € A so actually f; € A for any ¢ i.e. M C A is an ideal. Then
M - (z1,22) = ((z1fi, z2fi)i=1,..k); thus evaluating at (0,0) we see that 1 ¢ M - (z1, z2).
Contradiction. So (x1,x2) is not invertible.

2. We compute (71,72)* = (713,522, 71%3) = (T1°, 2%, Z1%2) = (T2, 71%2) = (T1) -
(Z1,Z32). Thus if (Z1,73) is invertible, we get (T1,72) = (:Tl)

This is impossible as Tz ¢ (T1); otherwise w3 = 21 f + (23 — 23)g in k[x1, 22] for some
fyg € k[z1,x9]; then evaluating at 1 = 0 we get zo = 23g(0,72) € k[ra] which is
impossible for degree reason. So (Z1,7z) is not invertible.

Exercise 52. (Absolute values, 4 points)

1. Define |-|: Q(A) — R by || = | - 1t is well-defined as, if § = § € Q(A), we have
(A integral domain) ad = bc in A. Thus |a||d| = |ad| = |bc| = |b[|c| in R so |¢] = [3];
proving well-definedss. By axiom 3, [1| = |1-1| = |1]-|1] i.e. |1| € R is idempotent so it
is either 0 or 1. But because of axiom 2 (1 # 0), we have |1| = 1.

So |- | on Q(A) extends the absolute value on A: || = % = |al.
We have |¢] = lb\‘ > 0.
If |¢ \—@*OERthen la| = 0 i.e. (axiom 2) a = 0. ButthenQZQ:OeQ(A).
A direct caluclation shows multiplicativity: |§ - 5| = |35] = ”C| =[5!
Finally
a ¢ ad+bc,  |ad+bc| _ |ad|+|bc| alld| ~|bllc] | a
T+ == | = < = =1+ 1]
b d bd Ibd]| Ibd ol el ~ e T



2. We have 1/(§ ) = —log, (|¢-5]) = —log, (JHl5]) = ~log, (|4]) —log, (|5]) = v($)+¥(5).

We have

d+b
v(5 + 2) = v(*) = —logg(|ad + bel) + log, ([bd]) > —log, (max(|ad], [be])) + Lo, (|bd])
— min(—log,(|ad]), ~log, (|bel)) + log, (bd])
lad| [be|
> ~108apg))

= min(v(}), ().

= min(—log,(

3. The inequality |a +b| < max(|al, |b]) does not hold for C,|-|; indeed, |1 +i| = v2 > 1 =
11|, 1 = |i]. So —log, (|1 +i|) = —log,(v/2) < —log,(1) i.e. —log,(]-|) does not satisfy
Lemma 13.4 (i).

4. As in example 13.3 (iii), Z,) C Q admits the following description Z,y = {$ € Q, p{
b and (a,b) = 1}. So set |- | : Z,)\{0} = N, by § p~"(@ where (a,b) =1, a # 0
and v(a) = max{¢ € N, p‘la} and extend by 0 at 0 € Zyy. If § € Z)\{0}, we have
%] = p"@ >0and [0] =0 > 0. So | - | satisfies axioms 1 and 2.

Moreover, |5 - 5| = |75], then p { bd, so taking out common primes in the numerator and
the denominator does not affect v(ac), which is equal v(a)v(c) as readily seen from the
decomposition in primes. So |§ - §| = prlawe) = pvla)y=vle) = FIFIE

Finally, |2 + ¢| = [24t2| and again p { bd; since p 1 d, we have v(ad) = v(a) and like-

wise v(be) = v(c). If v(a) < v(c) (e |§] = pv(@) > prle) = | in other words |7| =

max(| ¢/, [5])), then p”@ad+be so v(ad+be) > v(a) ie. \%| = pvladtbe) < p=vla) —
|%] = max(|{|, |5]). Likewise, one shows that when v(a) > v(c), max(|3],[§|) = || and
v(ad + be) > v(c) ie. [2dthe| = pvladtbe) < p=v(e) = max(]4|, |%]). As a conclusion | - |
satisfies the axioms for an absolute value with the strengthened axiom 4 of question

(ii). In particular —log,(| - [) is a valuation on v := Q* = Q(Z)), which is equal to v

on Zy,) (direct calculation).

Let us describe its valuation ring {v(-) > 0} U {0}. Looking at the natural extension
(question (i)) of | - | to Q, we see that v(%) = v(a) — v(b). But can always take a
representative for which (a,b) = 1, then p doe s not divide a and b i.e. V(a)z/(b) = 0.
Then from the formula, we see that v(%) > 0 if and only if v(b) = 0 ie p{bie.
b € Zp)-

Exercise 53. (Picard group, 6 points)

1. For M, N € Pic(A), let us show that M @ N € Pic(A): as M, N are finitely generated
there are surjective homomorphism of A-modules AY™ — M and A®™ — N and since
M, N are projective those homomorphisms admit a section (a homomorphism lifting
the identity) i.e. M, N are direct summands of finite free A-modules A®™ = M & P,
AP = N @ Q. Then AP = A" @ AP = M QNO(MRQBPRN®P®AQ) ie.
M ® N is a direct summand of a finite free A-module; thus M ® N is a finite (look at
the projection A®™" — M ® N) projective module. Moreover for any p € Spec(A), we
have (see tensor identity (3) on exercise sheet 6 and solution to exercise 15)

(M@AN)p’:M@AN@AA,JZ(M@AAP)@AP <N®AAp>:Ap®Ap ApﬁAp.

Associativity follows from associativity of tensor product.

As a A-module A is obviously finite and free (hence projective) and A, ~ A ®4 A,p;
thus A € Pic(A).

Moreover for any M € Pic(A), we have natural isomorphisms M ®4 A ~ M and



AR A M~ M.

For any M € Pic(A), let us denote M ! := Hom4 (M, A). As we have seen M is a direct
summand of a finite free module: A®™ ~ M & P; applying the functor Hom (-, A) yields
A®™ ~ Homy (A®™, A) ~ Homa(M, A) ® Homyu (P, A). So M~ is a direct summand
of a finite free module so it is finite and projective. Now, since for any finite free
module, there is a natural isomorphism Hom(A®*, A) ~ [[%_, Hom(A4, A) ~ A®* for
any p € Spec(4), we get Hom(AEBI’“,A)p ~ APk ~ Ay ~ A,%Bk. The decomposition
A®™ ~ M @ P gives the exact sequence 0 — P — A9™ — M — 0. Composition the
first homomorphism with the surjective homomorphism A®™ —» P given by the second
projection, gives an exact sequence

Aem Iy q@m 9 6, ()

Applying the functor Hom(-, A) yields 0 — Hom 4 (M, A) — Hom(A%™, A) =/ Hom(A®™, A)
i.e. Hom(M, A) is the kernel of — o f. Since localization is an exact functor, for any
p € Spec(A), we get the exact sequence

0 — Homy (M, A), = Hom(A%™ A), s Hom(A%™ A),
—_——— —_———

~ AP ~Hom a, (AZ™, Ap) ~ AP ~Hom a, (AZ™, Ap)

i.e. Homg(M, A), ~ ker(— o f,). But tensoring (¥) with A, yields the exact sequence:
A?m g A?m % M, — 0; then applying Hom (-, Ay) gives the exact sequence 0 —

HomAp(Mp,Ap) = HomAp(AgBm,Ap) _i];p HomAp(Agam,Ap) i.e. HomAp(Mp,Ap) ~
ker(— o fy). As a conclusion, Hom (M, A), ~ Hompy,(M,, Ay). but by assumption
M, ~= Ayp; thus Hom g, (M,, Ap) ~ Homy, (Ap, Ap) =~ A, So M~! € Pic(A).

Moreover the natural homomorphism ¢ : Homa (M, ) @ M — A, A® m — A(m) is an
isomorphism: indeed we have an exact sequence 0 — ker(c) — Homy(M,A) ® M 5
A — coker(c) — 0 so that tensoring with the flat A-algebra Ay, we get the exact

sequence 0 — ker(c), — Homa(M, A), ®a, M, = A, — coker(c), — 0. But ¢, :
Homa(M, A)y, ®4, My — Ay is an isomorphism (check it, the isomorphism M, ~ A,

ZHOH’IAp (Mp,Ap)®ApAp:Ap
tells that there is a m € M, such that A, — M,, a — am is an isomorphism). Thus for
any p € Spec(A), ker(c), = 0 = coker(c), i.e. (Proposition 8.24) ker(c) = 0 = coker(c).

. Let M C K be an invertible A-submodule and N C K its inverse i.e. M - N = A. In
particular 1 € A can be written

k

i=1

for some m; € M and n; € N. Then for any m € M, m = Zle( mn; )m; in K ie.
S

mi, ..., mg generate M as a A-module. So we have a surjective homomorphism of A-
modules f : A¥ — M, (a1,...,a;) = Y, a;m;. But using , we can also define a ho-
momorphism of A-modules g : M — A*, m s (mnq,...,mny) (straightforward to see
that it is a homomorphism). Observe that for m € M, f(g(m)) = f((mn1,...,mng)) =
Zf:l(mnz)mZ which, as seen above, is equal to m. So f o g = idy i.e. M is a direct
summand of A*; so M is a finite projective A-module.

Moreover, for any p € Spec(A)\{(0)}, Ay is a discrete valuation ring and M, an in-
vertible A, submodule (by Lemma 14.15) of K; in particular it is fractional so there
is a a € K such that aM, C A, is an ideal. But as A, is a discrete valuation ring,
according to Proposition 13.14, aM,, is principal, of the form (t9), for £ > 0and t € pAp

a uniformizing parameter. So in K, we have M, ~ (%) as Ap-modules and the cyclic

4



Ap-module % - Ay C K is isomorphic to A, (look at A, — % “Ap, x> x%) since it has
no torsion (as submodule of a field). So M, ~ A,.

For p = (0), by Lemma 14.15, M is an invertible Ay =~ K-submodule of K so
K D Mgy # 0 thus M) =~ K = A(g). As a conclusion M € Pic(A).

Let us prove that this forgetful map respects the composition laws: let M, N C K be in-
vertible A-submodules. We can look at the homomorphism of A-modules f: M @4 N —
M- N, m®n — mn. It is readily seen to be surjective. Now, for a p € Spec(4), we
have the localization fy, : My @4, Ny — (M - N)p; but My ®4, Np >~ (m- Ap) @4, (n-Ay)
where m € M, (resp. n € Ny) gives the isomorphism A, ~ M, (resp. A, ~ N,). Since
M - N is invertible, (M - N), ~ A, is a cyclic Ap-module and (M - N), ~ M, - Ny, it is
generated by mn. So f, is an isomorphism; in particular ker(f,) = 0.

So ker(f), = 0 for any p € Spec(A) i.e. ker(f) = 0; thus M ®4 N ~ M - N as A-module.

If an invertible A-submodule M C K is principal i.e. M = o+ A for some o € K*, since
the cyclic A-module () C K has no torsion (as a submodule of the field K), we have
A~ q«a-Aas A-modules, so M ~ A as A-modules. But A is the neutral element of the
group Pic(A). So the forgetful map Cl(A) — Pic(A) is a group homomorphism.

Surjectivity: if M € Pic(A), then for any a € A\{0}, let us prove that ¢, : M — M,
m +— am is injective: for any p € Spec(A)\{(0)}, M, ~ A, - m, ~ A, and since A, is
an integral domain (and A — A,, all because A is an integral domain see for example
Exercise 24(i)), tap : My ~ Ay — M, ~ A, is injective; thus ker(tq)m = 0 for any
maximal ideal m € Spec(A) i.e. ker(t,) = 0.

As a consequence, the natural homomorphism M — Mg is injective: if T € M) then
there is a a € A\{0} such that am = 0 in M. But we have seen that this implies that
m = 0.

Moreover Mgy ~ Ay ~ K, so M is isomorphic to a A-submodule of K. The iso-
morphism My ~ K is given by the datum of some 0 # = € M) (the preimage of
1) ie K ~ K- % ~ Mg). Let my,...,mp € M be a set of generators of M as a

A-module; since Mg is cyclic, we have 4+ = 2—1% € My for some b;,a; € A (a; # 0).

Consider a = Hleai € A; for any i, we have o™t = billj4a; - 7, i.e. under the in-
clusion M < K = M), am; € A so M is isomorphic to a fractional ideal. Now since
for any p € Spec(A), M, ~ A, (so M, is in particular cyclic) and the localization is
compatible with the inclusion M — K ~ My i.e. M < M, < M) (successive lo-
calizations with respect to (0) C p, see Exercise 28), M, is invertible. So according to
Lemma 14.15, M is isomorphic to an invertible A-submodule of K; proving surjectivity.

Injectivity: Assume M € J(A) is sent to A by the forgetful map i.e. M ~ A as A-
module, then M is cyclic (take the preimage of 1 € A), generated by some m € M C K
ie. M ~m-A~ A So M € P(A); proving injectivity.

Exercise 54. (Class number, 5 points)

1. For Q(i), Ok ~ Z[i]. It is sufficient to prove that Ok is a principal ideal domain. Let us
define N : Q[i] — R>, by the usual euclidean norm of C i.e. a+ib — |a+ib|? = a®+b%.
Then it is an absolute value in the sense of Exercise 52. Let us prove that there is a
Euclidean division in Q(4) i.e. given z,2’ € Z(i) with 2’ # 0, there are ¢ € Z(i) and
r € Z(#) N{N(-) < N(2')} such that z = ¢z’ + r: if N(2) < N(2') take ¢ = 0 and

r = z. Otherwise, consider % = a 4 ib € C which by direct calculation sits in Q(4).

Let us consider the closest integers k, ¢ € Z to respectively a and b i.e. |k —a| < % and



[0 —b] < 1. Then
z .
— =a+1b

T a-R b0+ (k0

so that z = (k + i0)2' + [(a — k) + i(b — 0)]Z'. Since z, k + il, 2’ € Z[i], we get that
[(a—Fk)+i(b—20))2' =z — (k+ il)2 € Z][i]; moreover

N([(a — k) +i(b—0)]2') = N(Z')N((a— k) +i(b— £)) = N(')[(a — k)2 + (b — 0)?]

proving the statement.

Let M C Q(i) be an invertible Z[i;—submodule. Let 0 # a € Q(¢) such that aM C Z[i],
the non-empty set {N(z+iy) = 2°+y>, 0# x+iy € aM} C N has a minimal element
d > 0; let xg + iyp € aM such that N(zg + iyo) = d. For any z € aM C Z[i], there
are ¢,r € Z[i| such that z = g(z¢ + iyo) + r with N(r) < N(xo + iyo) = d. But since
aM is an ideal q(xzo + iyo) € aM and thus r = z — g(z¢ + iyp) € aM; but definition
of d, we must have r = 0 i.e. z € (x¢ + iyp); as a conclusion aM = (x¢ + iyp). So
M = (%) C Q(4) is principal. So hgg) = 1.

. For Q(v/—=2), Ok ~ Z[/—2]. Let us define N : Q[v/—2] — R>q by a++v/—2b > a?+2b%.
If N(a+ +/—2b) = 0 then since a®> > 0 and b> > 0, we have a = 0 = b.
A direct calculation shows that IV is mutlplicative i.e.

N((a+ v—=2b)(c + v—2d)) = N(ac — 2bd + v/—2(ad + bc))
= (ac — 2bd)? + 2(ad + be)?
= (ac)? — 4abed + 4(bd)? + 2(ad)? + 4abed + 2(be)?
= (a® + 20%)(c* + 2d%)
= N(a+ v/—=2b)N(c++/—2d)

for any pair a + v/—2b, ¢+ +/—2d € Z[\/—2| and it is not difficult to check the other
property to show that N is an absolute value in the sense of Exercise 52.

Let us show that there is an Euclidean division in Z[y/—2], the proof is the same as
above: for any z,2' € Z[v/—2] with 2’ # 0, there is a pair (¢,r) € Z[v/=2], such that
z=¢qz' +rand N(r) < N(2).

If N(z) < N(z) we are done (¢ = 0, r = z). Otherwise look at Z which is in QQ(v/~2)
i.e. can be written a + /—2b, with a,b € Q. Let k, ¢ € Z the closest integers to resp. a
and bie. [a—k| < 3 and [b—¢| < 3. Then z = (k++v/—=20)2'+ [(a— k) +vV/=2(b—£)]2/;
z € ZIV=2], 2" € ZIN/=2|, k+/=2l € Z|\/=2], so that [(a—k)++/=2(b—{)]2" € Z]\/—2]

and

N([(a ~ K) +V=2(b — 0]) = NN ((a — K) + V=3~ 0) = N()[(a — k) + 206~ 1)
<N+ )
- NE)G)
< N(Z)

proving Euclidean division.
Conclude as done in the previous question.



