
Solutions for exercises, Algebra I (Commutative Algebra) – Week 10

Exercise 49. (Associated primes, 4 points)

1. Let p ∈ Ass(N); there is a n ∈ N , such that Ann(n) = p; since n ∈ M , we get
p ∈ Ass(M) i.e. Ass(N) ⊂ Ass(M).
Now, let p ∈ Ass(M) and m ∈ M such that Ann(m) = p. If m = 0 ∈ M/N , then
m ∈ N and we get p ∈ Ass(N). Otherwise, m 6= 0 ∈ M/N and ∀a ∈ p, am = am = 0
so p ⊂ Ann(m). Conversely if Ann(m) = p, then p ∈ Ass(M/N). Otherwise, consider
a ∈ Ann(m)\p then am = 0 ∈ M/N i.e. am ∈ N ; a direct calculation shows that
p ⊂ Ann(am). Now if b ∈ Ann(am), bam = 0 ∈ M thus ba ∈ Ann(m) = p; but since
a /∈ p, b ∈ p i.e. p = Ann( am︸︷︷︸

∈N

); thus p ∈ Ass(N) i.e. Ass(M) ⊂ Ass(N) ∪Ass(M/N).

2. Let p ∈ Ass(M) and consider m ∈M such that Ann(m) = p. If m
1 = 0 ∈Mp, there is a

a /∈ p, such that am = 0 ∈ M i.e. a ∈ Ann(m) = p. Contradiction. Thus m
1 6= 0 ∈ Mp.

In particular Mp 6= 0 i.e. p ∈ Supp(M).

3. Let us denote ϕ : M →
∏

p∈Ass(M)Mp.

Let first prove that Ass(M) 6= ∅ as soon as M 6= 0 (using Noetherianess of A): take
0 6= m ∈ M , then 0 ∈ Ann(m) 6= A. If Ann(m) is prime, we can find a, b ∈ A\Ann(m)
such that ab ∈ Ann(m) i.e. am 6= 0 and bm 6= 0 but abm = 0. Then b ∈ Ann(am)
and for any c ∈ Ann(am), cam = acm = a · 0 = 0 i.e. Ann(m) ⊂ Ann(am); thus
Ann(m) ( Ann(m) + (b) ⊂ Ann(am). Next, if Ann(am) 6= A is not prime, we can
repeat the process and find a c ∈ A such that Ann(m) ( Ann(am) ( Ann(acm) 6= A.
So we can construct inductively, an ascending chain of proper ideals. As S is Noetherian,
the chain has to stop so we reach a 0 6= m′ ∈ 〈m〉 (the cyclic submodule generated by
m) for which Ann(m′) is a prime ideal i.e. such that Ann(m′) ∈ Ass(M).
Now, if ker(ϕ) 6= 0, take 0 6= m ∈ ker(ϕ); then since m 6= 0, Ann(m) 6= A and if Ann(m)
is not a prime ideal, we can proceed as above to find a m′ ∈ 〈m〉 such that Ann(m′) is
a prime ideal i.e. Ann(m′) ∈ Ass(M). But since m′ ∈ 〈m〉 we can write m′ = am; thus
ϕ(m′) = aϕ(m) = 0 i.e. m′ ∈ ker(ϕ). But looking at the component corresponding to
Ann(m′), we get a contradiction by the previous question. So ker(ϕ) = 0.

Exercise 50. (Discrete valuation rings (or not), 6 points)

1. Z is not local (for any prime number p > 0, (p) is maximal) thus not a discrete valuation
ring.

2. We have seen (solution for exercise 8) the non-zero ideals of k[[x]] are of the form (xd)
for some d ≥ 0. So k[[x]] is a principal ideal domain, in particular any ideal in k[[x]]
is finitely generated (by one element) thus k[[x]] is Noetherian. Among the ideals (xd)
of k[[x]], only (x) is prime; thus Spec(k[[x]]) = {(0), (x)}. So MaxSpec(k[[x]]) = {(x)}
i.e. k[[x]] is local. Observe that (x)/(x)2 = (x)/(x2) ' k · x. So according to Corollary
11.16 k[[x]] is a discrete valuation ring.
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3. We have Spec(k[x]x) ' D(x); since k[x] has infinitely many maximal ideals (irreducible
elements) and D(x) consists of all maximal ideals of k[x] but (x), k[x]x is not local
hence not a discrete valuation ring.

4. the ring k[x2, x3] is an integral domain as subring of an integral domain. We have

x = x3

x2
∈ Q(k[x2, x3]) and x is annhilated by Y 2 − x2 ∈ k[x2, x3][Y ] so it is integral

over k[x2, x3] but x /∈ k[x2, x3] (looking at the expansions in k[x]). So k[x2, x3] is not
normal. In particular it cannot be a discrete valuation ring.

5. We have Spec(F3[x, y]/(x2 − y)) ' V ((x2 − y)) ⊂ Spec(F3[x, y]). The ideal (x2 − y) ⊂
(x2 − y, x) = (y, x) satisfies F3[x, y]/(x2 − y, x) ' F3 so it is a maximal ideal of F3[x, y]
i.e. (x) ∈ MaxSpec(F3[x, y]/(x2 − y)) is maximal.
Likewise the ideal (x2−y) ⊂ (x2−y, x−1) = (1−y, x−1) satisfies F3[x, y]/(x2−y, x−1) '
F3 i.e. is maximal; thus (x − 1) ∈ MaxSpec(F3[x, y]/(x2 − y)). But (x − 1) 6= (x).
Otherwise x− 1 ∈ (x2 − y, x) = (y, x) but evaluating the polynomials at (0, 0), we get
a contradiction.
So F3[x, y]/(x2 − y) is not local, in particular not a discrete valuation ring.

For any field, the constant map ν : K∗ → Z, a 7→ 0 satisfies Lemma 13.4 (i) and (ii); but
{ν(·) ≥ 0} ∪ {0} = K is not a discrete valuation ring.
As soon as the valuation ν : K∗ → Z is not constant, by the property (ii) of Lemma 13.4
(and ν(1) = ν(1 · 1) = ν(1) + ν(1) so ν(1) = 0) ν(K∗) ⊂ Z is a non-zero subgroup of Z i.e. of

the form (d) for some d > 0. Then looking at ν̃ : K∗ → Z, a 7→ ν(a)
d we get a surjective group

homomorphism and {a ∈ K∗, ν̃(a) ≥ 0} = {a ∈ K∗, ν(a) ≥ 0} so {0} ∪ {a ∈ K∗, ν(a) ≥ 0}
is a discrete valuation ring.

Exercise 51. (Rings that are not Dedekind rings, 5 points)

1. Let us consider the ideal (x1, x2) ⊂ A. It is fractional as an ideal of A. If it is invertible,
consider M ⊂ k(x1, x2) its inverse. It is finitely generated by Remark 14.12 (ii) and
(iii). Let us denote f1, . . . , fk ∈ k(x1, x2) a set of generators of M as A-module. Then
for any i, fix1 ∈ A thus the only denominator that can appear in the fi’s is x1. But
we also have fix2 ∈ A so actually fi ∈ A for any i i.e. M ⊂ A is an ideal. Then
M · (x1, x2) = ((x1fi, x2fi)i=1,...,k); thus evaluating at (0, 0) we see that 1 /∈M · (x1, x2).
Contradiction. So (x1, x2) is not invertible.

2. We compute (x1, x2)
2 = (x1

2, x2
2, x1x2) = (x1

3, x1
2, x1x2) = (x1

2, x1x2) = (x1) ·
(x1, x2). Thus if (x1, x2) is invertible, we get (x1, x2) = (x1).
This is impossible as x2 /∈ (x1); otherwise x2 = x1f + (x22 − x31)g in k[x1, x2] for some
f, g ∈ k[x1, x2]; then evaluating at x1 = 0 we get x2 = x22g(0, x2) ∈ k[x2] which is
impossible for degree reason. So (x1, x2) is not invertible.

Exercise 52. (Absolute values, 4 points)

1. Define | · | : Q(A) → R by |ab | = |a|
|b| . It is well-defined as, if a

b = c
d ∈ Q(A), we have

(A integral domain) ad = bc in A. Thus |a||d| = |ad| = |bc| = |b||c| in R so |ab | = | cd |;
proving well-definedss. By axiom 3, |1| = |1 · 1| = |1| · |1| i.e. |1| ∈ R is idempotent so it
is either 0 or 1. But because of axiom 2 (1 6= 0), we have |1| = 1.

So | · | on Q(A) extends the absolute value on A: |a1 | =
|a|
|1| = |a|.

We have |ab | =
|a|
|b| ≥ 0.

If |ab | =
|a|
|b| = 0 ∈ R then |a| = 0 i.e. (axiom 2) a = 0. But then a

b = 0
b = 0 ∈ Q(A).

A direct caluclation shows multiplicativity: |ab ·
c
d | = |

ac
bd | =

|a||c|
|b||d| = |ab ||

c
d |.

Finally

|a
b

+
c

d
| = |ad+ bc

bd
| = |ad+ bc|

|bd|
≤ |ad|+ |bc|

|bd|
=
|a||d|
|b||d|

+
|b||c|
|b||d|

= |a
b
|+ | c

d
|
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2. We have ν(ab ·
c
d) = −logα(|ab ·

c
d |) = −logα( |a||c||b||d| ) = −logα(|ab |)− logα(| cd |) = ν(ab )+ν( cd).

We have

ν(
a

b
+
c

d
) = ν(

ad+ bc

bd
) = −logα(|ad+ bc|) + logα(|bd|) ≥ −logα(max(|ad|, |bc|)) + logα(|bd|)

= min(−logα(|ad|),−logα(|bc|)) + logα(|bd|)

= min(−logα(
|ad|
|bd|

),−logα(
|bc|
|bd|

))

= min(ν(
a

b
), ν(

c

d
)).

3. The inequality |a+ b| ≤ max(|a|, |b|) does not hold for C, | · |; indeed, |1+ i| =
√

2 > 1 =
|1|, 1 = |i|. So −logα(|1 + i|) = −logα(

√
2) < −logα(1) i.e. −logα(| · |) does not satisfy

Lemma 13.4 (i).

4. As in example 13.3 (iii), Z(p) ⊂ Q admits the following description Z(p) = {ab ∈ Q, p -
b and (a, b) = 1}. So set | · | : Z(p)\{0} → N, by a

b 7→ p−ν(a) where (a, b) = 1, a 6= 0

and ν(a) = max{` ∈ N, p`|a} and extend by 0 at 0 ∈ Z(p). If a
b ∈ Z(p)\{0}, we have

|ab | = p−ν(a) > 0 and |0| = 0 ≥ 0. So | · | satisfies axioms 1 and 2.
Moreover, |ab ·

c
d | = |

ac
bd |, then p - bd, so taking out common primes in the numerator and

the denominator does not affect ν(ac), which is equal ν(a)ν(c) as readily seen from the

decomposition in primes. So |ab ·
c
d | = p−ν(a)ν(c) = p−ν(a)p−ν(c) = |ab ||

c
d |.

Finally, |ab + c
d | = |ad+bcbd | and again p - bd; since p - d, we have ν(ad) = ν(a) and like-

wise ν(bc) = ν(c). If ν(a) ≤ ν(c) (i.e. |ab | = p−ν(a) ≥ p−ν(c) = | cd in other words |ab | =

max(|ab |, |
c
d |)), then pν(a)|ad+bc so ν(ad+bc) ≥ ν(a) i.e. |ad+bcbc | = p−ν(ad+bc) ≤ p−ν(a) =

|ab | = max(|ab |, |
c
d |). Likewise, one shows that when ν(a) > ν(c), max(|ab |, |

c
d |) = | cd | and

ν(ad+ bc) ≥ ν(c) i.e. |ad+bcbd | = p−ν(ad+bc) ≤ p−ν(c) = max(|ab |, |
c
d |). As a conclusion | · |

satisfies the axioms for an absolute value with the strengthened axiom 4 of question
(ii). In particular −logp(| · |) is a valuation on ν̃ := Q∗ = Q(Z(p)), which is equal to ν
on Z(p) (direct calculation).

Let us describe its valuation ring {ν(·) ≥ 0} ∪ {0}. Looking at the natural extension
(question (i)) of | · | to Q, we see that ν̃(ab ) = ν(a) − ν(b). But can always take a
representative for which (a, b) = 1, then p does not divide a and b i.e. ν(a)ν(b) = 0.
Then from the formula, we see that ν̃(ab ) ≥ 0 if and only if ν(b) = 0 i.e. p - b i.e.
a
b ∈ Z(p).

Exercise 53. (Picard group, 6 points)

1. For M,N ∈ Pic(A), let us show that M ⊗N ∈ Pic(A): as M,N are finitely generated
there are surjective homomorphism of A-modules A⊕m � M and A⊕n � N and since
M,N are projective those homomorphisms admit a section (a homomorphism lifting
the identity) i.e. M,N are direct summands of finite free A-modules A⊕m = M ⊕ P ,
A⊕n = N ⊕Q. Then A⊕mn = A⊕m ⊗A⊕n = M ⊗N ⊕ (M ⊗Q⊕ P ⊗N ⊕ P ⊗Q) i.e.
M ⊗N is a direct summand of a finite free A-module; thus M ⊗N is a finite (look at
the projection A⊕mn �M ⊗N) projective module. Moreover for any p ∈ Spec(A), we
have (see tensor identity (3) on exercise sheet 6 and solution to exercise 15)

(M ⊗A N)p 'M ⊗A N ⊗A Ap ' (M ⊗A Ap)⊗Ap (N ⊗A Ap) ' Ap ⊗Ap Ap ' Ap.

Associativity follows from associativity of tensor product.
As a A-module A is obviously finite and free (hence projective) and Ap ' A ⊗A App;
thus A ∈ Pic(A).
Moreover for any M ∈ Pic(A), we have natural isomorphisms M ⊗A A ' M and
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A⊗AM 'M .
For any M ∈ Pic(A), let us denote M−1 := HomA(M,A). As we have seen M is a direct
summand of a finite free module: A⊕m 'M⊕P ; applying the functor HomA(·, A) yields
A⊕m ' HomA(A⊕m, A) ' HomA(M,A) ⊕ HomA(P,A). So M−1 is a direct summand
of a finite free module so it is finite and projective. Now, since for any finite free

module, there is a natural isomorphism Hom(A⊕k, A) '
∏k
i=1 Hom(A,A) ' A⊕k for

any p ∈ Spec(A), we get Hom(A⊕k, A)p ' A⊕k ' Ap ' A⊕kp . The decomposition
A⊕m ' M ⊕ P gives the exact sequence 0 → P → A⊕m → M → 0. Composition the
first homomorphism with the surjective homomorphism A⊕m � P given by the second
projection, gives an exact sequence

A⊕m
f→ A⊕m

g→M → 0. (*)

Applying the functor Hom(·, A) yields 0→ HomA(M,A)
−◦g→ Hom(A⊕m, A)

−◦f→ Hom(A⊕m, A)
i.e. Hom(M,A) is the kernel of − ◦ f . Since localization is an exact functor, for any
p ∈ Spec(A), we get the exact sequence

0→ HomA(M,A)p
−◦gp→ Hom(A⊕m, A)p︸ ︷︷ ︸

'A⊕m
p 'HomAp (A

⊕m
p ,Ap)

−◦fp→ Hom(A⊕m, A)p︸ ︷︷ ︸
'A⊕m

p 'HomAp (A
⊕m
p ,Ap)

i.e. HomA(M,A)p ' ker(− ◦ fp). But tensoring (*) with Ap yields the exact sequence:

A⊕mp
fp→ A⊕mp

gp→ Mp → 0; then applying HomAp(·, Ap) gives the exact sequence 0 →

HomAp(Mp, Ap)
−◦gp→ HomAp(A⊕mp , Ap)

−◦fp→ HomAp(A⊕mp , Ap) i.e. HomAp(Mp, Ap) '
ker(− ◦ fp). As a conclusion, HomA(M,A)p ' HomAp(Mp, Ap). but by assumption

Mp ' Ap; thus HomAp(Mp, Ap) ' HomAp(Ap, Ap) ' Ap. So M−1 ∈ Pic(A).

Moreover the natural homomorphism c : HomA(M,A)⊗M → A, λ⊗m 7→ λ(m) is an

isomorphism: indeed we have an exact sequence 0 → ker(c) → HomA(M,A) ⊗M c→
A → coker(c) → 0 so that tensoring with the flat A-algebra Ap, we get the exact

sequence 0 → ker(c)p → HomA(M,A)p ⊗Ap Mp
cp→ Ap → coker(c)p → 0. But cp :

HomA(M,A)p ⊗Ap Mp︸ ︷︷ ︸
'HomAp (Mp,Ap)⊗ApAp'Ap

→ Ap is an isomorphism (check it, the isomorphism Mp ' Ap

tells that there is a m ∈Mp such that Ap →Mp, a 7→ am is an isomorphism). Thus for
any p ∈ Spec(A), ker(c)p = 0 = coker(c)p i.e. (Proposition 8.24) ker(c) = 0 = coker(c).

2. Let M ⊂ K be an invertible A-submodule and N ⊂ K its inverse i.e. M · N = A. In
particular 1 ∈ A can be written

1 =
k∑
i=1

mini (**)

for some mi ∈ M and ni ∈ N . Then for any m ∈ M , m =
∑k

i=1( mni︸︷︷︸
∈M ·N=A

)mi in K i.e.

m1, . . . ,mk generate M as a A-module. So we have a surjective homomorphism of A-
modules f : Ak �M , (a1, . . . , ak) 7→

∑
i aimi. But using (**), we can also define a ho-

momorphism of A-modules g : M → Ak, m 7→ (mn1, . . . ,mnk) (straightforward to see
that it is a homomorphism). Observe that for m ∈M , f(g(m)) = f((mn1, . . . ,mnk)) =∑k

i=1(mni)mi which, as seen above, is equal to m. So f ◦ g = idM i.e. M is a direct

summand of Ak; so M is a finite projective A-module.
Moreover, for any p ∈ Spec(A)\{(0)}, Ap is a discrete valuation ring and Mp an in-
vertible Ap submodule (by Lemma 14.15) of K; in particular it is fractional so there
is a a ∈ K such that aMp ⊂ Ap is an ideal. But as Ap is a discrete valuation ring,
according to Proposition 13.14, aMp is principal, of the form (t`), for ` ≥ 0 and t ∈ pAp

a uniformizing parameter. So in K, we have Mp ' ( t
`

a ) as Ap-modules and the cyclic
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Ap-module t`

a ·Ap ⊂ K is isomorphic to Ap (look at Ap → t`

a ·Ap, x 7→ x t
`

a ) since it has
no torsion (as submodule of a field). So Mp ' Ap.
For p = (0), by Lemma 14.15, M(0) is an invertible A(0) ' K-submodule of K so
K ⊃M(0) 6= 0 thus M(0) ' K = A(0). As a conclusion M ∈ Pic(A).

Let us prove that this forgetful map respects the composition laws: let M,N ⊂ K be in-
vertible A-submodules. We can look at the homomorphism of A-modules f : M⊗AN →
M · N , m ⊗ n 7→ mn. It is readily seen to be surjective. Now, for a p ∈ Spec(A), we
have the localization fp : Mp⊗ApNp → (M ·N)p; but Mp⊗ApNp ' (m ·Ap)⊗Ap (n ·Ap)
where m ∈ Mp (resp. n ∈ Np) gives the isomorphism Ap ' Mp (resp. Ap ' Np). Since
M ·N is invertible, (M ·N)p ' Ap is a cyclic Ap-module and (M ·N)p 'Mp ·Np, it is
generated by mn. So fp is an isomorphism; in particular ker(fp) = 0.
So ker(f)p = 0 for any p ∈ Spec(A) i.e. ker(f) = 0; thus M⊗AN 'M ·N as A-module.

If an invertible A-submodule M ⊂ K is principal i.e. M = α ·A for some α ∈ K∗, since
the cyclic A-module (α) ⊂ K has no torsion (as a submodule of the field K), we have
A ' α ·A as A-modules, so M ' A as A-modules. But A is the neutral element of the
group Pic(A). So the forgetful map Cl(A)→ Pic(A) is a group homomorphism.

Surjectivity: if M ∈ Pic(A), then for any a ∈ A\{0}, let us prove that ta : M → M ,
m 7→ am is injective: for any p ∈ Spec(A)\{(0)}, Mp ' Ap ·mp ' Ap and since Ap is
an integral domain (and A ↪→ Ap, all because A is an integral domain see for example
Exercise 24(i)), ta,p : Mp ' Ap → Mp ' Ap is injective; thus ker(ta)m = 0 for any
maximal ideal m ∈ Spec(A) i.e. ker(ta) = 0.
As a consequence, the natural homomorphism M →M(0) is injective: if m

1 ∈M(0) then
there is a a ∈ A\{0} such that am = 0 in M . But we have seen that this implies that
m = 0.

Moreover M(0) ' A(0) ' K, so M is isomorphic to a A-submodule of K. The iso-
morphism M(0) ' K is given by the datum of some 0 6= m

a ∈ M(0) (the preimage of
1) i.e. K ' K · ma ' M(0). Let m1, . . . ,mk ∈ M be a set of generators of M as a

A-module; since M(0) is cyclic, we have mi
1 = bi

ai
m
a ∈ M(0) for some bi, ai ∈ A (ai 6= 0).

Consider α = Πk
i=1ai ∈ A; for any i, we have αmi

1 = biΠj 6=iaj · ma , i.e. under the in-
clusion M ↪→ K = M(0), αmi ∈ A so M is isomorphic to a fractional ideal. Now since
for any p ∈ Spec(A), Mp ' Ap (so Mp is in particular cyclic) and the localization is
compatible with the inclusion M ↪→ K ' M(0) i.e. M ↪→ Mp ↪→ M(0) (successive lo-
calizations with respect to (0) ⊂ p, see Exercise 28), Mp is invertible. So according to
Lemma 14.15, M is isomorphic to an invertible A-submodule of K; proving surjectivity.

Injectivity: Assume M ∈ J(A) is sent to A by the forgetful map i.e. M ' A as A-
module, then M is cyclic (take the preimage of 1 ∈ A), generated by some m ∈M ⊂ K
i.e. M ' m ·A ' A. So M ∈ P (A); proving injectivity.

Exercise 54. (Class number, 5 points)

1. For Q(i), OK ' Z[i]. It is sufficient to prove that OK is a principal ideal domain. Let us
define N : Q[i]→ R≥0, by the usual euclidean norm of C i.e. a+ ib 7→ |a+ ib|2 = a2+b2.
Then it is an absolute value in the sense of Exercise 52. Let us prove that there is a
Euclidean division in Q(i) i.e. given z, z′ ∈ Z(i) with z′ 6= 0, there are q ∈ Z(i) and
r ∈ Z(i) ∩ {N(·) < N(z′)} such that z = qz′ + r: if N(z) < N(z′) take q = 0 and
r = z. Otherwise, consider z

z′ = a + ib ∈ C which by direct calculation sits in Q(i).

Let us consider the closest integers k, ` ∈ Z to respectively a and b i.e. |k − a| ≤ 1
2 and
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|`− b| ≤ 1
2 . Then

z

z′
= a+ ib

= (a− k) + i(b− `) + (k + i`)

so that z = (k + i`)z′ + [(a − k) + i(b − `)]z′. Since z, k + i`, z′ ∈ Z[i], we get that
[(a− k) + i(b− `)]z′ = z − (k + i`)z′ ∈ Z[i]; moreover

N([(a− k) + i(b− `)]z′) = N(z′)N((a− k) + i(b− `)) = N(z′)[(a− k)2 + (b− `)2]

≤ N(z′)
1

2
< N(z′)

proving the statement.
Let M ⊂ Q(i) be an invertible Z[i]-submodule. Let 0 6= a ∈ Q(i) such that aM ⊂ Z[i],
the non-empty set {N(x+ iy) = x2 + y2, 0 6= x+ iy ∈ aM} ⊂ N has a minimal element
d > 0; let x0 + iy0 ∈ aM such that N(x0 + iy0) = d. For any z ∈ aM ⊂ Z[i], there
are q, r ∈ Z[i] such that z = q(x0 + iy0) + r with N(r) < N(x0 + iy0) = d. But since
aM is an ideal q(x0 + iy0) ∈ aM and thus r = z − q(x0 + iy0) ∈ aM ; but definition
of d, we must have r = 0 i.e. z ∈ (x0 + iy0); as a conclusion aM = (x0 + iy0). So

M = (x0+iy0a ) ⊂ Q(i) is principal. So hQ(i) = 1.

2. For Q(
√
−2), OK ' Z[

√
−2]. Let us define N : Q[

√
−2]→ R≥0 by a+

√
−2b 7→ a2+2b2.

If N(a+
√
−2b) = 0 then since a2 ≥ 0 and b2 ≥ 0, we have a = 0 = b.

A direct calculation shows that N is mutlplicative i.e.

N((a+
√
−2b)(c+

√
−2d)) = N(ac− 2bd+

√
−2(ad+ bc))

= (ac− 2bd)2 + 2(ad+ bc)2

= (ac)2 − 4abcd+ 4(bd)2 + 2(ad)2 + 4abcd+ 2(bc)2

= (a2 + 2b2)(c2 + 2d2)

= N(a+
√
−2b)N(c+

√
−2d)

for any pair a +
√
−2b, c +

√
−2d ∈ Z[

√
−2] and it is not difficult to check the other

property to show that N is an absolute value in the sense of Exercise 52.

Let us show that there is an Euclidean division in Z[
√
−2], the proof is the same as

above: for any z, z′ ∈ Z[
√
−2] with z′ 6= 0, there is a pair (q, r) ∈ Z[

√
−2], such that

z = qz′ + r and N(r) < N(z′).
If N(z) < N(z′) we are done (q = 0, r = z). Otherwise look at z

z′ which is in QQ(
√
−2)

i.e. can be written a+
√
−2b, with a, b ∈ Q. Let k, ` ∈ Z the closest integers to resp. a

and b i.e. |a−k| ≤ 1
2 and |b− `| ≤ 1

2 . Then z = (k+
√
−2`)z′+ [(a−k) +

√
−2(b− `)]z′;

z ∈ Z[
√
−2], z′ ∈ Z[

√
−2], k+

√
−2` ∈ Z[

√
−2], so that [(a−k)+

√
−2(b−`)]z′ ∈ Z[

√
−2]

and

N([(a− k) +
√
−2(b− `)]z′) = N(z′)N((a− k) +

√
−2(b− `)) = N(z′)[(a− k)2 + 2(b− `)2]

≤ N(z′)(
1

4
+

1

2
)

= N(z′)(
3

4
)

< N(z′)

proving Euclidean division.
Conclude as done in the previous question.
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