
A NOTE ON SUPER-EXPONENTIAL ORBIT GROWTH IN REEB

DYNAMICS

Abstract. The purpose of this note is to prove the following statement: given a closed con-
tact manifold (Y, ξ) of dimension at least 3 and any sequence of natural numbers n1, n2, n3, . . . ,
there exists a non-degenerate contact form ξ = kerα with the property that the number of
closed Reeb orbits of length at most k is at least nk. More informally, one can always find a
contact form so that the orbit growth is as fast as one likes.

The key construction in the proof was explained to me by Dmitry Turaev. The result is
plausibly known to certain experts; however, it appears to be unknown to sufficiently many
experts that I thought it could be useful to write it down.

This note ends with a number of questions about super-exponential orbit growth in Reeb
dynamics.

Notation. Fix polar coordinates (r, θ) 7→ (r cos 2πθ, r sin 2πθ). We let Dr ⊂ R2 denote the
closed disk of radius r > 0; when r = 1 we shall simply write D instead of D1. For n ≥ 1 and
r = (r1, . . . , rn), we let Pnr = Dr1 × · · · ×Drn ⊂ R2n be the polydisk of (multi)radius r; when
r = (1, . . . , 1) we shall simply write Pn.

Given a symplectic manifold M and a Hamiltonian H : S1 ×M → R, we let φH be the
time-1 map. More generally, for k ≥ 1, we let φkH = φkH be the time-k map. Recall that H is

said to be strongly non-degenerate if the fixed points of φk are non-degenerate for all k ≥ 1.
If U, V ⊂ R are intervals, it will be convenient to abuse notation by writing expressions such

as {U ≤ r ≤ V } to mean “the subset of real numbers r such that there exists u ∈ U, v ∈ V
with u ≤ r ≤ v.” Similarly {U < r < V } is the subset of real numbers r such that for all
u ∈ U, v ∈ V we have u < r < v, etc.
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1. The result

1.1. Statement and summary of the proof. Let (Y, ξ) be a closed, connected contact
manifold of dimension 2n+1 ≥ 3. Fix an increasing sequence of natural numbers n1, n2, n3, . . . .
The goal of this note is to prove1 the following:

Theorem 1. There exists a non-degenerate contact form ξ = kerα such that the number of
closed Reeb orbits of length at most k is at least nk.

Here is a sketch of the proof. The first and most important step is to construct a (strongly
non-degenerate) Hamiltonian diffeomorphism of the polydisk Pn with the property that the
number of orbits of the first k iterates grows faster than the sequence {nk}. The idea of the

1The proof of one crucial lemma (Lemma 4) is only sketched, although it presumably can be extracted from
the literature.
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construction was explained to me by Dmitry Turaev.2 The second and final step is to fix an
open book decomposition for (Y, ξ) (which always exists) and to implant (the contact mapping
torus of) our previously constructed Hamiltonian diffeomorphism of Pn into the open book.

1.2. A Hamiltonian diffeomorphism of the disk with fast orbit growth. We wish to
prove:

Proposition 2. There exists a (time-independent) Hamiltonian H : D → R supported in the
interior of D with the property that

(1.1)
∑

1≤`≤k
#orb(φ`H) ≥ nk,

and H is strongly non-degenerate on D7/8 ⊂ D.

The proof is conceptually quite simple but tedious to write down. To set the stage, let
{Ui}∞i=1 be a collection of open subintervals of [1/4, 3/4] with pairwise disjoint closures. We also
want to assume that Ui+1 < Ui.

3 We let Ai ⊂ D be the annulus Ui×S1 = {(r, θ) | r ∈ Ui} ⊂ D.
In an ideal world, we would now implement the following argument: construct a Hamiltonian

such that the k-th iterate has nk fixed points in the annulus Ak. Do this by first constructing
a Hamiltonian whose k-th iterate is the identity on Ak. Then iteratively perturb it to have nk
fixed points on Ak. The problem with this argument is that we that need to perturb infinitely
many times (once for each k), so it’s not clear that this perturbation process will converge
to a smooth function.4 To ensure that the process does converge, we need to carefully keep
track of the size of the perturbations. For this reason, the construction we actually carry out
is slightly different from the one we have just sketched.5

We now explain the details.
Fix a smooth function f : [0, 1]→ R≥0 with the following properties:

• f vanishes in a neighborhood of {0, 1}.
• if k is divisible by 3, then f is constant on Uk with value pk/qk, where pk, qk are

relatively prime positive integers and qk > qk−1.
• if k is not divisible by 3, then f is constant on Uk with value in R≥0 \Q.
• f is constant with value π on [1/8, 1/4] ∪ [3/4, 7/8].6

Lemma 3. Such a function exists.

Proof. Let χ : [0, 1]→ R≥0 be a non-negative function which vanishes near {0, 1} and takes the
value π on [1/8, 7/8]. We iteratively construct a sequence of functions fk : (1/4, 3/4) → R≥0,
along with a sequence of integer pairs (pk, qk) ∈ N2, having the following properties:

• the support of fk is an interval. This interval is disjoint from supp(fi) for all i < k,
and is also disjoint from [1/8, 1/4] ∪ [3/4, 7/8].
• the qk are prime and qk > qk−1
• if k is divisible by 3, then fk + π is constant on Uk with value pk/qk. Otherwise fk + π

is constant on Uk with value an arbitrary positive irrational.
• ‖fk‖k := supi≤k |∂ifk| ≤ 2−k

2All misunderstandings are mine alone
3Recall that this abuse of notation just means that if x ∈ Ui and y ∈ Ui+1 then y < x). Concretely, one can

take e.g. Ui = (1/22i + 1/4, 1/22i−1 + 1/4).
4We also need to make sure that no additional degenerate orbits are created.
5In particular, it involves more indices.
6Of course, any other positive irrational would do equally well.
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We leave to the reader to check that such a sequence exists.
Now set f := χ+

∑
k fk. Note that f obviously smooth away from 1/4. To check smoothness

at the point 1/4, note that for any ` ∈ N and any ε > 0 there is some δ > 0 so that
|∂`fi| < ε on [1/4, 1/4 + δ] for all i ≥ `. Since the fi have disjoint support, it follows that
limδ→0 ∂

kf(1/4+δ) = 0. Having established that f is smooth, it satisfies the desired properties
by construction. �

We now define a symplectomorphism of the unit disk:

ψ0 : D → D

(r, θ) 7→ (r, θ + f(r))

Observe that ψqk0 is the identity on the annulus Ak. In the annuli [1/8, 1/4] × S1 and
[3/4, 7/8]× S1, ψ0 is an irrational rotation.

Let H0 be the Hamiltonian inducing ψ0. Our plan is to construct a perturbation H0  H
so that

• φH fixes D7/8 setwise.

• φkH is strongly non-degenerate on D7/8

• if k is divisible by 3, then φqkH has at least nq(k+3)
critical points the annulus Ak.

7

To construct the perturbation, inductively define a sequence of functions hk : D → R with
the following properties:

• hk is supported in the annulus between A3k+1 and A3k−1.
8

• ‖hk‖k < 2−k.
• H0 +

∑
i≤k hi is strongly non-degenerate on {(r, θ) | r > A3k+1}.

• the time qk flow of H + hk has at least nq(k+3)
fixed points.

Lemma 4. Such hk exists.

Proof sketch. Pick a Morse function hk which has nq(k+3)
critical points in A3k, whose support

is contained between A3k+1 and A3k−1 and disjoint from that of the hi for i < k, and such
that ‖hk‖k < 2−k. We claim (but do not give a proof) that if this Morse function is chosen
generically, then the strong non-degeneracy condition will also hold. �

We now consider the Hamiltonian H0 +
∑

k hk. Due to the assumption ‖hk‖k < 2−k,
the smoothness of this Hamiltonian can be checked as in Lemma 3. By construction, it is
strongly non-degenerate on the annulus {1/8 < r ≤ U2}×S1. Introduce a further perturbation
supported in {U2 ≤ r < 7/8}×S1 so that it becomes non-degenerate in {1/8 < r < 7/8}×S1.
Finally, introduce a final perturbation supported on D1/4 to obtain the desired Hamiltonian.

This completes the proof of Proposition 2.

1.3. Open books. Given a compactly-supported exact symplectomorphism of a Liouville
domain, we can construct a contact manifold by taking the associated open book. We briefly
review this here:

Construction 5. Let (M,λ) be a Liouville domain with contact boundary (∂M, λ) and collar
((−1, 0] × ∂M, etλ). Let ϕ : M → M be a symplectomorphism which is the identity on the
collar and satisfies ϕ∗λ − λ = dU for some U : M → R>0. We let C be the value of U near

7If we merely required the time qk flow to have nqk fixed points, the desired inequality orb(φ`
H) ≥ n` would

only hold when ` = qk and k divisible by 3.
8More formally, I mean that if (r0, θ0) is in the support of hk, then there exists s+ ∈ U4k+1, s

− ∈ U4k−1 such
that s+ ≤ r0 ≤ s−).
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∂∞M . Consider the contact mapping torus R×M/(t, x) ∼ (t−U(x), ϕ(x)). Then the contact
form dt+ λ descends to the quotient. Along the collar, it looks like (R/CZ× ∂M, dt+ λ), so
we can glue on a torus D2 × ∂∞Y exactly as in [6, p. 153] or [9]. 9

Note that Construction 5 outputs a contact manifold along with a contact form (not merely
a contact structure). The Reeb vector field on R×M/Z is ∂t.

We have the following well-known fact:

Fact 6 (Giroux). Every contact manifold (Y, ξ) arises from Construction 5, up to contact
isotopy.

We now complete the proof of the main theorem.
By Grey stability, the following operations leave the contact manifold unchanged up to

contact isotopy:

(i) changing ϕ by an exact symplectomorphism isotopic to the identity;
(ii) replacing M by M ∪ [0, N ]× ∂M and extending ϕ to be the identity.

By Fact 6, we can assume that (Y, ξ) arises by applying Construction 5 to some Weinstein
domain (W,λ) along with an exact symplectomorphism ϕ. We can also assume by by Grey
stability that ϕ is constant on some collar ((−1, 0]× ∂M, etλ), and that the standard polydisk
Pn admits a symplectic embedding into this collar.10

Let H : Pn → R be a compactly-supported, strongly non-degenerate Hamiltonian on the
polydisk satisfying (1.1); the existence of H follows immediately from Proposition 2 by taking
products. By construction, φH is compactly supported so extends to an exact symplectomor-
phism of M isotopic to the identity. Hence the open books associated to φ ◦ φH and φ are the
same up to contact isotopy and both give rise to (Y, ξ).

The resulting contact form on (Y, ξ) is possibly degenerate. However, inside ι(D7/8 × · · · ×
D7/8) all orbits are non-degenerate, since φH is strongly non-degenerate.11 Finally, we simply
perturb the contact form in the complement of ι(D7/8 × · · · ×D7/8) using e.g. [1, Thm. 13].

Let T > 0 be large enough so that the time T Reeb flow rotates the page {0} ×M past
itself.12 Up to possibly rescaling the contact form, we can assume T ≤ 1. Then it follows from
(1.1) that

(1.2) #{closed Reeb orbits of length at most k} ≥
∑

1≤`≤k
#orb(φ`H) ≥ nk

This completes the proof of Theorem 1.

2. Context and questions

As far as I can tell, there is almost nothing in the literature about super-exponential growth
in Reeb dynamics.13 I would be great to have a better picture of how prevalent this type of
behavior is. It would also be interesting to understand the mechanisms which cause super-
exponential growth to appear. Here is a cautionary remark followed by some questions:

9Strictly speaking, these constructions may require one to modify the contact form on the part of the collar;
e.g. [9] modifies the form on the subcollar [1/2, 1]× ∂M × S1.

10A minor technical point: for consistency with [9], we will assume that the embedding lands in (−1,−1/2)×
∂M × S1.

11Here we use that a Reeb orbit in the contact mapping torus is non-degenerate iff the corresponding
Hamiltonian fixed point is non-degenerate.

12I mean that for all x ∈ {0} ×M , there exists y ∈ {0} ×M so that ψs(x) = y for some 0 < s ≤ T .
13There is slightly more, but still not much, in the context of Hamiltonian dynamics on symplectic manifolds.
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Remark 7. A useful tool for studying Reeb dynamics is the growth rate of Floer theoretic
invariants, such as symplectic cohomology, contact homology, wrapped Floer cohomology, etc.
However, it was observed in [3] that symplectic and wrapped Floer cohomology grow at most
exponentially (presumably similar behavior also holds for the growth rate of other Floer-
theoretic invariants). Thus other tools are needed to probe superexponential phenomena.

Some questions:

• Is there a Legendrian version of Theorem 1? More precisely, suppose that Λ is a closed
Legendrian in a contact manifold (Y, ξ), prove that there exists a contact form such
that the number of chords grows faster than some given sequence n1, n2, . . . . Possibly
relevant: Honda and Huang [7] proved that any such Legendrian can be placed in the
page of an open book.
• Can one force super-exponential growth, e.g. via the existence of an orbit satisfying

some conditions? (Note that the construction described above is essentially local,
since we just implanted the mapping torus of a polydisk having super-exponential
dynamics. Perhaps one can always implant such a local model around a closed orbit,
under appropriate assumptions?)
• Prove/disprove, for your favorite k ∈ [0,∞]: super-exponential growth is Ck-generic.

Remark 8. For contact 3-manifolds, the remarkable work of Colin, Dehornoy, Hryniewicz,
Rechtman [5] shows that positive entropy is C∞-generic – hence exponential orbit
growth is also C∞-generic by [8]. It would be interesting to combine the methods of
[4, 5] with known results about super-exponential growth of Hamiltonian diffeomor-
phisms of surfaces to study super-exponential orbit growth on 3-manifolds.

• A weaker notion than genericity is density. Prove/disprove, for your favorite k ∈ [0,∞]:
the space of contact forms with super-exponential growth is dense in the Ck-topology.
(To this end, it seems that the local model constructed in Step 1 can be made Ck close
to the mapping torus of the polydisk with trivial monodromy).
• Connections to KAM theory? In the case of Hamiltonian dynamics on surfaces, [2]

describes a mechanism for super-exponential orbit growth based on KAM theory. This
mechanism appears to be a special case of a more general mechanism described to me
by Semon Rezchikov. It would be interesting to me if one could make this mechanism
precise in the contact setting.
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