- 1. Write down (at least) five distinct classes of examples of Lagrangian submanifolds.
- 2. Let Q be a manifold and let $\eta \in \Omega^1(Q)$ be a 1-form. Check that graph $\eta \subset T^*Q$ is Lagrangian iff η is closed, and is an exact Lagrangian iff η is exact.
- 3. Let $M = (M, \lambda)$ be an exact symplectic manifold. Prove or give a counterexample:
 - (i) Symplectic isotopies (i.e. isotopies generated by a possibly timedependent symplectic vector field) preserve exact Lagrangians.
 - (ii) Hamiltonian isotopies (i.e. isotopies generated by a possibly timedependent Hamiltonian vector field) preserve exact Lagrangians.
- 4. Prove or disprove: any symplectic manifold contains a closed Lagrangian submanifold.
- 5. Review the argument from class that an exact Lagrangian submanifold cannot bound a disk with positive symplectic area. In particular, it cannot bound a *J*-holomorphic disk for any *J*-compatible with the symplectic form.
 - Remark. In contrast to the previous exercise, if (M, λ) is an exact symplectic manifold, it can happen that it contains no closed exact Lagrangian submanifolds. One example, which goes back to Gromov, is $(\mathbb{R}^{2n}, \lambda = \sum_i x_i dy_i y_i dx_i$. The idea of the proof is to argue that such a Lagrangian submanifold, if it existed, would bound a holomorphic disk, which is impossible since the Lagrangian is exact.
- 6. Recall that the Nearby Lagrangian conjecture says that every closed exact Lagrangian submanifold of T^*Q is Hamiltonian isotopic to the zero section. Prove the Nearby Lagrangian conjecture for T^*S^1 .
- 7. Prove that any closed Lagrangian in $(\mathbb{R}^{2n}, \omega_0)$ has vanishing Euler characteristic. (I stated this in class and sketched the proof your task is to got through the argument and fill in the details).