Understanding Natural Language Mathematical Proofs

Peter Koepke, University of Bonn, Germany

CUNY Logic Workshop
New York City, September 4, 2009

unive rsitétbonnl

Contents

- Natural language proofs and formal proofs

- Computer-supported formal mathematics: Automath, MIZAR
- Linguistics of mathematical language

- What is a mathematical proof?

- The Naproche project

- The Naproche system

- Proof representation structures

- Examples

- Results

- General issues

Natural language proofs and formal proofs

(Gl) Forall z,y,z: (roy)oz=zo(yoz).
(G2) Forallz: zoe=ux.
(G3) For every z there is a i such that zoy=-e.

1.1 Theorem on the Existence of a Left Inverse. For every r there
is ay such that yox =e.

Proof. Let = be chosen arbitrarily. By (G3) we have for suitable y,
(1) Toy=e.

Again from (G3) we get, for this y, an element z such that

(2) yoz=e.

We can now argue as follows:

yez=(yez)oe (by (G2))
=(yez)o(yoz) (from (2))
=yo(zo(yez)) (by(G1))
=yo((zoy)oz) (by(Gl))

=yo(eoz) (from (1))
—(yoe)oz (by (G1))
=yoz (by (G2))
=e (from (2)).

Since r was arbitrary, we conclude that for every z there is a y such that
2
yoxr=e. O

Peter Koepke: Understanding Natural Language Mathematical Proofs, CUNY Logic Workshop, September 2009

a formal proof is in general considerably longer than the corresponding
mathematical proof. As an example we give here a formal proof of the

theorem

{existence of a left inverse) from the group axioms

Yo
#1
Yz

i i

Yridyyoz=e

VrVy¥z(zoy)oz=zo(yoz),
VYzzoe=gz,
Yziyzoy=e.

The reader should compare the formal proof below with the mathematical
proof of the same theorem in I.1.1. The “chain of equations” given there
corresponds to the underlined formulas in the derivation up to line 23. For
simplicity we shall write “zy” instead of “zoy” and we put I' := gy @1 2.

LB
2,

e=yz
yz=e
yz=e

=
Lo I Mo e [l e

yz=e

Yrre==zx
(yz)e =yz

yr = (yz)e
yr = (yz)(yz)
e=yz

yz = (y=)(yz)

(Assm)

5.5(al) applied to
1. with ¢ = yz
5.3(a) appl. to 2.
(Sub) applied to 3.
5.3(a) and (Ant)
(Ant) and (Ch)
appl. to 5. and 4,

Yavy¥z(zy)z = x(yz) (Assm)

8. T yz=e

9. yz=e

10. T' yz=e

1. T yz=e

12. T yz=-ez(yz) = (zy)z
13. T yz=e

4. I' yz=

15. " yz=e

16. I' yz=ezy=e
17T yz=ezy=e

18. ' yz=ezxzy=e

19. T yz=ezy=e

20. ' yz=exy=eye=y
2. T yz=ezxzy=e

22. T yz=ezxy=e

23. ' zy=eyz=e

24. T zy=eyz=e

25. I' zy=e3Jzyz=e
26. ' zy=eVydzyz=e
27. zy=e

28. zy=e

29, Jyzy=e

30. Yz3yzy=e

3L 2

32. T zy=e

33. T Vziyzy=e

34.

r

YuYo(yu)v = y(uv)
Yw(yr)w = y(zw)
(yx)(yz) = p(x(y2))
yz = yla(y2))

yz = y((zy)2)
(zy)z = z(y=)

z(yz) = (zy)z
vz = y((zy)2)
yz = ylez)

(ye)z = ylez)

ylez) = (ye)z
yz = (ye)z

yr =yz
ye=y

Jyyr=e
Jyyz=e
Jyyr=e
TYy=e
Jzzz=e
Jzzz=e
Jzzz=e
Yydzyz=e
Jyyr=e

Jyyz=e

Vzdyyr=e

5.5(al) applied to

7. witht=y
5.5(al) applied to
8. witht ==z
5.5(al) applied to
9. with t = yz
5.3(b) applied to 6.
and 10.

(Sub) appl. to 11.
5.5(a2) appl. three

times to 7.
5.3(a) appl. to 13.

(Ch) applied to 14.
and 12.

(Sub) appl. to 15.
with 5.5(al) from
o as for 10.
5.3(a) appl. to 17.
5.3(b) applied to

16. and 18.
(Sub) appl. to 19.

5.5(al) applied to
1. with t = y and
(Ant)

(Ch) applied to 21.

and 20.

(Sub) and (Ant)
applied to 22.

(38) applied to 23.
(3A) applied to 24.
5.5(b3) appl. to 25.
(Assm)

(3S) applied to 27.
(3A) applied to 28.
5.5(b3) appl. to 29.
5.5(b2) appl. to 30.
(Ant),(Ch)applied
to 31. and 26.
(3A) and 5.5(b3)
applied to 32.
(Ant) and 5.5(b4)
applied to 33.

Formal proofs
N. Bourbaki

If formalized mathematics were as simple as the game of chess, then once our chosen formal-
ized language had been described there would remain only the task of writing out our proofs in
this language, [...] But the matter is far from being as simple as that, and no great experience
iS necessary to perceive that such a project is absolutely unrealizable: the tiniest proof at the
beginnings of the Theory of Sets would already require several hundreds of signs for its com-
plete formalization. [...] formalized mathematics cannot in practice be written down in full, [...]
We shall therefore very quickly abandon formalized mathematics, [...]

Saunders Mac Lane

As to precision, we have now stated an absolute standard of rigor: A mathematical proof is rig-
orous when it is (or could be) written out in the first-order predicate language L(€) as a
sequence of inferences from the axioms ZFC, each inference made according to one of the
stated rules. [...] When a proof is in doubt, its repair is usually a partial approximation to the
fully formal version.

Computer-supported formal proofs
J. McCarthy:

Checking mathematical proofs is potentially one of the most interesting and useful applications
of automatic computers. Computers can check not only the proofs of new mathematical theo-
rems but also proofs that complex engineering systems and computer programs meet their
specifications. Proofs to be checked by computer may be briefer and easier to write than the
informal proofs acceptable to mathematicians. This is because the computer can be asked to
do much more work to check each step than a human is willing to do, and this permits longer
and fewer steps. . . . The combination of proof-checking techniques with proof-finding heuris-
tics will permit mathematicians to try out ideas for proofs that are still quite vague and may
speed up mathematical research.

McCarthy, J. "Computer Programs for Checking Mathematical Proofs," Proceedings of the Symposium in Pure Math, Recur-
sive Function Theory,Volume V, pages 219-228, AMS, Providence, RI, 1962.

Peter Koepke: Understanding Natural Language Mathematical Proofs, CUNY Logic Workshop, September 2009

Automatic proof checker
Automath (~1967)

N.G. de Bruijn

From the Automath formalization of E. Landau, Grundlagen der Analysis, 1930
by L. S. van Benthem Jutting, 1979:

LiTdle L UL VLU LULEVLIUY DR VIV 240 1OV GUAZ UL UL LUV LU L L

Buchstabe iiblich auf Grund der

Definition 73:
i=[0, 1].

Satz 300:
11 = —1.

Beweis:

ii=10,1][0,1]=[0-0-1-1,0-141-0]
=[-1,0] = —1.

Satz 301: Fiir reelle uy, us ist

w1 + u2i = [ug, us].

ic:=pli(0,1rl) :complex

+10300

tl:=tsisl2a(0,1rl,0,1rl) :is(ts(ic,ic),pli(mn"r" (ts"xr"(0,0),ts"r" (1rl,1rl)),pl"r" (ts"r" (0,1
ts"r"(1rl,0))))

t2:=tris(real,mn"r" (ts"r"(0,0),ts"r"(lrl,1rl)), mO"r" (ts"r" (1lrl,1rl)), mO"r" (1rl),pl0l (ts""
mO"r" (ts"r" (1rl,1rl)),ts01(0,0, refis(real,0))),ismO"r" (ts"r" (1rl,1rl),1rl,satz195(1rl))) :
is"r" (mn"r" (ts"r"(0,0),ts"r" (1rl,1rl)), m0O"r" (1rl))

t3:=tris(real,pl"r" (ts"r"(0,1rl),ts"r"(1rl1,0)),ts"r"(1r1,0),0,pl01(ts"r"(0,1rl),ts"r" (1rl,
ts01(0,1rl,refis(real,0))),ts02(1rl,0,refis(real,0))) :is"r" (p1l"r" (ts"r"(0,1rl),ts"r"(1rl,0
td:=isrecx1l2 (mn"r" (ts"r" (0,0),ts"r" (1rl,1rl)), m0"r" (1rl),pl"x" (ts"r" (0,1rl),
ts"r"(1r1,0)),0,t2,t3) :is(pli (mn"r" (ts"r" (0,0),ts"r" (1rl,1rl)),

pl"r" (ts"r" (0,1rl),ts"r" (1rl,0))),cofrl (mO"r" (1xrl)))
t5:=satz298](1lrl) :is(cofrl (mO0"r" (1rl)),mO(1c))

-10300

satz2300:=tr3is(cx,ts(ic,ic),pli (mn"r" (ts"r" (0,0),ts"r" (1rl,1rl)),

pl"r" (ts"r" (0, 1rl),ts"r" (1rl,0))),cofrl (mO"r" (1rl)), m0O(1lc),tl".10300",t4".10300",t5".10300
is(ts(ic,ic),mO(1lc))

The MIZAR system (1973 -) of Andrzej Trybulec

Language modeled after
“mathematical vernacular”

Natural deduction style
Automatic proof checker
Large mathematical library

Journal
Formalized Mathematics

www.mizar.org

MIZAR example in GOEDELCP . MIZ:

begin :: Goedel’s Completeness Theorem,
Ebb et al, Chapter V, Completeness The-
orem 4.1

theorem
still_not-bound_in X is finite & X |= p
implies X |- p
proof
assume Al: still_not-bound_in X is
finite & X |= p;
now assume not X |- p; then
reconsider CX = X \/ {’not’ p} as Con-

sistent Subset of CQC-WFF
by HENMODEL: 9;

A2: for A,J,v holds not J,v |= CX
proof
let A,J,v;
now assume A3: J,v |= X \/ {’not’
Pl

now let g such that A4: g in X;
X ¢c= X \/ {'not’ p} by
XBOOLE_1:7;
hence J,v |= g by

A3,A4,CALCUL_1l:def 11;
end; then
A5: J,v |= X by CALCUL_1l:def 11;
now let g such that A6: g in
{"not” p};
{"not’” p} c= X \/ {’not’ p} by
XBOOLE_1:7;

hence J,v |= g by

A3,A6,CALCUL_1l:def 11;

end; then
A7: J,v |= {’not’ p} by CALCUL_1l:def
11;

"not’ p in {’not’ p} by TARSKI:def
1; then

J,v |= "not’ p by A7,CALCUL_1:def
11; then

J,v |= X & not J,v |= p by

A5, VALUAT_1:28;
hence contradiction by
Al,CALCUL_1l:def 12;
end;
hence not J,v |= CX;

end; still_not-bound_in CX is finite by

still_not-bound_in 'not’ p is finite Th27; then
by CQC_SIM1:20; then consider CZ,JH1 such that A8: JH1l,valH
still_not-bound_in {’not’ p} is finite |= CX by Th34;
by Th26; then thus contradiction by A2,A8;
still not-bound in X \/ end;
still_not-bound in {’not’ p} is finite hence thesis;

by Al,FINSET_1:14; then end;

Mathematical statements

“1 divides every integer.” «—— “Fido chases every cat.”

Linguistic analysis

“Fido chases every cat.”

S: all(Y,cat(Y),chases(fido,Y))

NP: fido VP: all(Y,cat(Y),chases(X,Y))
| V: chas@ NP: aIQcat(Y),...)
| l D: aII(...{..,...) hat(Y)
Fido cha‘ses ev‘ery CE‘I’[.

VY (cat(Y') — chases(fido, Y)).

Linguistic analysis

“1 divides every integer.”

S: all(Y,integer(Y),divides(1,Y))
NP: 1 VP: all(Y,integer(Y),divides(X,Y))

| V:divides(X,Y) NP: all(Y,integer(Y),...)

| SN

| | D: all(...,...,...) N:integer(Y)

1 divides every integer.

VY (integer(Y) — 1|Y).

Mathematical statements

— are (extended) natural language statements

— may contain formal terms and formulas (“semiformal language”)

— have a particular typography

— ambiguity is avoided, e.g. by using variables or specifically defined notions

— have a first-order meaning (formal semantics)

— can be parsed by standard NLP techniques (Natural Language Processing)

Mathematical texts
— consist of mathematical statements
— possess large-scale structures: definition / theorem / proof
— new notions can be defined
— assumptions can be introduced and retracted: “assume ...”, “assume instead ...”

— proof steps have to be justified from earlier statements (temporal character)

— justifications may contain explicit long-range references to earlier statements

What is a mathematical proof?
— description of the/some mathematical “reality”?
— argumentative text about the/some mathematical “reality”?
— argumentative text within some system of initial assumptions (axioms)?
— in part a formal derivation within some calculus?
— abbreviation for some (long) formal derivation?
— recipe for building a formal derivation if required?

— aformal derivation in some very rich formal system (Montague: English as a formal lan-
guage)?

Ramifications of the proof-question

— Mathematical logic (claims to) model(s) the axiomatic method of modern mathematics.
Mathematical logic is mathematically successful but it does not really reflect the actual
languages and arguments of mathematicians.

— The gap between natural and formal mathematical proofs is a topic in the philosophy of
mathematics.

— The language of mathematics as an expert language stands out by the fact that its
intended semantics is in principle fully captured by a translation into first-order formulas.
This makes the language of mathematics a paradigm for studies in theoretical and com-
putational linguistics.

— Answering the proof-question may have practical applications for mathematical
authoring and tutoring tools.

The Naproche project: Natural language proof checking

— studies the syntax and semantics of the language of proofs, emphasizing natural lan-
guage and natural argumentation aspects

— models natural language proofs using computer-supported methods of formal linguistics
and formal logic

— develops a mathematical authoring system with a LATgX-quality graphical interface

— joint work with Bernhard Schroder, linguistics, and two graduate students; Bonn, Essen,
Cologne

— www.naproche.net

The Naproche project: Natural language proof checking

— To devise a strictly formal system for mathematics, implemented by computer, whose
input language is an extensive part of the common mathematical language, and whose
proof style is close to proof styles found in the mathematical literature.

— The ... project Naproche aims at constructing a system which accepts a controlled but
rich subset of ordinary mathematical language including TeX-style typeset formulas and
transforms them into formal statements. We adapt linguistic techniques to allow for
common grammatical constructs and to extract mathematically relevant implicit informa-
tion about hypotheses and conclusions. Combined with proof checking software we
obtain Natural language proof checkers ...

Layers of the Naproche system:

| Standard or web editor; or WYSIWYG mathematics editor (TEXacs)
TeX-style input text

| Natural language processing (NLP)
Proof representation structure (PRS)

| First-order translation
First-order logic format (TPTP)

| Proof checker or automatic theorem prover (ATP)

“Accepted’/“Not accepted”, with error messages

E. Landau, Grundlagen der Analysis, 1930: Theorem 30

Theorem 30 (Distributive Law) :
z(y + z) ==zy + xz.
Preliminary Remark: The formula
(y+z2)e=yx + 2x
which results from Theorem 30 and Theorem 29, and similar
analogues later on, need not be specifically formulated as theorems,
nor even be set down.
Proof: Fix z and v, and let I be the set of all z for which the
assertion holds true,
I) z(y+1)=zxy=azytz=zy+z-1;
1 belongs to M.
II) If z belongs to 9, then
z(y+2) = zy + 7z,
hence
z(y+7) = z(y+2)) = z(y+2)+z = (2y+2z2) +2
= zy+(z3+32) = zy+ 27,
so that 2z’ belongs to M.
Therefore, the assertion always holds.

Theorem 30: For all =, y, 2, 2+ (y + 2) = (z*y) + (z * z).

Proof:

Fixz,y. zx(y+1l)=x+y =xry+z=(z+y)+ (z+1).

Now suppose x# (y +2) = (z*y) + (z+z). Then v (y+2') =z =+ ((y + 2)) =
(Tx(yt+z))tz=(z+y)t{z*z))tax=(z+y)+((z*2)+z)=(Try)+ (z*=)
Thus by induetion, for all 2 2% (y 4+ 2) = (z* y) + (z+ z). Qed.

Components: input

— LATEeX-like input language: use the mathematical typesetting facilities of TEX / LATEX; or
a mathematical XML-format; or the mathematical WYSIWYG editor TEXjacs

— input corresponds to typeset mathematical texts

— web interface under www.naproche.net

Components: linguistic analysis

— standard analysis by a Prolog Definite Clause Grammar (DCG), the grammar defines a
controlled natural language for mathematics (CNL), i.e. a formal subset of the common
mathematical language

— translation into a formal semantics (without ambiguity)

— formal semantics: proof representation structures (PRS), extending discourse represen-
tation structures (DRS)

— DRS: tool for anaphor resolution (Let z be a set. It is ...) and for interpretation of natural
language quantification (Every prime number is positive; a prime number is positive)

— PRS, moreover, represent global text structurings: Theorem / Proof, introductions and
retractions of assumptions

Proof representation structures

> Every man dances.

x1 x2

|
|
| dance (x2)

| agent (x2,x1)
|

|

event (x2)

|

|

|

. |

| |

| | man(x1l) | ==>
. |

|

|

|

Proof representation structures

> A square number 1s positive.

x1

Il
\

|
|
| positive (x1)
|

|

|

|

. |

. |

| | square(xl)| =
. |

|

|

|

Components: Checking for logical correctness

— translating the PRS conditions into some first-order format

— use TPTP-format (Thousands of Problems for Theorem Provers)

— generate relevant premises for every condition

— automatic theorem prover used to prove every condition from its relevant premises

— proof is accepted if ATP can prove every condition

— feedback of success/error messages

Results

— Naproche input language allows natural reformulation of (simple) mathematical texts

— some example texts and parts of Landau, Foundations of Analysis have been reformu-
lated and checked

Possible applications
— Natural language interfaces to formal mathematics
— Mathematical authoring and checking tools

— writing texts that are simultaneously acceptable by human readers and formal mathe-
matics systems (“Logic for men and machines”)

— Tutorial applications: teaching how to prove

Technical issues

— inclusion of more mathematical argumentation patterns into Naproche while preserving
the unambiguity of the language

— resolving frequent ambiguities: assumptions are explicitely introduced but often
implicitely retracted

— including implicit background knowledge on numbers and sets into the system

— improving the “naturality” of the Naproche system (background axioms, interface, lin-
guistic richness, logical richness, strength of automatic theorem provers)

General issues

— Naproche interprets a mathematical proof as a collection of indicators for the construc-
tion of a fully formal proof

— natural language components are not just syntactic sugar but serve as indicators

— can/should one model the cognitive processes that take part in the understanding of
natural proofs?

— there are natural(ly looking) proofs that are fully formal with respect to the Naproche
system

— this defines a “fortified formalism”, using linguistic methods and computer implementa-
tions, which allows to view some natural proofs as fully formal

— can a “fortified formalism” help to mediate between the “two streams” in the philosophy
of mathematics (formalistic / naturalistic)

Thank You!

