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Abstract. A reinterpretation of standard integration schemes for ODEs al-
lows to use Gronwall type arguments to obtain error estimates. This has two
advantages. First, the derivatives of the vector field which enter into the stan-
dard error estimates are here only needed along the approximating curves, thus
improved error estimates may be obtained during the integration. Second, while
the standard argument gives the exponential error bounds only in the limit, the
Gronwall argument gives these bounds for each finite size time step directly
thus simplifying the iteration of the bounds over many time steps.

Let X(p, t) be a smooth, time-dependent vector field in Rn, with Lipschitz bound L,
so ‖X(p, t)−X(q, t)‖ ≤ L ‖p− q‖. The corresponding ODE Initial Value Problem is
ṗ = X(p(t), t), p(t0) = p0. The existence and uniqueness theorem for ODE asserts that for
some interval I centered at t0 there is a unique path p(t) defined in I and satisfying both
the ODE and the initial condition.

The “Euler Method” approximates p(t) at a discrete set of points tn defined by tn :=
tn−1+∆T = t0+n∆T , where ∆T is a small real number, the “time-step”. The approxima-
tions e(tn) are defined inductively by e(t0) := p0, and e(tn+1) := e(tn) + ∆T X(e(tn), tn).
We will depart from custom here and join the discrete approximations e(tn) with an explicit
curve e(t) that is defined on the interval [tn, tn+1] and is completely determined by the
integration scheme. For example, the “Euler Curve” is e(t) := e(tn) + (t− tn)X(e(tn), tn)
for 0 ≤ (t − tn) ≤ ∆T . One can think of this as making the time step (t − tn) a
continuous variable, but ≤ ∆t. For emphasis we show such reinterpretations for two
other schemes although we will derive the error estimates only in the Euler case, other
cases being very similar. The “Inverse Euler Curve” E(t) is defined on the interval
[tn, tn+1] by E(t) := E(tn) + (t − tn) · X(E(t), t) for 0 ≤ (t − tn) ≤ ∆T , and the “Half
Step Curve” h(t) is defined on the interval [tn, tn+1], using an auxiliary midpoint curve
m(t) := h(tn)+(t− tn)/2 ·X(h(tn), tn), by h(t) := h(tn)+(t− tn) ·X(m(t), tn +(t− tn)/2)
for 0 ≤ (t−tn) ≤ ∆T . Such reinterpretations allow us to estimate the difference or “error”,
Err(t) := ‖p(t) − e(t)‖ between p(t) and e(t) (and similarly for other schemes) by using a
Gronwall-like argument. Initially we shall estimate the error for a single time-step, i.e., on
the interval t0 ≤ t ≤ t0 + ∆T and later iterate the obtained estimate.

We first note that from the definition of e, ė(t) = X(p0, t0), t0 ≤ t ≤ t0 + ∆T , so ë = 0.
It follows that ṗ(t) − ė(t) = X(p(t), t) − X(p0, t0) = X(p(t), t) − X(e(t), t) +X(e(t), t) −
X(p0, t0), and hence ‖ṗ(t) − ė(t)‖ ≤ L ‖p(t) − e(t)‖ + ‖X(e(t), t) −X(p0, t0)‖.

The second term on the right is not yet in a form which a Gronwall argument can use,
but since it is explicit we can define K := maxt0≤t≤t0+∆t

∥

∥

d

dt
(X(e(t), t)−X(p0, t0))

∥

∥ to
obtain the differential inequality ‖ṗ(t) − ė(t)‖ ≤ L ‖Err(t)‖ +K(t− t0).
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Note that for higher order schemes we get better inequalities here. For example, the
function X(h(t), t) − ḣ(t) and its first derivative are zero at t0. Therefore we use the

maximum of the (still explicit) second derivative K := max
∥

∥

∥

d
2

dt2
(X(h(t), t)− ḣ(t))

∥

∥

∥
along

the half step curve to obtain
∥

∥

∥
ṗ(t) − ḣ(t)

∥

∥

∥
≤ L ‖Err(t)‖ + K

2 (t− t0)
2.

We continue the Euler case. Since Err(t) =
∥

∥

∥

∫ t

t0
(ṗ(t) − ė(t)) dt

∥

∥

∥
≤

∫ t

t0
‖ṗ(t) − ė(t)‖ dt,

we see that ‖Err(t)‖ ≤ ψ(t), where ψ is the differentiable function:

ψ(t) := ‖Err(t0)‖ + L

∫ t

t0

‖Err(t)‖ dt+K

∫ t

t0

(t− t0) dt.

Since ψ̇ = L ‖Err(t)‖ + K(t − t0) and ‖Err(t)‖ ≤ ψ, we have the differential inequality
ψ̇ ≤ Lψ +K(t− t0) to which we now apply a Gronwall argument.

Compute the derivative of the function
(

ψ + K

L2 + K

L
(t− t0)

)

· e−L·(t−t0):

d

dt

(

(

ψ+
K

L2
+
K

L
(t− t0)

)

· e−L·(t−t0)

)

=

(

ψ̇+
K

L
−L

(

ψ+
K

L2
+
K

L
(t− t0)

)

)

· e−L·(t−t0).

By the differential inequality for ψ, this function has a non-positive derivative, so all of its
values are less than its “initial” value at t0, namely Err(t0)+ K

L2 . (Of course, for the Euler
scheme Err(t0) = 0, but for all further time steps we do have an initial error.) Solving for
ψ we obtain the desired one step error estimate:

Err(t) ≤ ψ(t) ≤
(

Err(t0) +
K

2
(t− t0)

2
)

eL·(t−t0) for t0 ≤ t ≤ t0 + ∆T.

To iterate this estimate we define the starting point for the second time step as p1 :=
e(t0 + ∆T ), so that we have the initial error bound

|p(t0 + ∆t) − p1| ≤ Err(t1) :=
(

Err(t0) +
K

2
(t− t0)

2
)

eL·∆T .

For the second time step the same argument as for the first time step gives:

Err(t) ≤ ψ(t) ≤
(

Err(t1) +
K

2
(t− t1)

2
)

eL·(t−t1) for t1 ≤ t ≤ t1 + ∆T.

To reach some fixed time T one needs N time steps of size ∆t := (T − t0)/N . Then the
N -fold iteration of the error estimate can be simplified (replace N ·∆T by (T − t0), recall
Err(t0) = 0 and use the sum of the geometric series):

Err(t) ≤Err(t0) · e
L(T−t0) +

K

2
∆T 2 · (eL·∆T + eL·2∆T + . . . eL·N∆T )

≤
K

2
∆T 2 · (eL(T−t0+∆T ) − 1)/(eL∆t − 1) ≤

K

2L
∆T · (eL(T−t0+∆T ) − 1).

This proves in particular that with ∆T → 0 the iterated Euler curves converge uniformly
to the exact solution.
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