FORMAL PROOF OF AN USEFUL INEQUALITY INVOLVING
(n—1)-HAUSDORFF MEASURES OF LEVEL SETS

1. MOTIVATION

Let Q be a C?—domain, and let

— . w9k 9—j—1 1y =bel _ oy
U:={zeQ:d(zx,o0) ~2%2 <d(x,8Q) <2 }

where b,, is the nearest point in the boundary to x (exists, is unique and Lipschitz
for C?—domains if z is sufficiently close to the boundary). Let also

gy(2) = |y — x| — d(z,09).
This function is Lipschitz in € in general, but also C' with Lipschitz gradient in
U\B(y,0), as its gradient is explicitly given by

V:cgy(x)

We want to show that the limsup
limsup H" (U N g;l (€))

e—0

_y—z r— by
Cly—al d(z,09)

is uniformly bounded by H"~'(U N g, *(0)), as we know from e.g. [1] that this
last set is contained in the boundary of a convex set, which is contained in a ball
B(y,4 - 2F). By monotonicity of perimeter of nested convex sets, we get that this
last Hausdorff measure is at most < 2¥(»=1) which then provides good bounds for
the limsup.

2. THEOREM

Let D be an open domain, g : D — R Lipschitz continuous in D. Let U CC D
be a bounded, Lipschitz domain such that g|; is C'! with Lipschitz gradient on an
open set U CC U. Suppose also that |[Vg| ~ C in U. Then it holds that

limsup H" (U N g (e)) < H" HU n g (0)).
e—0
Proof. As g is of class C' on a larger open set U and the gradient of g does not vanish
on U, the level sets g~ (¢) MU are all C*-smooth hypersurfaces in U. Consider then
the thickening Vs(g) = {z € U: d(z,g71(0)) < d}.

Claim 1. There is € > 0 such that, for e < ey, g~ (e) NU C Vs(g).

Proof of Claim 1. If not, then there is a sequence ¢, — 0 and z, € g *(ex) NU
with d(z,g~1(0)) > 4. But then, as U is bounded, we may pass to a subsequence
to suppose that z — & € U. We obviously have # € g=!(0) N U, which contradicts
the fact that d(Z,¢~1(0)) = lim d(zx, g~1(0)) > 4. O

We now notice that the sets g~ (e) N U are compact, and as |Vg| ~ C, localizing
into charts shows that they are all sets of finite perimeter. In order to conclude the
assertion, we need a couple more properties.

Firstly, we have that the sets g~'(¢) N U have at most ¢(U) connected compo-
nents, independently of e. This follows, for instance, from the fact that these sets
1
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are all (restrictions of) a differentiable family of C! hypersurfaces to a compact set,
and the local form of submersions. This fact alone plainly implies, together with
compacity, that there is a constant d(U) > 0 such that the distance between two
such components is always greater than d(U) > 0 if € is small.

Define Uy = {z € U: d(2,0U) > +}. We first notice that Ux D U for N large.
Now note that, if 4 is small enough, the set V¥ (g) := V5(g)NUy can be partitioned
into V;"" " UV T U(g71(0)NTy), where (¢~ (0)NTUx) € (“)V(;N’i. This follows from
the fact that g=1(0) N Uisa compact, orientable hypersurface for each connected
component, so that there is a finite number of balls B;,7 = 1,--- , N such that the
“upper” and “lower” parts Bii are well defined, and gluing them together works

by orientability. Furthermore, it is easy to see that each V(;N’i(g) is a C! domain,
except for a set of Hausdorff dimension n — 2, which implies that both are domains
so that the almost-C! version of Green’s theorem holds.

The considerations above imply that, within a connected component of V;SN (9),
§ < d(U) small, there is at most one connected component of g~'(¢) N Uy, where
€ is also very small.

Claim 2. There is ¢g > 0 such that either g=t(e) N Uy C V(SN’+, Ve < € or
g He)NUy C V:SN’*, Ve < €.

Proof of Claim 2. First, notice that by connectivity, each set g~'(¢) N Uy belongs
to exactly one side Vi, Define the the sets I = { € R\{0}: a small, g~ (c) N
Uy C V(;N’i}. Clearly, they are both open. They are also closed, as the sets that
do not belong to either would have to be contained in g=(0). It means that one of
the I+ equals (0, ¢g) and the other (—¢p,0). This implies the desired assertion. O

We are now able to finish. By Claim 1, let e be so that g~ (e) N Un C Vi if
€ < €. By Claim 2, suppose without loss of generality that g=*(e) N Un C V(;N’+
for € < €. We assume also without loss of generality that the connectivity constant
above is ¢(U) = 1, as the general case follows by repeating the following argument
on each connected component.

Let ¢ : Uy — R be a smooth function so that ¢ = 1 in Vg"“ and ¢ = 0 in

UN\V;(\;;JF. Define the normal field associated to g at every point as v4(x) = %.

Define u = ¢ - v4. By the definition of ¢, we have:

H OV N oUN) +H (g7 (0) N Ty) > /

, d nfl.
aV5N1+<u’ VV;;+> "

On the other hand, the integral above equals, by the almost-C! version of the
divergence theorem and dominated convergence,

/ div(u) dz = 1im/ div(u) dz,
VSNHr e—0 V.
where V, is the part of V(;N’Jr “above” ¢g~1(e) N Uy. Once again by divergence,
/ div(u)dx = / (u, vy, ) dH" ™ > H" g™ (e) N D).
V. V.

Putting together implies
limsup H" (g7 (e) NU) < H LAV naUN) + H (g1 (0) N Uw).
e—0
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Notice that the same applies to any domain W such that U CcC W CC Un.
Therefore, by taking W so that g~1(0) intersects W (at most) transversally implies
that
limsup H" L (V5 F now) =o.
6—0
Therefore, by finite perimeter, taking N — 0 and if we choose § > 0 so that the
(n — 1)—Hausdorff measure of the sets above is less than n- H"1(g=*(0) N U), we
get
limsupH" (g7 (e)NU) < (1 +n)H" g *(0)NT).
e—0

By making n — 0 one obtains the result. O
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