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Abstract. We prove endpoint bounds for derivatives of fractional maximal
functions with either smooth convolution kernel or lacunary set of radii in

dimensions n ≥ 2. We also show that the spherical fractional maximal function

maps Lp into a first order Sobolev space in dimensions n ≥ 5.

1. Introduction

Define the fractional maximal function as

Mαf(x) = sup
t>0

∣∣∣∣∣ tα

|B(x, t)|

∫
B(x,t)

f dy

∣∣∣∣∣
for α ∈ [0, n). The study of its regularity properties was initiated in [22] by Kin-
nunen and Saksman. They proved the pointwise inequality

|∇Mα|f |(x)| ≤ CMα−1|f |(x), α ≥ 1 (1.1)

with a constant C only depending on the dimension n and α. This inequality has
two interesting consequences. First, Mα maps Lp(Rn) into a first order Sobolev
space. Second, as noted by Carneiro and Madrid [8], the pointwise bound together
with the Gagliardo–Nirenberg–Sobolev inequality implies

‖∇Mαf‖Lp ≤ C‖Mα−1f‖Lp ≤ C‖f‖Ln/(n−1) ≤ C‖∇f‖L1 (1.2)

for α ≥ 1 and p = n/(n−α). When α ∈ (0, 1), inequality (1.1) no longer helps, and
the conclusion of (1.2) is an open problem. When Mα is replaced by its non-centred
variant, the analogous result is due to Carneiro and Madrid [8] for n = 1 and Luiro
and Madrid [28] for f radial and n ≥ 2. For other aspects of the regularity of
fractional maximal functions, see e.g. [17, 18] and the references therein.

Our first result is a smooth variant of the inequality (1.2) for α ∈ (0, 1) and
n ≥ 2. Define the lacunary fractional maximal function as

M lac
α f(x) := sup

k∈Z

∣∣∣∣∣ 2αk

|B(0, 2k)|

∫
B(x,2k)

f dy

∣∣∣∣∣ .
For integrable ϕ and t > 0, let ϕt(x) = t−nϕ(x/t). Assume, for simplicity, that ϕ
is a positive Schwartz function and define the smooth fractional maximal function
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as

Mϕ
α f(x) = sup

t>0
tα|ϕt ∗ f(x)|.

The smoothness requirement can be substantially relaxed, see §§3.3.

Theorem 1.1. Let f ∈ ḂV(Rn) and suppose that α ∈ (0, 1) and n ≥ 2. Then for
Mα ∈ {M lac

α ,Mϕ
α }, there exists a constant C only depending on dimension n, α

and ϕ such that

‖∇Mαf‖Lp(Rn) ≤ C|f |BV(Rn)

for p = n/(n− α).

The proof of this theorem uses the g-function technique familiar from Stein’s
spherical maximal function theorem. The idea is to follow the scheme behind the
short estimation (1.2). The Fourier transform is used to find a substitute for (1.1)
at the level of Besov spaces, from which the conclusion then follows by a refined
Gagliardo–Nirenberg–Sobolev type embedding theorem [10]. The last step requires
n > 1 whereas the smoothness condition on the maximal operator is imposed by
Fourier analysis. We stress that the right hand side of the conclusion is BV norm
instead of the considerably larger homogeneous Hardy–Sobolev norm one might
first expect. The detailed proof is given in §3, and all necessary definitions can be
found in §2. To the best of our knowledge, Fourier transform techniques have not
been exploited effectively in the study of endpoint regularity of maximal functions
prior to this work.

The background of the question (1.2) goes back to Kinnunen’s theorem [20, 21]
asserting that the Hardy–Littlewood maximal function is bounded in W 1,p with
p > 1. His result was later extended to W 1,1 in the form

‖∇Mf‖L1(Rn) ≤ C‖∇f‖L1(Rn) (1.3)

by Tanaka [38] when n = 1 and Luiro [27] when n ≥ 2 and f is radial. Here M
is the non-centred Hardy–Littlewood maximal function. The same inequality for
M0 (centred maximal function) was established by Kurka [23] when n = 1, and the
question is open in dimensions n ≥ 2. Kurka’s theorem can be seen as the limiting
case α = 0 of (1.2).

In connection to (1.3), maximal functions with smooth convolution kernels are
better understood than the Hardy–Littlewood maximal function. Inequality (1.3)
can be proved with sharp constant for many smooth kernels [7, 9] whereas the best
constant for centred Hardy–Littlewood maximal function is not known (for the non-
centred maximal function [2] as well as for certain non-tangential maximal functions
[31] the constant is one). Similarly, a Hardy–Sobolev bound corresponding to (1.3)
is known for smooth maximal functions in all dimensions [30] whereas the progress
for the standard maximal function is limited to the case of radial functions [27].
Finally, there are metric measure spaces where Kinnunen’s theorem does not hold
but suitable smoother maximal functions satisfy a Sobolev bound [1]. Theorem 1.1
can be seen as a part of this line of research attempting to understand (1.2) and
(1.3) first in the case of smooth maximal functions.

The second part of the paper studies the regularity of the spherical fractional
maximal function

Sαf(x) := sup
t>0
|tασt ∗ f(x)|, (1.4)

where σt is the normalized surface measure of the sphere ∂B(0, t). For α = 0,
one recovers the spherical maximal function of Stein [36] (n ≥ 3) and Bourgain [5]
(n = 2). For α > 0, Lp → Lq bounds for this operator follow from the work of
Schlag [33] (n = 2) and Schlag and Sogge [34] (n ≥ 3). It is natural to ask if the
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fractional spherical maximal function has regularizing properties similar to (1.1).
Our result in this direction is the following.

Theorem 1.2. Let n ≥ 5, n/(n− 2) < p ≤ q <∞ and

α(p) :=

{
n2−2n−1
n−1 − 2n

p(n−1) if n
n−2 < p ≤ n2+1

n2−2n−1
n−1
p if n2+1

n2−2n−1 < p ≤ n− 1.

Assume that
1

q
=

1

p
− α− 1

n
, 1 ≤ α < α(p).

Then, for any f ∈ Lp, Sαf is weakly differentiable and

‖∇Sαf‖Lq . ‖f‖Lp .

The proof of this theorem is also based on the use of the Fourier transform. When
q ≥ 2, we study Lp → Lq estimates for a maximal multiplier operator in analogy
with the estimates in [33, 34, 25] for the spherical maximal function. Since Theorem
1.2 is a statement at the derivative level, the corresponding multiplier enjoys worse
Fourier decay than σ̂. This forces us to study the behavior in Lp with large p more
carefully than what is needed to understand Lp mapping properties of the spherical
maximal function. We take advantage of the sharp local smoothing estimate for
the wave equation in Ln−1(Rn), which is available whenever n ≥ 5 thanks to recent
advances in decoupling theory (see [6, 14, 15, 24, 39] and [3, 19, 26, 29, 35] for more
on decoupling and local smoothing estimates). We remark that results in n = 4
could be obtained upon further progress on local smoothing estimates.

Acknowledgements. We would like to thank Juha Kinnunen for his question
about regularising properties of the fractional spherical maximal function, which
led to this work. We also thank Jonathan Hickman for discussions on the spherical
maximal function and local smoothing estimates.

2. Notation and Preliminaries

2.1. Notation. All function spaces are defined over Rn, and it is written, for in-
stance, L2 for L2(Rn). The letter C denotes a generic constant whose value may
vary from line to line. Its dependency on other parameters will be clear from the
context. The notation A . B is used if A ≤ CB for such a constant C, and simi-
larly A & B and A ∼ B. The Fourier transform of a tempered distribution f ∈ S ′
is denoted by f̂ or F(f) and its inverse Fourier transform by F−1(f) or f∨; in
particular for a Schwartz function f ∈ S,

f̂(ξ) = Ff(ξ) =

∫
Rn
e−2πix·ξf(x) dx.

Given any multi-index γ ∈ Nn, ∂γ denotes

∂γf = ∂γ1x1
· · · ∂γnxnf.

For any α ∈ R, the notation (−∆)α/2 is taken to denote the operator associated to
the Fourier multiplier |ξ|α.

2.2. Besov spaces and Littlewood–Paley pieces. Given a smooth function
ψ ∈ C∞c supported in {ξ ∈ Rn : 2−1 < |ξ| < 2} and such that∑

j∈Z
ψ(2−jξ) = 1
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for ξ 6= 0, let fj denote the Littlewood–Paley piece of f at frequency 2j , given by

f̂j = f̂ψ(2−jξ). The Besov seminorm for Ḃsp,q for s ∈ R and p, q ∈ [1,∞] is defined
as

‖f‖Ḃsp,q =
(∑
j∈Z

2qjs‖fj‖qLp
)1/q

;

the seminorms defined through different Littlewood-Paley functions ψ are compa-
rable (see [4, Chapter 6] for further details).

2.3. BV space. A function f is said to have bounded variation, and denoted by
f ∈ ḂV, if its variation, defined by

|f |BV := sup
{∫

Rn
f div(g); g ∈ C1

c (Rn,Rn), ‖g‖∞ ≤ 1
}
,

is finite, where g = (g1, . . . , gn) and the L∞ norm is defined by

‖g‖∞ := ‖(
n∑
i=1

g2
i )1/2‖L∞ .

Note that if f belongs to space W 1,1, integration by parts allows one to identify

|f |BV =

∫
Rn
|∇f |.

See [13, Chapter 5] for more.

2.4. Finite differences. Denote

Dhf(x) =
f(x+ h)− f(x)

|h|
.

Recall (see e.g [12, Chapter 5, §5.8, Theorem 3]) that if there is a finite constant A
such that ∥∥Dhf

∥∥
Lp
≤ A

for all h ∈ Rn, then the weak derivatives of f exist and

‖∇f‖Lp ≤ CA
for a constant C only depending on the dimension n. If S is a sublinear operator
that commutes with translations, then

|DhSf | ≤ |SDhf |.
In particular, if S is a maximal function and f is a positive function, this allows us to
reduce the question about differentiability to boundedness of a maximal multiplier
for all Schwartz functions f .

3. Endpoint results

3.1. A model result. It is instructive to start first with a model case for Theorem
1.1. This consists in the study of the single scale version of the (rough) fractional
maximal function Mα, defined as

M∗αf = sup
1≤t≤2

∣∣∣∣∣ 1

|B(x, t)|

∫
B(x,t)

f(y) dy

∣∣∣∣∣ .
Theorem 3.1. Let 0 < α < 1, p = n/(n−α) and n ≥ 2. Then there is a constant

C only depending on dimension n ≥ 1 and α such that for any f ∈ Ḃ1−α
p,1

‖M∗αDhf‖Lp ≤ C‖f‖Ḃ1−α
p,1

uniformly on h ∈ Rn.
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By the discussion in §§2.4, Theorem 3.1 implies an Lp bound for the gradient of
M∗α. It will be shown in §§3.2 how the proof of the above estimate gives Theorem
1.1 for sightly smoother versions of the fractional maximal function, such as its
lacunary version or maximal functions of convolution type with smooth kernels.

Proof. Write, for f ∈ S,

M∗α(Dhf)(x) = sup
1≤t≤2

|F−1((t|ξ|)α1̂B(0,1)(tξ)F(Th(−∆)(1−α)/2f))|

where Th is the operator defined by

T̂hg(ξ) =
eiξ·h − 1

|ξ||h|
ĝ(ξ) =: ah(ξ)ĝ(ξ). (3.1)

Observe that Th is a bounded operator on Lp uniformly in h ∈ Rn for all 1 < p <
∞ by the Mikhlin–Hörmander multiplier theorem (see, for instance [11, Theorem
8.10]); it is clear that

|∂γah(ξ)| . |ξ|−|γ| for all multi-indexes γ ∈ Nn0
with implicit constant independent of h ∈ Rn. Thus, the operator Th plays no role
in determining the range of boundedness for M∗αD

h.

Let m(ξ) = |ξ|α1̂B(0,1)(ξ) and mt(ξ) := m(tξ) for all t > 0. For each j ∈ Z, let

fj = ψj ∗ f denote the Littlewood-Paley piece of f around the frequency 2j as in
§§2.2. Assume momentarily that the following holds.

Proposition 3.2. Let g ∈ S. Then for p = n/(n− α) and 0 < α < n/2,

‖ sup
1≤t≤2

|F−1(mtĝj)|‖Lp . (2jα1{j≤0} + 1{j>0})‖gj‖Lp .

Then the proof may be concluded as follows. Decomposing the function f into
frequency localised pieces fj and applying Proposition 3.2 to the function g =

Th(−∆)(1−α)/2f one has

‖ sup
1≤t≤2

|F−1(mtĝ)|‖Lp ≤
∑
j∈Z
‖ sup

1≤t≤2
|F−1(mtĝj)|‖Lp

.
∑
j∈Z

(2jα1{j≤0} + 1{j>0})‖gj‖Lp

≤
∑
j∈Z

2j(1−α)‖fj‖Lp ∼ ‖f‖Ḃ1−α
p,1

, (3.2)

where the last step follows from the Lp boundedness of Th and Young’s convolution
inequality.

Remark 3.3. By Bernstein’s inequality, 2j(1−α)‖fj‖Lp . 2j‖fj‖L1 , so one may
further bound ‖f‖Ḃ1−α

p,1
. ‖f‖Ḃ1

1,1
in (3.2).

It remains to prove Proposition 3.2. This is done by interpolating an L2 bound
with an L1−L1,∞ bound as in the proof of the spherical maximal function theorem
that can be found in the textbooks, see [37, Chapter XI, §3.3] or [16, Chapter 5.5].
Writing

F−1(mtĝj) = tαF−1(1̂B(0,1)(tξ)(|ξ|αĝj)),
it is clear that

sup
1≤t≤2

|F−1(mtĝ)| . sup
1≤t≤2

|t−n1B(0,t) ∗ ((−∆)α/2g)| ≤M((−∆)α/2g)

where M is the Hardy–Littlewood maximal function. Bounds on M and Young’s
convolution inequality then imply
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Proposition 3.4. Let g ∈ S. Then

‖ sup
1≤t≤2

|F−1(mtĝj)|‖L1,∞ . 2jα‖gj‖L1 .

The L2 estimate follows by estimating the Fourier decay of m after an application
of a Sobolev embedding. This is the part of the proof that allows to take advantage
of better symbols m later in §§3.3 so we write the proof in detail.

Proposition 3.5. Let g ∈ S. Then

‖ sup
1≤t≤2

|F−1(mtĝj)|‖L2 . (2jα1{j≤0} + 2j(−
n
2 +α)1{j>0})‖gj‖L2 .

Proof. Let m̃(ξ) = ξ · ∇m(ξ) and denote by Tm and Tm̃ the operators associated
to the multipliers m and m̃. By the fundamental theorem of calculus,

sup
1≤t≤2

|Tmtgj | ≤ |Tmgj |+ 2

(∫ 2

1

|Tmtgj ||Tm̃tgj |
dt

t

)1/2

≤ |Tmgj |+ 2

(∫ 2

1

|Tmtgj |2
dt

t

)1/4(∫ 2

1

|Tm̃tgj |2
dt

t

)1/4

. (3.3)

Taking L2-norm in the above expression, an application of the Cauchy–Schwarz
inequality and Fubini’s theorem reduces the problem to compute the L∞ norm of
mψj and m̃ψj .

Recall that 1̂B(0,1)(ξ) = |2πξ|−n/2Jn/2(2π|ξ|), where Jn/2 denotes the Bessel
function of order n/2, and

Jn/2(r) . rn/21{r≤1} + r−1/21{r>1};

see, for instance, [16, Appendix B] for further details. This immediately yields

‖mψj‖L∞ . 2jα1{j≤0} + 2j(−
n+1
2 +α)1{j>0}. (3.4)

Concerning m̃, the relation

d

dr
[r−n/2Jn/2(r)] = −r−n/2Jn/2+1

and a similar analysis to the one carried above leads to

‖m̃ψj‖L∞ . 2jα1{j≤0} + 2j(−
n−1
2 +α)1{j>0}.

Putting both estimates together in (3.3) concludes the proof. �

Proposition 3.2 now follows by interpolation, and the proof of the model case is
complete. �

3.2. Extension to the full supremum. From now on, we redefine m to be
Fourier transform of an integrable function smoother than 1B(0,1). Momentarily
assume m satisfies

‖ sup
1≤t≤2

|(mtĝj)
∨|‖Lp . (2jα1{j≤0} + 2−jε1{j>0})‖gj‖Lp , (3.5)

which we next show to be enough to conclude a bound as in Theorem 1.1. The
proof of (3.5) is postponed to §§3.3.

Inequality (3.5) rescales as

‖ sup
2−k≤t≤2−k+1

|(mtĝj+k)∨|‖Lp . (2jα1{j≤0} + 2−jε1{j>0})‖gj+k‖Lp . (3.6)
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In order to use this bound, break the full supremum over all possible scales and use
the embedding `p ⊆ `∞,

sup
t>0
|(mtĝ)∨| = sup

k∈Z
sup

2−k≤t≤2−k+1

|(mtĝ)∨| ≤
(∑
k∈Z

sup
2−k≤t≤2−k+1

|(mtĝ)∨|p
)1/p

.

Taking Lp norm and using (3.6), we see

‖sup
t>0
|(mtĝ)∨|‖Lp .

∑
j∈Z

(2jα1{j≤0} + 2−jε1{j>0})
(∑
k∈Z
‖gj+k‖pLp

)1/p

.

Using the geometric decay to sum in j ∈ Z and recalling

‖gj+k‖Lp = ‖(−∆)(1−α)/2fj+k‖Lp . 2(j+k)(1−α)‖fj+k‖Lp ,

we obtain (∑
k∈Z
‖gj+k‖pLp

)1/p

. ‖f‖Ḃ1−α
p,p

.

We then claim

‖f‖Ḃ1−α
p,p
. |f |BV (3.7)

for n > 1 and 0 < α < n/2. This will follow from a Gagliardo–Nirenberg–Sobolev
type inequality.

Proposition 3.6 ([10]). Assume γ > 1 or γ < 1 − 1/n, and let (s, q) satisfy
(s − 1)q′/n = γ − 1 for some 1 < q ≤ ∞, where 1/q + 1/q′ = 1. Then, for any
0 < θ < 1,

‖f‖Ḃtp,p . ‖f‖
1−θ
Ḃsq,q
|f |θBV

where 1
p = 1−θ

q + θ and t = (1− θ)s+ θ.

Indeed, taking γ = 0, s = 1 − n/2 and θ = 1 − 2α/n, which are admissible for
n > 1 and 0 < α < n/2, one has

‖f‖Ḃ1−α
p,p
. ‖f‖1−θ

Ḃ
1−n/2
2,2

|f |θBV.

Applying Bernstein’s and Minkowski’s inequalities as well as Littlewood–Paley the-
ory, we see

‖f‖
Ḃ

1−n
2

2,2

∼
(∑
j∈Z

22j(1−n2 )‖fj‖2L2

)1/2

.
(∑
j∈Z

22j(1−n2 )22jn(n−1
n −

1
2 )‖fj‖2

L
n
n−1

)1/2

=
(∑
j∈Z
‖fj‖2

L
n
n−1

)1/2

≤ ‖
(∑
j∈Z
|fj |2

)1/2

‖
L

n
n−1
∼ ‖f‖

L
n
n−1

.

Inequality (3.7) then follows from the Gagliardo–Nirenberg–Sobolev inequality [13,
Theorem 5.6.1. (i)], and we conclude

‖ sup
1≤t≤2

|F−1(mtĝ)|‖Lp . ‖f‖1−θLn/(n−1) |f |θBV . |f |BV.

Thus it suffices to verify (3.5). This is done separately in the cases when m comes
from a smooth kernel and when the maximal function is lacunary.
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3.3. Smooth kernel. Define the smooth fractional maximal function as follows.
Let ε > 0. Let ϕ be a positive function with radial L1 majorant such that ϕ̂(ξ) .ϕ
|ξ|−n/2−ε whenever |ξ| > 1 and. For instance, any positive Schwartz function or
even

ϕ(x) = (1− |x|2)ε+

with ε > 0 will do (see Appendix B.5 in [16]). The subscript denotes the positive
part as f+ = f ·1{f>0}. Now we want to analyse Mϕ

α , as defined in the introduction.

A repetition of the proof of Proposition 3.5 gives the L2 bound

‖ sup
1≤t≤2

|F−1((t|ξ|)αϕ̂(tξ)ĝj)|‖L2 . (1{j≤0}2
jα + 1{j>0}2

j(−n2 +α−ε))‖gj‖L2 .

The ε-decay gain in the above estimate continues to hold on Ln/(n−α), so the
extra decay assumption (3.5) is satisfied for smooth convolution kernels. By §§3.2,
Theorem 1.1 holds in this case.

3.4. Lacunary set of radii. Similarly, there is a gain in the L2 estimate when we

study the lacunary fractional maximal function. Now m(ξ) = |ξ|α1̂B(0,1)(ξ) and

cnM
lac
α f(x) = sup

k∈Z
|2kα−nk

∫
B(x,2k)

f(y) dy| ≤
(∑
k∈Z
|2kα−nk

∫
B(x,2k)

f(y) dy|p
)1/p

so that it suffices to use a bound for a single dilate (3.4) and replace the Proposition
(3.5) by

‖|F−1(mĝj)|‖L2 . (2jα1{j≤0} + 2j(−
n+1
2 +α)1{j>0})‖gj‖L2 ,

which has an extra 1/2-decay compared to Proposition 3.5. After interpolation, this
leads to an ε-decay gain in the Ln/(n−α) estimate so that (3.5) (without supremum)
and Theorem 1.1 for lacunary set of radii follow.

4. Proof of Theorem 1.2

Recall the definition (1.4). By the characterisation through finite differences
described in §2, the sublinearity of Sα and by density, it suffices to prove

‖SαDhf‖Lq . ‖f‖Lp

for all Schwartz functions f uniformly in h ∈ Rn.
Observe that by means of Fourier transform,

SαD
hf(x) = sup

t>0

∣∣F−1 (tα|ξ|σ̂(tξ)F(Thf)(x))
∣∣ , (4.1)

where Th is the Fourier multiplier operator (3.1). As described in §§3.1, Th is
bounded on Lp for all 1 < p <∞ uniformly in h ∈ Rn by the Mikhlin–Hörmander
multiplier theorem, so it plays no role in determining the boundedness range for
SαD

h; for this reason, Thf is identified with f in the rest of this section.

4.1. The case q ≥ 2. It is enough to consider the single scale version of the
maximal function in (4.1): suppose we can prove

‖ sup
1≤t≤2

|F−1(tα|ξ|σ̂(tξ)f̂j)|‖Lq . (2js11{j≤0} + 2−js21{j>0})‖fj‖Lp (4.2)

for s1, s2 > 0. Then rescaling gives

‖ sup
2−k≤t≤2−k+1

|F−1(tα|ξ|σ̂(tξ)f̂j+k)|‖Lq . (2js11{j≤0} + 2−js21{j>0})‖fj+k‖Lp
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under the relation 1
q = 1

p −
α−1
n , and arguing as in §§3.2

‖sup
t>0
|F−1(tα|ξ|σ̂(tξ)f̂)|‖Lq .

∑
j∈Z

(2js11{j≤0} + 2−js21{j>0})
(∑
k∈Z
‖fj+k‖qLp

)1/q

. ‖f‖Lp

where the last inequality follows from Minkowski’s inequality (q ≥ p); controlling
`q norm by `2 norm, and applying Littlewood–Paley theory to see the inner sum
as Lp norm of f . The sum in j converges as s1, s2 > 0. Hence it suffices to prove
(4.2).

For low frequencies j ≤ 0, we can use domination by the Hardy–Littlewood
maximal function, Young’s convolution inequality and Bernstein’s inequality to see

‖ sup
1≤t≤2

|F−1(tα|ξ|σ̂(tξ)f̂j)|‖Lq . ‖M(−∆)1/2fj‖Lq . 2j(1+α)‖fj‖Lp .

Hence it suffices to prove (4.2) for j > 0.

4.2. A local smoothing estimate. The Fourier transform of the spherical mea-
sure is

σ̂(ξ) = 2π|ξ|−
n−2
2 Jn−2

2
(2π|ξ|) =

∑
±
a±(ξ)e±2πi|ξ|,

where the symbols a± are in the class S−(n−1)/2, that is

|∂γξ a±(ξ)| . (1 + |ξ|)−
n−1
2 −|γ|

for all multi-indices γ ∈ Nn0 (c.f. [37, Chapter VIII]). Hence

F−1(σ̂(tξ)f̂) =
∑
±

∫
Rn
e2πi(ξ·x±|ξ|t)a±(tξ)f̂(ξ),

so that the connection to half-wave propagator eit
√
−∆f(x) :=

∫
Rn e

ix·ξeit|ξ|f̂(ξ)dξ
is evident. We will quote the following result:

Proposition 4.1 (Consequence of [6]). For n ≥ 2, s ∈ R,(∫ 2

1

‖eit
√
−∆f‖p

Lps−sp+θ(Rn)
dt
)1/p

. ‖f‖Lps(Rn)

holds for 0 ≤ θ < 1
p and sp = (n− 1)

(
1
2 −

1
p

)
whenever p ≥ 2(n+1)

n−1 .

This can be found as Corollary 1.3 (i) in [14] knowing that the conjectured value
of pd in Table 1 of that paper has later been verified by [6].

Proposition 4.2. Let g be a Schwartz function and j > 0. For any ε > 0

‖ sup
1≤t≤2

|σt ∗ gj |‖Ln−1 .ε 2j(ε−1)‖gj‖Ln−1 .

Proof. For j > 0 and a smooth bump χ around [1, 2], we have

‖ sup
1≤t≤2

|σt ∗ gj |‖Ln−1 . ‖(1 +
√
−∂2

t )rχ · σt ∗ gj‖Ln−1(Rn+1)

. 2j(r+sp−θ−
n−1
2 +ε)‖gj‖Ln−1(Rn)

where we used Sobolev embedding with r > 1/(n−1), Proposition 4.1 with p = n−1
as well as Young’s convolution inequality. Simplifying the exponent in accordance
with Proposition 4.1 1, we obtain the claim. �

1The full strength of [6] is only needed when n = 5. When n ≥ 6, the earlier results from [24]
will already do.
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4.3. Lp → Lq estimates. To finish the proof of (4.2), we prove Lp → Lq esti-
mates following the interpolation scheme of Lee [25] enhanced with the sharp local
smoothing estimate. Denote

S∗j f(x) := sup
1≤t≤2

|F−1(σ̂(tξ)|ξ|f̂j(ξ))(x)|,

where f̂j = f̂ψj still stands for Fourier localization at the level of a Littlewood–
Paley piece of frequency 2j .

Proposition 4.3. Let P be the open convex polygon with vertices

A =
(n− 2

n
,

2

n

)
, B =

(n2 − 2n− 1

n2 + 1
,

2(n− 1)

n2 + 1

)
C =

( 1

n− 1
,

1

n− 1

)
, D =

(n− 2

n
,
n− 2

n

)
.

Then

‖S∗j f‖Lq . 2−εj‖fj‖Lp

for some ε > 0 and all j > 0 provided that (1/p, 1/q) ∈ P .

Proof. Since supp σ̂ · ψj(tξ) ⊂ {|ξ| ∼ 2j}, we can assume that f̂ is supported in an
annulus around |ξ| = 2j . We use the following bounds:

‖S∗j f‖L1 . 22j‖f‖L1

‖S∗j f‖L∞ . 22j‖f‖L1

‖S∗j f‖Ln−1 .δ 2jδ‖f‖Ln−1 , for all δ > 0 (4.3)

‖S∗j f‖L2 . 2−
n−4
2 j‖f‖L2

‖S∗j f‖
L

2(n+1)
n−1

. 2−j
n2−4n−3

2n+2 ‖f‖L2 .

To verify (4.3), use Proposition 4.2 as well as Young’s convolution inequality to
obtain

‖S∗j f‖Ln−1 .δ 2−j(1−δ)‖(−∆)1/2f‖Ln−1 . 2jδ‖f‖Ln−1 .

The other inequalities follow similarly, that is, by borrowing the corresponding
bounds for the spherical maximal function (inequalities (1.7)–(1.10) in [25]), and
applying Young’s convolution inequality. Interpolating the bounds above, we obtain
the claimed proposition. �

For each p > 1, we want to find the values of α such that (1/p, 1/q) ∈ P when
(α− 1)/n = 1/p− 1/q and q ≥ 2. When q ≥ 2 is assumed, this happens when

n

n− 2
< p ≤ n2 + 1

n2 − 2n− 1
, α <

n2 − 2n− 1

n− 1
− 2n

p(n− 1)

or

n2 + 1

n2 − 2n− 1
< p ≤ n− 1, α <

n− 1

p
.

This concludes the proof for the case q ≥ 2. Notice that the restriction q ≥ 2 is not
dictated by validity of Lp → Lq estimates but it was required in order to upgrade
the single scale bounds to bounds for the full maximal operator in §§4.1.
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4.4. The case q ≤ 2. Next we remove the assumption q > 2. Let

T ∗f(x) = sup
t>0
|F−1((t|ξ|)ασ̂(tξ)f̂(ξ))(x)|.

The operator Sα in (4.1) can be written

Sα = T ∗Iα−1Thf

where Îα−1f = |ξ|1−αf̂ is the Riesz potential of order α − 1 and Th are as in
(3.1). As discussed in §§3.1, Th are bounded in Lp for all p > 1. Also, by the
Hardy–Littlewood–Sobolev inequality Iα−1 is bounded Lp → Lq, for p, q obeying
α−1
n = 1

p −
1
q . Therefore, it is enough to analyse the operator T ∗.

Let m(ξ) = |ξ|ασ̂(ξ) and take a Littlewood–Paley function ψ (as in §2). We
define m1 =

∑
j>0 ψjm and m0 =

∑
j≤0 ψjm. Take T ∗j to be as T ∗ but m replaced

by mj . Then
T ∗f ≤ T ∗0 + T ∗1 f.

We first bound T ∗0 . A straightforward computation shows that m0 is bounded and
for any multi-index β ∈ Nn with |β| = k, k ≤ n+ 1

|∂βξm0(ξ)| . |ξ|α−k

so that
‖(1 + | · |)n+1F−1(m0)‖L∞ . 1

(because α > 1). Consequently
T ∗0 f .Mf

and boundedness in any Lp with p > 1 follows from that of the Hardy–Littlewood
maximal function.

To bound T ∗1 , we use a part of Theorem B from [32]:

Theorem 4.4 (Rubio de Francia [32]). Let m be a function in Cs+1(Rn) for some
integer s > n/2 such that |Dαm(ξ)| . |ξ|−a, for all |α| ≤ s + 1. Suppose also

that a > 1
2 . Then the maximal multiplier operator T ∗f := supt>0 |F−1(m(t·)f̂)| is

bounded in Lr, for
2n

n+ 2a− 1
< r ≤ 2.

Since
∑
j>0 ψjm is smooth and satisfies |Dαm(ξ)| . |ξ|−a, for all |α| ≤ s + 1

with a = n−1
2 − α, we can apply the theorem to conclude the proof whenever

2n

2n− 2− 2α
< q ≤ 2, a >

1

2

which is equivalent to p > n
n−2 and α < n−2

2 < α(p). However, given p > n
n−2 , the

condition α < n−2
2 is automatically satisfied whenever q ≤ 2. Hence α < α(p) is an

active constraint only when q > 2.
�
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[17] T. Heikkinen, J. Kinnunen, J. Korvenpää, and H. Tuominen. Regularity of the local fractional
maximal function. Arkiv för Matematik, 53(1):127–154, 2015.

[18] T. Heikkinen, J. Kinnunen, J. Nuutinen, and H. Tuominen. Mapping properties of the discrete

fractional maximal function in metric measure spaces. Kyoto J. Math., 53(3):693–712, 2013.
[19] Y. Heo, F. Nazarov, and A. Seeger. Radial Fourier multipliers in high dimensions. Acta Math.,

206(1):55–92, 2011.

[20] J. Kinnunen. The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math.,
100:117–124, 1997.

[21] J. Kinnunen and P. Lindqvist. The derivative of the maximal function. J. reine angew. Math.,
503:161–167, 1998.

[22] J. Kinnunen and E. Saksman. Regularity of the fractional maximal function. Bull. London

Math. Soc., 35(4):529–535, 2003.
[23] O. Kurka. On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn.

Math., 40(1):109–133, 2015.

[24] I.  Laba and T. Wolff. A local smoothing estimate in higher dimensions. J. Anal. Math.,
88:149–171, 2002. Dedicated to the memory of Tom Wolff.

[25] S. Lee. Endpoint estimates for the circular maximal function. Proc. Amer. Math. Soc.,

131(5):1433–1442, 2003.
[26] S. Lee and A. Seeger. Lebesgue space estimates for a class of Fourier integral operators

associated with wave propagation. Math. Nachr., 286(7):743–755, 2013.

[27] H. Luiro. The variation of the maximal function of a radial function.
arxiv.org/abs/1702.00669 (2017).

[28] H. Luiro and J. Madrid. The variation of the fractional maximal function of a radial function.

To appear in Int. Math. Res. Not., arxiv.org/abs/1710.07233 (2017).
[29] G. Mockenhaupt, A. Seeger, and C. D. Sogge. Wave front sets, local smoothing and Bourgain’s

circular maximal theorem. Ann. of Math. (2), 136(1):207–218, 1992.
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