

Bonn International Graduate School in Mathematics

The Center of the Affine NilTemperley-Lieb Algebra

Meinel, Joanna

Advisor : Prof. Dr. Catharina Stroppel

The affine nilTemperley-Lieb algebra	A faithful representation
 Definition The affine nilTemperley-Lieb algebra of rank N is given by the unital associative C-algebra nTL_N with generators a₀,, a_{N-1} and relations (take all indices modulo N) a_i² = 0 for all 0 ≤ i ≤ N − 1, 	Exterior algebra Take $V = \bigoplus_{n=0}^{N} (\bigwedge^{n} \mathbb{C}^{N}) \otimes \mathbb{C}[z]$ with standard basis $v_{\underline{k}} := v_{k_{1}} \wedge \ldots \wedge v_{k_{n}}$ for $\underline{k} = (0 \leq k_{1} < \ldots < k_{n} \leq N-1)$. Action of $n\widehat{\mathrm{TL}}_{N}$ on V (take all indices modulo N): $a_{i}v_{\underline{k}} = \begin{cases} v_{k_{1}} \wedge \ldots \wedge v_{k_{r-1}} \wedge v_{i+1} \wedge v_{k_{r+1}} \wedge \ldots \wedge v_{k_{n}}, & \text{if } k_{r} = i \text{ for some } r, \\ 0, & \text{otherwise}, \end{cases}$ $a_{0}v_{\underline{k}} = \begin{cases} z \cdot v_{k_{1}} \wedge \ldots \wedge v_{k_{r-1}} \wedge v_{1} \wedge v_{k_{r+1}} \wedge \ldots \wedge v_{k_{n}}, & \text{if } k_{r} = 0 \text{ for some } r, \\ 0, & \text{otherwise}. \end{cases}$ So a_{i} replaces v_{i} by v_{i+1} , and one keeps track of 'passing the 0' by multiplication by z . Theorem 1 ([BFZ]) For $N \geq 3$, V is a faithful $n\widehat{TL}_{N}$ -module.
$a_{i}a_{j} = a_{j}a_{i}$ for all $ i - j > 1$, $a_{i}a_{i+1}a_{i} = a_{i+1}a_{i}a_{i+1} = 0$ for all $0 \le i \le N - 1$.	
The nonzero monomials in $\widehat{\mathrm{nTL}}_N$ form a basis (because the relations are given by monomials).	
Write $a(\underline{j}) = a_{j_1} \dots a_{j_m}$ for a sequence $\underline{j} = (j_1, \dots, j_m)$ with $j_k \in \{0, \dots, N-1\}$.	
Gradings	Graphical description
• Z-grading: By the length of a monomial. The degree of a generator a_i is $1 \in \mathbb{Z}$.	V is the $\mathbb{C}[z]$ -span of particle configurations with • up to N particles on a circle with N positions
• \mathbb{Z}^N -grading: By the number of generators appearing in a monomial. The degree of a generator a_i is e_i , the <i>i</i> th standard basis vector in \mathbb{Z}^N .	• at most one particle on each position 54^{-5}
The \mathbb{Z}^N -grading is finer than the \mathbb{Z} -grading!	In the graphical description, a_i moves a particle clockwise from position i to position $i + 1$.
Examples	
In $n\widehat{TL}_4$: $a_0a_1a_3a_0 \neq 0$. In $n\widehat{TL}_5$: $a_0a_1a_3a_0 = 0$ (here $a_3a_0 = a_0a_3$).	$\begin{pmatrix} & & & 1 \\ 6 & & & 2 \end{pmatrix} \qquad \qquad \begin{pmatrix} & & & 1 \\ 6 & & & & 2 \end{pmatrix} \bullet \qquad \qquad \begin{pmatrix} & 7 & & 1 \\ 6 & & & & 2 \end{pmatrix}$
Notice that in $\widehat{\mathrm{TL}}_N$ $(N \ge 3)$, the element $(a_0 a_1 \dots a_{N-1})^s$ is nonzero for all $s \in \mathbb{Z}_{\ge 0}$.	5 4 3

 \mathbb{Z}^4 -degree = (2, 1, 0, 1)

 \mathbb{Z}^4 -degree = (1, 1, 1, 1).

(a) $a_6(v_1 \wedge v_5 \wedge v_6) = v_1 \wedge v_5 \wedge v_7$ (b) $a_7 a_1 a_6(v_1 \wedge v_5 \wedge v_6) = v_2 \wedge v_5 \wedge v_0$

(c) $a_0(v_0 \wedge v_5) = z \cdot v_1 \wedge v_5$.

Facts about the center

 $a_0a_1a_2a_3 \in \mathrm{nTL}_4$: \mathbb{Z} -degree = 4,

The center and the grading

Lemma 1 The center of a graded algebra is homogeneous.

 \rightarrow We can determine the center by looking at graded components!

Compare the gradings: $a_0a_1a_3a_0 \in n\widehat{TL}_4$: \mathbb{Z} -degree = 4,

Trivially, $\mathbb{C} \cdot 1$ is central in $\widehat{\mathrm{nTL}}_N \rightsquigarrow \operatorname{Only}$ search for central elements in \mathbb{Z} -degree > 0.

Example 1 One can determine the center of $n\widehat{TL}_2$ by hand:

- $n\widehat{TL}_2 = \mathbb{C}\langle 1, a_0, a_1, a_0a_1, a_1a_0\rangle.$
- Center $(n\widehat{TL}_2) = \mathbb{C}\langle 1, a_0a_1, a_1a_0 \rangle$.

Lemma 2 Any central element in $n\widehat{TL}_N$ is a linear combination of monomials in which every generator a_i appears at least once (besides 1).

 \rightarrow Homogeneous central elements (besides 1) have \mathbb{Z} -degree at least N, \mathbb{Z}^N -degree at least $(1, \ldots, 1)$.

Special monomials in $\widehat{\mathbf{nTL}}_N$

For a basis element $v_k \in V$ define a monomial $a(\underline{\hat{k}})$ that moves every particle in v_k to the position of the precessing particle:

 $a(\underline{\widehat{k}})v_{\underline{k'}} = \begin{cases} z \cdot v_{\underline{k}} & \text{if } \underline{k'} = \underline{k} \\ 0 & \text{for all } \underline{k'} \neq \underline{k} \text{ (of any length).} \end{cases}$

 $= z \cdot v_1 \wedge v_5 \wedge v_6 = a_4 a_3 a_2 \cdot a_0 a_7 \cdot a_1 a_5 a_6 \cdot v_1 \wedge v_5 \wedge v_6$

 \rightsquigarrow We can pick single basis elements in V.

Lemma 3 Any central element in $n\widehat{TL}_N$ with constant term 0 acts on a wedge $v_k \in V$ by multiplication with an element of $z\mathbb{C}[z]$.

This factor only depends on the length r = |k| of v_k resp. on the number of particles (not their positions).

Description of the center

The main result

Define for $1 \le r \le N-1$

$$(r) := \sum_{|k|=r} a(\underline{\widehat{k}}),$$

the sum over all monomials that move r particles once around the circle.

t

Theorem 2 The t(r) are central, for all $1 \le r \le N - 1$. Moreover,

- The center of $n\widehat{TL}_N$ is generated by 1 and the t(r).
- $t(r) \cdot t(m) = 0$ for all $r \neq m$.

$$\operatorname{Center}(\widehat{\mathrm{nTL}}_N) = \mathbb{C} \oplus t(1) \cdot \mathbb{C}[t(1)] \oplus \ldots \oplus t(N-1) \cdot \mathbb{C}[t(N-1)]$$
$$\cong \frac{\mathbb{C}[t(1), \ldots, t(N-1)]}{(t(i)t(j) \mid i \neq j)}.$$

Examples

- $n\widehat{TL}_3: t(1) = a_2a_1a_0 + a_0a_2a_1 + a_1a_0a_2,$ $t(2) = a_0 a_1 a_2 + a_1 a_2 a_0 + a_2 a_0 a_1.$
- $n\widehat{TL}_4: \quad t(1) = a_3a_2a_1a_0 + a_0a_3a_2a_1 + a_1a_0a_3a_2 + a_2a_1a_0a_3,$ $t(2) = a_0a_2a_1a_3 + a_1a_3a_0a_2 + a_0a_1a_3a_2 + a_1a_2a_0a_3 + a_2a_3a_1a_0 + a_3a_0a_2a_1,$
 - $t(3) = a_0a_1a_2a_3 + a_1a_2a_3a_0 + a_2a_3a_0a_1 + a_3a_0a_1a_2.$

References

- [BFZ] A. Berenstein, S. Fomin, A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math., 122, (1996), p. 49–149.
- G. Benkart, J. Meinel, C. Stroppel, The center of the affine nilTemperley-Lieb algebra, [BMS] in preparation.

2013 Max-Planck-Institute for Mathematics joanna@math.uni-bonn.de