
Tensor products of irreducible sl2-modules:
Decomposition rules and endomorphism rings

Meinel, Joanna

Advisor : Prof. Dr. Catharina Stroppel

Background knowledge

Reminder on sl2-modules

Recall the Lie algebra sl2 of traceless 2 × 2-matrices over the complex numbers: It is spanned by

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
and the Lie bracket is given by the matrix commutator

[X, Y ] = XY − Y X. The generators satisfy the relations [H,E] = 2E, [H,F ] = −2F , [E,F ] = H. We want
to study finite dimensional modules over sl2. The following facts make our life easy:

• Every finite dimensional sl2-module decomposes into a direct sum of irreducible modules (Weyl’s theo-
rem on complete reducibility)

• We know exactly how the finite dimensional irreducible sl2-modules look like: They are (up to isomor-
phism) uniquely determined by their dimension, and the n + 1-dimensional one is given by

Vn = spanC {vn, vn−2, . . . , v−n+2, v−n},

where vk is of weight k, ie. H(vk) = k · vk. The module Vn is highest weight of weight n.

For example, the 1-dimensional sl2-module V0 = spanC {v0} is the trivial module: As vector space, it is
isomorphic to C, and sl2 acts by 0. The 2-dimensional sl2-module V1 = spanC {v1, v−1} is called the natural
module: It is C2 with action by matrix-vector-multiplication. The tensor product V ⊗W of two sl2-modules
is again a sl2-module with action X(v ⊗ w) = X(v)⊗ w + v ⊗X(w).

Aim: Decompose tensor products Vd1 ⊗ . . .⊗ Vdr into irreducible modules!

Describe the endomorphism ring Endsl2(Vd1 ⊗ . . .⊗ Vdr)!

Clebsch-Gordon decomposition rule for tensor products of sl2-modules

For the irreducible modules Vn and Vm, say n ≥ m, we have

Vn ⊗ Vm
∼= Vn+m ⊕ Vn+m−2 ⊕ . . .⊕ Vn−m+2 ⊕ Vn−m.

So we get for example V1 ⊗ V1
∼= V2 ⊕ V0 and hence V1 ⊗ V1 ⊗ V1

∼= (V2 ⊕ V0) ⊗ V1
∼= V3 ⊕ V1 ⊕ V1.

Successive application of this rule enables us to decompose every Vd1 ⊗ . . . ⊗ Vdr by hand, see also [Kas95].
Notice furthermore that every irreducible module Vd appears in the tensor product V ⊗d

1 = V1 ⊗ . . .⊗ V1︸ ︷︷ ︸
d times

.

Classical multiplicity formulas

What is the multiplicity of Vk in V ⊗d
1 ? We want to determine the numbers md

k in V ⊗d
1 =

⊕
V

⊕md
k

k . There
is eg. a formula by Lehrer-Zhang [LZ10]:

md
k =

(
d

d+k
2

)
2(k + 1)

d + k + 2
for d ≥ 1 and 0 ≤ k ≤ d.

From the Clebsch-Gordon rule we can read off: This multiplicity is also given by the number of possibilities
to write k as a sum

∑d
1±1 of d summands, each either +1 or −1, such that each partial sum is nonnegative:∑m

1 ±1 ≥ 0 for all 1 ≤ m ≤ d.

Another multiplicity formula using Catalan numbers

Successive application of the Clebsch-Gordon rule gives the following multiplicities md
k of Vk in V ⊗d

1 :

1

1 1

1 2 0

1 3 2 0

1 4 5 0 0

1 5 9 5 0 0

1 6 14 14 0 0 0

1 7 20 28 14 0 0 0
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1

V ⊗2
1

V ⊗3
1

V ⊗4
1

V ⊗5
1

V ⊗6
1

V ⊗7
1

V ⊗8
1

This triangle is very similar to a Pascal triangle: Almost all its entries are the sum of the two entries from
above, except for the fact that there are no summands belonging to a negative weight in V ⊗d

1 , so one has to
delete every entry on the right hand side of the red line (which would correspond to a negative weight). This
error is propagated throughout the triangle. But one can describe the propagation of the error via further
Pascal triangles that have to be subtracted from the original one. Take a look at the top of the triangle:

1

1 1

1 2 1

1 3 3 1

− 1

1 1

=

1

1 1

1 2 0

1 3 2 0

We see that we have to subtract a whole (translated) Pascal triangle to compensate for the error coming
from the ’wrong 1’. It is the multiplicity of V0 in V ⊗2

1 . We have to repeat this in every second row: For d
even, subtract a Pascal triangle with multiplicity = the multiplicity of the trivial representation V0 in V ⊗d

1 .

Catalan numbers

This multiplicity equals the d
2
-th Catalan number. The Catalan numbers Cn =

(
2n
n

)
1

n+1
appear in numerous

combinatorial problems! They count eg. triangulations of a convex (n + 2)-gon, or paths in the plane from
(0, 0) to (2n, 0) using only steps (1, 1) and (1,−1) never passing below the x-axis, see [Sta99]. We use the
interpretation of Cn as number of sequences of n 1’s and n (−1)’s with nonnegative partial sums.

The formula

The multiplicity of Vd−2k in V ⊗d
1 is given by md

d−2k =
(
d−1
k

)
−

d−1∑
j=1

Cj

(
d−1−2j
k−(j+1)

)
, where we use the convention(

n
k

)
= 0 whenever n < 0, k < 0 or k > n (some summands vanish, the sum runs up to d − 1 only for

aesthetical reasons). With this convention the formula holds for all d and k, even silly ones.

Decomposition of Vd1 ⊗ . . .⊗ Vdr

We want to describe
Vd1 ⊗ . . .⊗ Vdr ⊂ V ⊗d1

1 ⊗ . . .⊗ V ⊗dr
1 = V ⊗d1+...+dr

1 .

Problem: This inclusion is not canonical, since the decomposition of V ⊗d
1 into irreducible summands is not

canonical (only the isotypical components are). But at least

Vk ⊗ V1 = Vk+1 ⊕ Vk−1 for k ≥ 1

is unique. So if we view V ⊗d
1 as the result of successive tensor products V1⊗V1, V

⊗2
1 ⊗V1, . . ., V

⊗d−1
1 ⊗V1, we

have in each step control of the decomposition. This enables us to trace down certain irreducible summands
following a path in the decomposition picture:

V1

V2 V0

V3 V1

V4 V2 V0

V5 V3 V1

V6 V4 V2 V0

V7 V5 V3 V1

V8 V6 V4 V2 V0

V9 V7 V5 V3 V1

V10 V8 V6 V4 V2 V0
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1
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1
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1

V ⊗4
1

V ⊗5
1

V ⊗6
1

V ⊗7
1

V ⊗8
1

V ⊗9
1

V ⊗10
1

Each arrow is a (canonical) projection onto Vk+1 or Vk−1 inside Vk⊗V1. Projecting along a path, ie. composing
the projections read off from the path, gives a certain summand inside V ⊗d

1 .

Highest weight vectors

So it makes sense to ask: How do Vk+1 and Vk−1 lie exactly inside Vk⊗V1? We answer this in terms of highest
weight vectors: Denote by v = vk the highest weight vector of Vk. For the irreducible sl2-representations Vk

and V1, the two linearly independent highest weight vectors in Vk ⊗ V1 are (up to scalars) obtained by

: v 7→ v ⊗ v1 which is of weight k + 1,

: v 7→ EF (v)⊗ v−1 − F (v)⊗ v1 which is of weight k − 1.

In other words, we have an explicit decomposition of Vk ⊗ V1 into

Vk ⊗ V1 = U(sl2)(v ⊗ v1) ⊕ U(sl2)(EF (v)⊗ v−1 − F (v)⊗ v1).

Now we are ready to agree on a convention to choose a path corresponding to Vd1⊗. . .⊗Vdr inside V ⊗d1+...+dr
1 .

For example, always take the leftmost path, like in the above example for V6 ⊗ V4.

Endomorphism rings

The endomorphism ring Endsl2(V
⊗d
1 ) is characterized by classical Schur-Weyl duality as summand of C[Sd]

(the group algebra of the symmetric group) because there are no sl2-morphisms other than the permutation
of the tensor factors. What about Endsl2(Vd1 ⊗ . . .⊗ Vdr)? Thanks to Schur’s lemma, these endomorphisms
are nothing but block matrices. Nevertheless, we aim at a description of

Endsl2(Vd1 ⊗ . . .⊗ Vdr) ⊂ Endsl2(V
⊗d1+...+dr
1 ),

using the description of Vd1 ⊗ . . . ⊗ Vdr via paths. The paths represent projections to the summands, as we
have seen. These considerations are a special case of higher Schur-Weyl duality as discussed in [BK08].

The Hecke algebra

Higher Schur-Weyl duality relates some Endgln(M p ⊗ V ⊗d) with the degenerate affine Hecke algebra. This
Hecke algebra is generated by C[x1, . . . , xd] and C[Sd] with additional relation sixi+1 = xisi + 1. There is
another graphical description in terms of KLR-generators (coloured strands and fat dots!) which provides
idempotents projecting to the summands of M p ⊗ V ⊗d. Back in our setting, this means that we have to add
all the idempotents that project to the summands of Vd1 ⊗ . . .⊗ Vdr to get an idempotent e such that

Endsl2(Vd1 ⊗ . . .⊗ Vdr) = e · Endsl2(V
⊗d1+...+dr
1 ) · e ⊂ Endsl2(V

⊗d1+...+dr
1 ).

Outlook

Recent research deals with all kinds of endomorphism rings of tensor products. One looks for generalizations
for other types as in [LZ]. Or one asks the same questions for the quantum group Uq(sl2): At least one can
decompose the tensor product Vk ⊗ V1 (the irreducible type +1 representations of dimension k + 1 resp. 2)
in the same way as we did for sl2, one only needs to add one extra q to compensate for the asymmetric
action of Uq(sl2) on the tensor product: The two highest weight vectors in Vk ⊗ V1 are v ⊗ v1 of weight qk+1

and EF (v) ⊗ v−1 − qF (v) ⊗ v1 of weight qk−1. See also the pictures in [BH11]! But eg. the description of
EndUq(sl2)(Vd1 ⊗ . . .⊗ Vdr) is still pending.
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