# A TANNAKIAN CLASSIFICATION OF TORSORS ON THE PROJECTIVE LINE

## JOHANNES ANSCHÜTZ

ABSTRACT. In this small note we present a Tannakian proof of the theorem of Grothendieck-Harder on the classification of torsors under a reductive group on the projective line over a field.

## 1. Introduction

Let k be a field, let G/k be a reductive group and let  $\mathbb{P}^1_k$  be the projective line over k. In this small note we present a Tannakian proof of the classification of G-torsors on  $\mathbb{P}^1_k$ , thereby reproving known results of A. Grothendieck [Gro57] and G. Harder [Har68, Satz 3.4.]. To state our main theorem we denote by

$$\operatorname{Hom}^{\otimes}(\operatorname{Rep}_k(G), \operatorname{Rep}_k(\mathbb{G}_m))$$

the set of isomorphism classes of exact tensor functors

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Rep}_k(\mathbb{G}_m).$$

Theorem 1.1 (cf. Theorem 3.3, Corollary 3.5). There exists a canonical bijection

$$\operatorname{Hom}^{\otimes}(\operatorname{Rep}_k(G), \operatorname{Rep}_k(\mathbb{G}_m)) \cong H^1_{\operatorname{\acute{e}t}}(\mathbb{P}^1_k, G).$$

In particular, there exists a canonical bijection

$$\operatorname{Hom}(\mathbb{G}_m, G)/G(k) \cong H^1_{\operatorname{Zar}}(\mathbb{P}^1_k, G).$$

If  $A \subseteq G$  denotes a maximal split torus, then

$$\operatorname{Hom}(\mathbb{G}_m,G)/G(k)\cong X_*(A)_+$$

is in bijection with the set of dominant cocharacters of  $A \subseteq G$ , which gives a very concrete description of the set  $H^1_{\operatorname{Zar}}(\mathbb P^1_k,G)$ . Using pure inner forms of G over k one can describe similarly the whole set  $H^1_{\operatorname{\acute{e}t}}(\mathbb P^1_k,G)$  (cf. Lemma 3.4).

Our proof of Theorem 1.1, which originated in questions about torsors over the Fargues-Fontaine curve (cf. [Ans]), is based on the Tannakian description of G-torsors (cf. Lemma 3.1), the Tannakian theory of filtered fiber functors (cf. [Zie15]), the canonicity of the Harder-Narasimhan filtration (cf. Lemma 2.2) and, most importantly, the good understanding of the category  $\operatorname{Bun}_{\mathbb{P}^1_k}$  of vector bundles on  $\mathbb{P}^1_k$  (cf. Theorem 2.1). In particular, we use crucially the fact that

$$H^1_{\text{\'et}}(\mathbb{P}^1_k,\mathcal{E})=0$$

for  $\mathcal{E}$  a semistable vector bundle on  $\mathbb{P}^1_k$  of slope  $\geq 0$ .

In a last section we mention applications of Theorem 1.1 to the the computation of the Brauer group of  $\mathbb{P}^1_k$  (avoiding Tsen's theorem) and to the Birkhoff-Grothendieck decomposition of G(k((t))).

Date: March 1, 2017.

1.2. Acknowledgment. We want to thank Jochen Heinloth for his interest and for answering several questions.

## 2. Vector bundles on $\mathbb{P}^1_k$

Let k be an arbitrary field. We recall, in a more canonical form, the classification of vector bundles on the projective line  $\mathbb{P}^1_k$  due to A. Grothendieck (cf. [Gro57]). Let

$$\operatorname{Rep}_k(\mathbb{G}_m)$$

be the category of finite dimensional representations of the multiplicative group  $\mathbb{G}_m$ over k. More concretely, the category  $\operatorname{Rep}_k(\mathbb{G}_m)$  is equivalent to the Tannakian category of finite dimensional  $\mathbb{Z}$ -graded vector spaces over k.

Over  $\mathbb{P}^1_k$  there is the canonical  $\mathbb{G}_m$ -torsor

$$\eta \colon \mathbb{A}^2_k \setminus \{0\} \to \mathbb{P}^1_k, \ (x_0, x_1) \mapsto [x_0 : x_1],$$

also called the "Hopf bundle". Given a representation  $V \in \operatorname{Rep}_k(\mathbb{G}_m)$  the contracted product

$$\mathcal{E}(V) := \mathbb{A}_k^2 \setminus \{0\} \times^{\mathbb{G}_m} V \to \mathbb{P}_k^1$$

defines a (geometric) vector bundle over  $\mathbb{P}^1_k$ . The well known classification of the category

$$\operatorname{Bun}_{\mathbb{P}^1_t}$$

of vector bundles on  $\mathbb{P}^1_k$  can now be phrased in the following way.

Theorem 2.1. The functor

$$\mathcal{E}(-)\colon \mathrm{Rep}_k(\mathbb{G}_m)\to \mathrm{Bun}_{\mathbb{P}^1_k}$$

is an exact, faithful tensor functor inducing a bijection on isomorphism classes.

However, the functor  $\mathcal{E}(-)$  is not an equivalence. For example, by semi-simplicity of the category  $\operatorname{Rep}_k(\mathbb{G}_m)$  every short exact sequence of  $\mathbb{G}_m$ -representations splits, but this is not true for short exact sequences of vector bundles on  $\mathbb{P}^1_k$ .

For  $V \in \operatorname{Rep}_k(\mathbb{G}_m)$  the Harder-Narasimhan filtration of the vector bundle

$$\mathcal{E}(V)$$

has a very simple description. Namely, write

$$V = \bigoplus_{i \in \mathbb{Z}} V_i$$

 $V = \bigoplus_{i \in \mathbb{Z}} V_i$  with  $\mathbb{G}_m$  acting on  $V_i$  by the character  $^1$ 

$$\mathbb{G}_m \to \mathbb{G}_m, \ z \mapsto z^{-i}$$

and set

$$\operatorname{fil}^{i}(V) := \bigoplus_{j \ge i} V_{j}$$

for  $i \in \mathbb{Z}$ . Then the Harder-Narasimhan filtration of  $\mathcal{E} := \mathcal{E}(V)$  is given by

$$\ldots \subseteq HN^{i+1}(\mathcal{E}) \subseteq HN^{i}(\mathcal{E}) \subseteq \ldots \subseteq \mathcal{E}.$$

where

$$HN^i(\mathcal{E}) := \mathcal{E}(fil^i(V)).$$

<sup>&</sup>lt;sup>1</sup>The sign is explained by the fact that the standard represention  $z \mapsto z$  of  $\mathbb{G}_m$  is sent by  $\mathcal{E}(-)$ to  $\mathcal{O}_{\mathbb{P}^1_h}(-1)$  and not to  $\mathcal{O}_{\mathbb{P}^1_h}(1)$ .

**Lemma 2.2.** Sending a vector bundle  $\mathcal{E}$  to the filtered vector bundle  $\mathcal{E}$  with the Harder-Narasimhan filtration  $HN^{\bullet}(\mathcal{E})$  defines a fully faithful tensor functor

$$HN: Bun_{\mathbb{P}^1_+} \to FilBun_{\mathbb{P}^1_+}$$

into the exact tensor category of filtered vector bundles (with filtration by locally direct summands) (cf. [Zie15, Chapter 4] for a definition of FilBun<sub> $\mathbb{P}^1$ </sub>).

*Proof.* This is clear from the description of the Harder-Narasimhan filtration.

We remark that the functor HN is not exact as one sees for example by looking at the Euler sequence

$$0 \to \mathcal{O}_{\mathbb{P}^1_k}(-1) \to \mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k} \to \mathcal{O}_{\mathbb{P}^1_k}(1) \to 0$$

on  $\mathbb{P}^1_k$ .

Sending a filtered vector bundle  $(\mathcal{E}, F^{\bullet})$  to the associated graded vector bundle

$$\operatorname{gr}(\mathcal{E}) := \bigoplus_{i \in \mathbb{Z}} F^i \mathcal{E} / F^{i+1} \mathcal{E}$$

defines an exact tensor functor

$$\operatorname{gr} \colon \operatorname{FilBun}_{\mathbb{P}^1_h} \to \operatorname{GrBun}_{\mathbb{P}^1_h}$$

(cf. [Zie15, Chapter 4]).

The following lemma is immediate from Theorem 2.1, Lemma 2.2 and the fact that

$$H^0(\mathbb{P}^1_k, \mathcal{O}_{\mathbb{P}^1_k}) \cong k.$$

Lemma 2.3. The composite functor

$$\operatorname{Rep}_k(\mathbb{G}_m) \xrightarrow{\mathcal{E}(-)} \operatorname{Bun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{HN}} \operatorname{FilBun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{gr}} \operatorname{GrBun}_{\mathbb{P}^1_k}$$

is an equivalence of exact categories from  $\operatorname{Rep}_k(\mathbb{G}_m)$  onto its essential image which consists of graded vector bundles

$$\mathcal{E} = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}^i$$

such that each  $\mathcal{E}^i$  is semistable of slope i.

## 3. Torsors over $\mathbb{P}^1_k$

Let G/k be an arbitrary reductive group. In this section we want to classify G-torsors on  $\mathbb{P}^1_k$  for the étale topology. For this we keep the notation from the last section. In particular, there is the functor

$$\mathcal{E}(-)\colon \mathrm{Rep}_k(\mathbb{G}_m)\to \mathrm{Bun}_{\mathbb{P}^1_k}$$

from Theorem 2.1

In order to apply the formulations from the previous section we need a more bundle theoretic interpretation of G-torsors (for the étale topology). This is achieved by the Tannakian formalism (cf. [Del90])

**Lemma 3.1.** Let S be a scheme over k. Sending a G-torsor  $\mathcal{P}$  over S to the exact tensor functor

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_S, \ V \mapsto \mathcal{P} \times^G (V \otimes_k \mathcal{O}_S)$$

defines an equivalence from the groupoid of G-torsors to the groupoid of exact tensor functors from  $\operatorname{Rep}_k(G)$  to  $\operatorname{Bun}_S$ . The inverse equivalence sends an exact tensor functor  $\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_S$  the G-torsor  $\operatorname{Isom}^{\otimes}(\omega_{\operatorname{can}}, \omega)$  of isomorphisms of  $\omega$  to the canonical fiber functor  $\omega_{\operatorname{can}} \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_S$ ,  $V \mapsto V \otimes_k \mathcal{O}_S$ .

In fact, for a general affine group scheme over k one has to use the fpqc-topology in Lemma 3.1. However, as G is assumed to be reductive, thus in particular smooth, a theorem of Grothendieck (cf. [Gro68, Théorème 11.7]) allows to reduce to the étale topology.

Composing an exact tensor functor

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_{\mathbb{P}^1_+}$$

with the Harder-Narasimhan functor

$$HN: Bun_{\mathbb{P}^1_h} \to FilBun_{\mathbb{P}^1_h}$$

defines a, a priori not necessarily exact, tensor functor

$$\operatorname{HN} \circ \omega \colon \operatorname{Rep}_k(G) \to \operatorname{FilBun}_{\mathbb{P}^1_+}.$$

But using Haboush's theorem reductivity of G actually implies that the composition HN  $\circ \omega$  is still exact.

#### Lemma 3.2. Let

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_{\mathbb{P}^1}$$

be an exact tensor functor. Then the composition

$$\operatorname{HN} \circ \omega \colon \operatorname{Rep}_k(G) \to \operatorname{FilBun}_{\mathbb{P}^1}$$

is still exact.

*Proof.* The crucial observation is that the functors

$$\omega$$
, gr  $\circ$  HN

are compatible with duals, and exterior resp. symmetric products. This is clear for  $\omega$  as  $\omega$  is assumed to be exact and follows from Lemma 2.3 for the functor  $HN \circ gr$ . In fact, for a representation  $V \in \operatorname{Rep}_k(\mathbb{G}_m)$  with associated vector bundle

$$\mathcal{E} := \mathcal{E}(V)$$

we can conclude

$$\Lambda^r(\mathcal{E}) \cong \mathcal{E}(\Lambda^r(V)) \text{ resp. } \operatorname{Sym}^r(\mathcal{E}) \cong \mathcal{E}(\operatorname{Sym}^r(V))$$

by exactness of the functor  $\mathcal{E}(-)$ . But by Lemma 2.3

$$\operatorname{gr} \circ \operatorname{HN} \circ \mathcal{E}(-)$$

is an exact tensor equivalence of  $\operatorname{Rep}_k(\mathbb{G}_m)$  with a subcategory of  $\operatorname{GrBun}_{\mathbb{P}^1_k}$ , which implies the stated compatibility with exterior and symmetric powers. Using this the proof can proceed similarly to [DOR10, Theorem 5.3.1]. We note that for a representation V of G there is a canonical isomorphism

$$\operatorname{Sym}^r(V^{\vee}) \cong \operatorname{TS}_r(V)^{\vee}$$

from the r-th symmetric power  $\operatorname{Sym}^r(V^{\vee})$  of the dual of V to the dual of the module

$$TS_r(V) = (V^{\otimes r})^{S_r} \subseteq V^{\otimes r}$$

of symmetric tensors. In particular, G-invariant homogenous polynomials on V define G-invariant linear forms on  $\mathrm{TS}_r(V)^\vee$ .

Let now  $0 \to V \xrightarrow{f} V' \xrightarrow{g} V'' \to 0$  be an exact sequence in  $\operatorname{Rep}_k(G)$ . We have to check that the sequence

$$0 \to \tilde{\omega}(V) \xrightarrow{\tilde{\omega}(f)} \tilde{\omega}(V') \xrightarrow{\tilde{\omega}(g)} \tilde{\omega}(V'') \to 0$$

with

$$\tilde{\omega} := \operatorname{gr} \circ \operatorname{HN} \circ \omega$$

is still exact. We claim that  $\tilde{\omega}(f)$  is injective. This can be checked after taking the exterior power  $\Lambda^{\dim V}$  of f because  $\tilde{\omega}$  commutes with exterior powers. In particular, to prove injectivity we can reduce the claim for general f to the case  $\dim V=1$ . Tensoring with the dual of V reduces further to the case the V is moreover trivial. By Haboush's theorem (cf. [Hab75]) there exists an r>0 and a G-invariant homogenous polynomial  $f\in \operatorname{Sym}^r(V^\vee)$  such that  $f_{|V|}\neq 0$ . Using the above isomorphism  $\operatorname{Sym}^r(V^\vee)\cong \operatorname{TS}_r(V)^\vee$  this shows that there exists an r>0 such that the morphism

$$V \cong \mathrm{TS}_r(V) \xrightarrow{\mathrm{TS}_r(f)} \mathrm{TS}_r(V')$$

splits. This implies that  $\tilde{\omega}(\mathrm{TS}_r(f))$  splits and thus that  $\tilde{\omega}(f)$  is in particular injective because  $\tilde{\omega}$  commutes with the symmetric tensors  $TS_r$  as it commutes with symmetric powers and duals.

Dualizing yields that  $\tilde{\omega}(g)$  is surjective at the generic point of  $\mathbb{P}^1_k$ . However, the sequence

$$0 \to \tilde{\omega}(V) \xrightarrow{\tilde{\omega}(f)} \tilde{\omega}(V') \xrightarrow{\tilde{\omega}(g)} \tilde{\omega}(V'') \to 0$$

lies in the essential image of the functor  $\operatorname{Rep}_k(\mathbb{G}_m) \to \operatorname{GrBun}_{\mathbb{P}^1_k}$  from Lemma 2.3. In particular, we see that the cokernel of  $\tilde{\omega}(g)$  cannot have torsion, i.e., that it is zero. Finally, exactness in the middle of the sequence follows because

$$\operatorname{rk}(\tilde{\omega}(V')) = \operatorname{rk}(V') = \operatorname{rk}(V) + \operatorname{rk}(V'') = \operatorname{rk}(\tilde{\omega}(V)) + \operatorname{rk}(\tilde{\omega}(V'')).$$

This finishes the proof.

We briefly recall some results about filtered fiber functors on  $\operatorname{Rep}_k G$  (cf. [Zie15] and [Cor]). By definition a filtered fiber functor for  $\operatorname{Rep}_k G$  over a k-scheme S is an exact tensor functor

$$\omega \colon \mathrm{Rep}_k G \to \mathrm{FilBun}_S$$

into the exact tensor category of filtered vector bundles (with filtration by locally direct summands) on S. Associated to each filtered fiber functor  $\omega$  is an exact tensor functor

$$\operatorname{gr} \circ \omega \colon \operatorname{Rep}_k G \to \operatorname{GrBun}_S$$
,

i.e., a graded fiber functor, by mapping a filtered vector bundle to its associated graded. A splitting  $\gamma$  of a filtered fiber functor  $\omega$  is a graded fiber functor

$$\gamma \colon \mathrm{Rep}_k G \to \mathrm{GrBun}_S$$

such that

$$\omega = \text{fil} \circ \gamma$$

where the exact tensor functor

fil: 
$$GrBun_S \to FilBun_S$$

sends a graded vector bundle

$$\mathcal{E} = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}^i$$

to the filtered vector bundle  $(\mathcal{E}, \operatorname{fil}^{\bullet}\mathcal{E})$  with filtration

$$\mathrm{fil}^i\mathcal{E} = \bigoplus_{j \geq i} \mathcal{E}^j.$$

For a scheme  $f: S' \to S$  over S let  $\omega_{S'}$  be the base change of the filtered fiber functor  $\omega$  to S', i.e.,  $\omega_{S'}$  is defined as the composition

$$\operatorname{Rep}_k G \xrightarrow{\omega} \operatorname{FilBun}_S \xrightarrow{f^*} \operatorname{FilBun}_{S'},$$

which is again a filtered fiber functor. For a filtered fiber functor  $\omega$  the presheaf

$$\mathrm{Spl}(\omega)(S') := \{ \text{ set of splittings of } \omega_{S'} \}$$

on the category of S-schemes is represented by an fpqc-torsor for the affine and faithfully flat group scheme

$$U(\omega) := \operatorname{Ker}(\operatorname{Aut}^{\otimes}(\omega) \to \operatorname{Aut}^{\otimes}(\operatorname{gr} \circ \omega))$$

over S (cf. [Zie15, Lemma 4.20]). In particular, every filtered fiber functor

$$\omega \colon \mathrm{Rep}_k G \to \mathrm{FilBun}_S$$

admits a splitting fpqc-locally on S. The group scheme  $U(\omega)$  can be described more explicitly (cf. [Zie15, Theorem 4.40]). Namely there exists a decreasing filtration by normal subgroups

$$U(\omega) = U_1(\omega) \supseteq \ldots \supseteq U_i(\omega) \supseteq \ldots$$

for  $i \geq 1$ , which has the property that for  $i \geq 1$  the quotient

$$\operatorname{gr}^{i}U(\omega) := U_{i}(\omega)/U_{i+1}(\omega)$$

is abelian and isomorphic to

$$\operatorname{gr}^{i}U(\omega) \cong \operatorname{Lie}(\operatorname{gr}^{i}U(\omega)) \cong \operatorname{gr}^{i}\omega(\operatorname{Lie}(G)), \ i \geq 1.$$

We can now give a proof of our main theorem about the classification of G-torsors on  $\mathbb{P}^1_k$ . We denote for a scheme S over k by

$$\underline{\operatorname{Hom}}^{\otimes}(\operatorname{Rep}_k(G),\operatorname{Bun}_S)$$

the groupoid of exact tensor functors  $\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_S$  and by

$$\operatorname{Hom}^{\otimes}(\operatorname{Rep}_k(G),\operatorname{Bun}_S)$$

its set of isomorphism classes. Similarly, we use the notations

$$\underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G),\mathrm{Rep}_k(\mathbb{G}_m))$$

resp.

$$\operatorname{Hom}^{\otimes}(\operatorname{Rep}_k(G), \operatorname{Rep}_k(\mathbb{G}_m))$$

for the groupoid resp. the isomorphism classes of exact tensor functors

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Rep}_k(\mathbb{G}_m).$$

**Theorem 3.3.** Let G be a reductive group over k. Then the composition with  $\mathcal{E}(-)$  defines faithful functor

$$\Phi \colon \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Rep}_k(\mathbb{G}_m)) \to \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Bun}_{\mathbb{P}^1_k})$$

which induces a bijection

$$\operatorname{Hom}^{\otimes}(\operatorname{Rep}_k(G),\operatorname{Rep}_k(\mathbb{G}_m))\cong H^1_{\operatorname{\acute{e}t}}(\mathbb{P}^1_k,G).$$

on isomorphism classes.

Proof. By Lemma 2.3 the composition

$$\operatorname{Rep}_k(\mathbb{G}_m) \xrightarrow{\mathcal{E}(-)} \operatorname{Bun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{HN}} \operatorname{FilBun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{gr}} \operatorname{GrBun}_{\mathbb{P}^1_k}$$

is an equivalence onto its essential image. In particular, the functor

$$\Phi \colon \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Rep}_k(\mathbb{G}_m)) \to \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Bun}_{\mathbb{P}^1})$$

is faithful and induces an injection on isomorphism classes. Thus we have to prove that every exact tensor functor

$$\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Bun}_{\mathbb{P}^1_k}$$

factors as

$$\omega \cong \mathcal{E}(-) \circ \omega'$$

for some exact tensor functor

$$\omega' \colon \operatorname{Rep}_k(G) \to \operatorname{Rep}_k(\mathbb{G}_m).$$

Let  $\tilde{\omega} := HN \circ \omega$  be the functor

$$\tilde{\omega} \colon \operatorname{Rep}_k(G) \xrightarrow{\omega} \operatorname{Bun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{HN}} \operatorname{FilBun}_{\mathbb{P}^1_k}.$$

By Theorem 3.3 the functor  $\tilde{\omega}$  is still exact, i.e., a filtered fiber functor in the terminology of [Zie15], and we can use the results recalled above. We get a  $U(\tilde{\omega})$ -torsor

$$\mathrm{Spl}(\tilde{\omega})$$

of splittings of  $\tilde{\omega}$ . But for the filtration

$$U(\tilde{\omega}) \supseteq U_2(\tilde{\omega}) \supseteq \dots$$

the graded quotients

$$\operatorname{gr}^i U(\tilde{\omega}) \cong \operatorname{gr}^i \tilde{\omega}(\operatorname{Lie}(G))$$

are semistable vector bundles of slope  $i \geq 1$ . Hence,

$$H^1_{\text{\'et}}(\mathbb{P}^1_k, \operatorname{gr}^i U(\tilde{\omega})) = 0$$

because

$$\operatorname{gr}^{i}U(\tilde{\omega}) \cong \mathcal{O}_{\mathbb{P}^{1}_{L}}(i)^{\oplus n}$$

by Theorem 2.1. We can conclude that

$$H^1_{\acute{e}t}(\mathbb{P}^1_k, U(\tilde{\omega})) = 1,$$

hence the  $U(\tilde{\omega})$ -torsor

$$\mathrm{Spl}(\tilde{\omega})$$

is in fact trivial, i.e., there exists a splitting

$$\gamma \colon \mathrm{Rep}_k G \to \mathrm{GrBun}_{\mathbb{P}^1_+}$$

of  $\tilde{\omega}$  already over  $\mathbb{P}^1_k$ . As

$$\gamma \cong \operatorname{gr} \circ \tilde{\omega}$$

the functor  $\gamma$  takes its image in the full subcategory

$$\{\ \mathcal{E} = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}^i \in \mathrm{GrBun}_{\mathbb{P}^1} \ | \ \mathcal{E}^i \ \mathrm{semistable \ of \ slope} \ i\},$$

which by Lemma 2.3 is equivalent to the category  $\operatorname{Rep}_k \mathbb{G}_m$  of representations of  $\mathbb{G}_m$ . Thus there exists an exact tensor functor

$$\omega' \colon \mathrm{Rep}_k G \to \mathrm{Rep}_k \mathbb{G}_m$$

such that

$$\omega \cong \mathcal{E}(-) \circ \omega',$$

by simply setting

$$\omega' := \mathcal{E}_{\mathrm{gr}}(-)^{-1} \circ \mathrm{gr} \circ \tilde{\omega}$$

where

$$\mathcal{E}_{\mathrm{gr}}(-) \colon \mathrm{Rep}_k \mathbb{G}_m \to \{ \mathcal{E} = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}^i \in \mathrm{GrBun}_{\mathbb{P}^1} \mid \mathcal{E}^i \text{ semistable of slope } i \},$$

is the the equivalence of Lemma 2.3.

Let

$$\omega_{\operatorname{can}}^{\mathbb{G}_m} : \operatorname{Rep}_k(\mathbb{G}_m) \to \operatorname{Vec}_k, \ V \mapsto V$$

be the canonical fiber functor of  $\operatorname{Rep}_k(\mathbb{G}_m)$  over k. Composing with  $\omega_{\operatorname{can}}^{\mathbb{G}_m}$  defines a morphism

$$\Phi \colon \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Rep}_k(\mathbb{G}_m)) \to \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k(G), \mathrm{Vec}_k)$$

of groupoids, where the right hand side denotes the groupoid of exact tensor functors

$$\operatorname{Rep}_k(G) \to \operatorname{Vec}_k$$

which by Lemma 3.1 identifies with the groupoid of G-torsors on  $\operatorname{Spec}(k)$ . Geometrically, the morphism  $\Phi$  can be identified on isomorphisms classes with the map

$$i^*: H^1_{\text{\'et}}(\mathbb{P}^1_k, G) \to H^1_{\text{\'et}}(\operatorname{Spec}(k), G)$$

restricting a G-torsor over  $\mathbb{P}^1_k$  to a G-torsor over  $\operatorname{Spec}(k)$  along a k-rational point  $x \in \mathbb{P}^1_k(k)$ .

In the following lemma we analyze the fibers of this functor  $\Phi$ .

**Lemma 3.4.** Let  $\omega \colon \operatorname{Rep}_k(G) \to \operatorname{Vec}_k$  be an exact tensor functor and let

$$H := \operatorname{Aut}^{\otimes}(\omega)$$

be the pure inner form of G defined by  $\omega$ . Then the fiber

$$\Phi^{-1}(\omega) \subseteq \underline{\mathrm{Hom}}^{\otimes}(\mathrm{Rep}_k G, \mathrm{Rep}_k \mathbb{G}_m)$$

is equivalent to the quotient groupoid

$$[\operatorname{Hom}(\mathbb{G}_m, H)/H(k)]$$

of cocharacters of H. Moreover, passing to isomorphism classes yields a bijection

$$\operatorname{Hom}(\mathbb{G}_m, H)/H(k) \cong H^1_{\operatorname{Zar}}(\mathbb{P}^1_k, H).$$

*Proof.* The first statement follows from the Tannakian formalism (cf. [Del90]). Namely,  $\omega$  defines an equivalence

$$\operatorname{Rep}_k(G) \cong \operatorname{Rep}_k(H), \ V \mapsto \omega(V)$$

and the groupoid of exact tensor functors

$$\operatorname{Rep}_k H \to \operatorname{Rep}_k \mathbb{G}_m$$

which commute (with a given isomorphism) with the canonical fiber functors on  $\operatorname{Rep}_k H$  resp.  $\operatorname{Rep}_k \mathbb{G}_m$  is equivalent to the quotient groupoid

$$[\operatorname{Hom}(\mathbb{G}_m, H)/H(k)].$$

with H(k) acting by conjugation. Clearly, for every cocharacter

$$\chi\colon \mathbb{G}_m\to H$$

the push forward

$$n \times^{\mathbb{G}_m} H$$

is an H-torsor, which is locally trivial in the Zariski topology, because this is true for the Hopf bundle

$$\eta \colon \mathbb{A}^2_k \setminus \{0\} \to \mathbb{P}^1_k$$
.

Let conversely  $\mathcal P$  be an H-torsor over  $\mathbb P^1_k$  which is trivial for the Zariski topology and let

$$\omega_{\mathcal{P}} \colon \operatorname{Rep}_k H \to \operatorname{Bun}_{\mathbb{P}^1_+}, V \mapsto \mathcal{P} \times^H (V \otimes_k \mathcal{O}_{\mathbb{P}^1_+})$$

be the induced fiber functor (cf. Lemma 3.1). Let  $x \in \mathbb{P}^1_k(k)$  be a point a k-rational point and let  $U \subseteq \mathbb{P}^1_k$  be open subset containing  $x \in U$  such that

$$\mathcal{P}_{|U}$$

is trivial. Then the exact tensor functor

$$\operatorname{Rep}_k H \xrightarrow{\omega_{\mathcal{P}}} \operatorname{Bun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{res}} \operatorname{Bun}_U$$

is isomorphic to the trivial fiber functor. This holds then also true after restricting to  $x \in U$ . Let

$$\varphi \colon \mathrm{Rep}_k H \to \mathrm{Rep}_k \mathbb{G}_m$$

be an exact tensor functor such that

$$\mathcal{E}(-) \circ \varphi \cong \omega_{\mathcal{P}}.$$

We can conclude that  $\varphi$  preserves the canonical fiber functors on  $\operatorname{Rep}_k H$  resp.  $\operatorname{Rep}_k \mathbb{G}_m$  because the composition

$$\operatorname{Rep}_k \mathbb{G}_m \xrightarrow{\mathcal{E}(-)} \operatorname{Bun}_{\mathbb{P}^1_k} \xrightarrow{\operatorname{res}} \operatorname{Bun}_x \cong \operatorname{Vec}_k$$

is the canonical fiber functor. In particular, there exists a cocharacter

$$\chi\colon \mathbb{G}_m\to H$$

such that  $\mathcal{P}$  is obtained via pushout along  $\chi$  of the Hopf bundle

$$\eta \colon \mathbb{A}^2_k \setminus \{0\} \to \mathbb{P}^1_k$$
.

Note that we have actually shown that a G-torsor  $\mathcal{P}$  is already locally trivial for the Zariski topology if there exists some open  $U \subseteq \mathbb{P}^1_k$  containing a k-rational point, such that  $\mathcal{P}_{|U}$  is trivial. The classification results of Grothendieck and Harder on torsors on  $\mathbb{P}^1_k$  (cf. [Gro57] resp. [Har68]) are most concretely stated in the collowing form.

**Corollary 3.5.** Let k be a field and let G/k be a reductive group with maximal split subtorus  $A \subseteq G$ . Then there exist canonical bijections

$$X_*(A)_+ \cong \operatorname{Hom}(\mathbb{G}_m, G)/G(k) \cong H^1_{\operatorname{Zar}}(\mathbb{P}^1_k, G),$$

where  $X_*(A)_+$  denotes the set of dominant cocharacters of  $A \subseteq G$ .

*Proof.* By Lemma 3.4 it suffices to show

$$X_*(A)_+ \cong \operatorname{Hom}(\mathbb{G}_m, G)/G(k).$$

But this follows from the fact that all maximal split tori in G are conjugated over k and that the set of dominant cocharacters form a system of representatives for the action of the normalizer  $N_G(A)$  of A in G on the group  $X_*(A)$  of cocharacters for A.

A description of  $H^1_{\text{\'et}}(\mathbb{P}^1_k, G)$ , similar to the one of us, can be found in [Gil02].

#### 4. Applications

In this section we present some applications of the classification of torsors (following (cf. [Far], which discusses analogous applications to the Fargues-Fontaine curve).

The first application is the computation of the Brauer group of  $\mathbb{P}^1_k$ . For this we recall the theorem of Steinberg (cf. [Ser02, Chapter 3.2.3]). If k is a field of cohomological dimension  $\operatorname{cd}(k) \leq 1$ , then Steinberg's theorem states that

$$H^1_{\acute{e}t}(\operatorname{Spec}(k),G)=1$$

for every smooth connected affine algebraic group G/k. In particular, the Brauer group

$$Br(k) = 0$$

of such fields vanishes. For example, separably closed or finite fields are of cohomological dimension  $\leq 1$ .

**Theorem 4.1.** If k is of cohomological dimension  $cd(k) \leq 1$ , then the Brauer group

$$\operatorname{Br}(\mathbb{P}^1_k) \cong H^2_{\text{\'et}}(\mathbb{P}^1_k, \mathbb{G}_m) = 0$$

vanishes.

*Proof.* By [Gro95, Corollaire 2.2.] there is an isomorphism

$$\operatorname{Br}(\mathbb{P}^1_k) \cong H^2_{\operatorname{\acute{e}t}}(\mathbb{P}^1_k,\mathbb{G}_m)$$

of the Brauer group  $\mathrm{Br}(\mathbb{P}^1_k)$  parametrizing equivalence classes of Azumaya algebras over  $\mathcal{O}_{\mathbb{P}^1_k}$  with the cohomological Brauer group  $H^2_{\mathrm{\acute{e}t}}(\mathbb{P}^1_k,\mathbb{G}_m)$ . It suffices to show that for every  $n\geq 0$  the canonical map

$$H^1_{\text{\'et}}(\mathbb{P}^1_k, \mathrm{PGL}_n) \to H^2_{\text{\'et}}(\mathbb{P}^1_k, \mathbb{G}_m)$$

arising as a boundary map of the short exact sequence

$$1 \to \mathbb{G}_m \to \mathrm{GL}_n \to \mathrm{PGL}_n \to 1$$

is trivial. Because k is of cohomological dimension  $\leq 1$ , there exists using Steinberg's theorem in the case  $G = \operatorname{GL}_n$  or  $G = \operatorname{PGL}_n$  and Theorem 3.3 together with Lemma 3.4 a commutative diagram

$$H^1_{\text{\'et}}(\mathbb{P}^1_k,\operatorname{GL}_n) \xrightarrow{} H^1_{\text{\'et}}(\mathbb{P}^1_k,\operatorname{PGL}_n)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\operatorname{Hom}(\mathbb{G}_m,\operatorname{GL}_n)/\operatorname{GL}_n(k) \xrightarrow{} \operatorname{Hom}(\mathbb{G}_m,\operatorname{PGL}_n)/\operatorname{PGL}_n(k).$$

It suffices to show that the top horizontal arrow, or equivalently the lower horizontal arrow, is surjective. But every cocharacter

$$\chi \colon \mathbb{G}_m \to \mathrm{PGL}_n$$

can be lifted to  $GL_n$  because for the standard torus  $T \cong \mathbb{G}_m^n \subseteq GL_n$  there is a split exact sequence

$$0 \to X_*(\mathbb{G}_m) \to X_*(T) \to X_*(T/\mathbb{G}_m) \to 0$$

on cocharacter groups where  $T/\mathbb{G}_m$  is a maximal torus of  $PGL_n$ .

For a general field k, i.e., k not necessarily of cohomological dimension  $\leq 1$ , the Brauer group of  $\mathbb{P}^1_k$  is given by

$$\operatorname{Br}(\operatorname{Spec}(k)) \cong \operatorname{Br}(\mathbb{P}^1_k)$$

as can be calculated from Theorem 4.1 using the spectral sequence

$$E_2^{pq} = H^p(\operatorname{Gal}(\bar{k}/k), H^q_{\operatorname{\acute{e}t}}(\mathbb{P}^1_{\bar{k}}, \mathbb{G}_m)) \Rightarrow H^{p+q}_{\operatorname{\acute{e}t}}(\mathbb{P}^1_k, \mathbb{G}_m)$$

where  $\bar{k}$  denotes a separable closure of k.

The next application we give is to the uniformization of G-torsors.

**Theorem 4.2.** Let k be a field and let G be reductive group over k. If  $x \in \mathbb{P}^1_k(k)$  is k-rational point, then every G-torsor

$$\mathcal{P} \in H^1_{\operatorname{Zar}}(\mathbb{P}^1_k, G)$$

which is locally trivial for the Zariski topology becomes trivial on  $\mathbb{P}^1_k \setminus \{x\}$ .

*Proof.* By Corollary 3.5 we know that every such G-torsor  $\mathcal P$  is isomorphic to the pushout

$$\mathcal{P} \cong \eta \times^{\mathbb{G}_m} G$$

along a cocharacter

$$\chi\colon \mathbb{G}_m\to G$$

of the canonical  $\mathbb{G}_m$ -torsor

$$\eta \colon \mathbb{A}^2_k \setminus \{0\} \to \mathbb{P}^1_k$$

corresponding to the line bundle  $\mathcal{O}_{\mathbb{P}^1_+}(-1)$  on  $\mathbb{P}^1_k$ . But

$$\mathcal{O}_{\mathbb{P}^1_k}(-1)_{|\mathbb{P}^1_k\setminus\{x\}}$$

is trivial because  $\mathbb{P}^1_k \setminus \{x\} \cong \mathbb{A}^1_k$ . This shows the claim.

Finally, we reprove the Birkhoff-Grothendieck decomposition of G(k(t)) for a reductive group G over k (cf. [Fal03, Lemma 4]).

**Theorem 4.3.** Let  $A \subseteq G$  be a maximal split torus in G. Then there exists a canonical bijection

$$X_*(A)_+ \cong G(k[t^{-1}]) \backslash G(k((t))) / G(k[[t]]),$$

where  $X_*(A)_+$  denotes the set of dominant cocharacters of  $A \subseteq G$ .

*Proof.* Let  $x \in \mathbb{P}^1_k(k)$  be a k-rational point. By Beauville-Laszlo [BL95] and Lemma 3.1 there is an injective map

$$\gamma \colon G(k[t^{-1}]) \setminus G(k((t))) / G(k[[t]]) \to H^1_{\text{\'et}}(\mathbb{P}^1_k, G)$$

by glueing the trivial G-torsor on  $\mathbb{P}^1_k\setminus\{x\}$  with the trivial G-torsor on the formal completion

$$\operatorname{Spec}(\widehat{\mathcal{O}}_{\mathbb{P}^1_h,x})$$

along an isomorphism on  $\operatorname{Spec}(\operatorname{Frac}(\widehat{\mathcal{O}}_{\mathbb{P}^1_k,x}))$ . Note that  $\widehat{\mathcal{O}}_{\mathbb{P}^1_k,x}\cong k[[t]]$ . From the remark following Lemma 3.4 we can conclude that the G-torsors obtained in this way are actually locally trivial for the Zariski topology. By Theorem 4.2 we can conversely see that the image of  $\gamma$  contains the set  $H^1_{\operatorname{Zar}}(\mathbb{P}^1_k,G)$ . Using Corollary 3.5 we can conclude that

$$G(k[t^{-1}])\backslash G(k((t)))/G(k[[t]]) \cong H^1_{Zar}(\mathbb{P}^1_k, G) \cong X_*(A)_+.$$

### References

[Ans] Johannes Anschütz. Reductive group schemes over the fargues-fontaine curve. preprint on webpage at http://www.math.uni-bonn.de/people/ja/redgroupschemes.pdf.

[BL95] Arnaud Beauville and Yves Laszlo. Un lemme de descente. C. R. Acad. Sci. Paris Sér. I Math., 320(3):335–340, 1995.

[Cor] Christophe Cornut. Filtrations and buildings. preprint on webpage at https://webusers.imj-prg.fr/~christophe.cornut/papers/FilBuiv3.1.pdf.

[Del90] P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser Boston, Boston, MA, 1990.

[DOR10] Jean-François Dat, Sascha Orlik, and Michael Rapoport. Period domains over finite and p-adic fields, volume 183 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2010.

[Fal03] Gerd Faltings. Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. (JEMS), 5(1):41–68, 2003.

[Far] Laurent Fargues. G-torseurs en théorie de hodge p-adique. preprint on webpage at https://webusers.imj-prg.fr/~laurent.fargues/Prepublications.html.

[Gil02] P. Gille. Torseurs sur la droite affine. Transform. Groups, 7(3):231–245, 2002.

[Gro57] A. Grothendieck. Sur la classification des fibrés holomorphes sur la sphère de Riemann.  $Amer.\ J.\ Math.,\ 79:121-138,\ 1957.$ 

[Gro68] Alexander Grothendieck. Le groupe de Brauer. III. Exemples et compléments. In Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math., pages 88–188. North-Holland, Amsterdam, 1968.

[Gro95] Alexander Grothendieck. Le groupe de Brauer. II. Théorie cohomologique [MR0244270 (39 #5586b)]. In Séminaire Bourbaki, Vol. 9, pages Exp. No. 297, 287–307. Soc. Math. France, Paris, 1995.

[Hab75] W. J. Haboush. Reductive groups are geometrically reductive. Ann. of Math. (2), 102(1):67–83, 1975.

 $[{\rm Har}68]$  Günter Harder. Halbeinfache Gruppenschemata über vollständigen Kurven.  ${\it Invent.}$   ${\it Math.},\,6:107-149,\,1968.$ 

[Ser02] Jean-Pierre Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2002. Translated from the French by Patrick Ion and revised by the author.

 $\hbox{[Zie15]} \quad \hbox{Paul Ziegler. Graded and filtered fiber functors on Tannakian categories. \it{J. Inst. Math. Jussieu}, 14(1):87–130, 2015.$ 

 $E ext{-}mail\ address: ja@math.uni-bonn.de}$