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1 Introduction

Let X be a smooth projective K3 surface over some field k£ and let C' C X be a (—2)-curve on
X, ie. C 2P} and C.C = —2. The sheaves O¢ (i) € D°(X),i € Z, are then spherical objects
in the (bounded) derived category D°(X) of X (see . By definition, an object E € D’(X)
is called spherical if

k, p=0,2

P o~
Ext (E, B) = { 0, otherwise

To every spherical object E € D(X) one can associate a spherical twist
Ty : D°(X) — D(X),

which is an exact autoequivalence of DP(X) (see [2.14). On some object F' € DY(X) the twist
Tg(F) is defined via a distinguished triangle

Exty(E,F)®y E — F — Tp(F) — *[1].
So every (—2)-curve C' C X gives rise to autoequivalences
Touy € Aut(DY(X)),i € Z,
of the derived category D°(X). It is one aim of this master thesis to describe the subgroup
(Toe(i),i € Z) € Aut(D°(X))

by generators and relations. More generally, we consider some family F; € D,i € I, of
spherical objects in a k-linear K3 category D (see [2.2]) and try to present the subgroup

(T, i € T) C Aut(D)

by generators and relations. In general, this task seems too hard, so we restrict ourselves
to families of spherical objects with prescribed combinatorial data. These families are called
[-configurations (see [2.16]), where I' denotes some (possibly multi-edged) graph. Let I" be
such a graph. Then a family (E; | i € I') of spherical objects in a triangulated category D is
called a I'-configuration if for i, j € I',7 # j, we have:

number of edges in I' fromitoj, p=1

dimy, HomD(Em Ej [p]) = { 0, otherwise.

We will mainly consider the case where I' is a Dynkin diagram of type ADE or an affine
Dynkin diagram of type A. In [STOI] P. Seidel and R. Thomas show that in the case of an
A, -configuration (E; | i € A,,) the subgroup

(T, i € A) C Aut(D)

is isomorphic to the braid group By, of type A, (see for a definition of By, ). After
giving an introduction to spherical twists in chapter [2| we present a proof of C. Brav and
H. Thomas ([BT1I]) for a generalization of this result in type ADE (see chapter [3, theorem
3.16)):



Theorem 1.1. Let D be a k-linear K3 category. If I' is a Dynkin diagram of type ADE and
(E; € D |ie€Tl) aTl-configuration, then the subgroup

(Tg,,i €T') C Aut(D)
s isomorphic to the braid group Br of type T'.

In chapter [4 we investigate the case of a I'-configuration for the affine Dynkin diagram
I' = A;. We derive the following theorem (see chapter 4] theorem |4.16)):

Theorem 1.2. Let D be a k-linear K3 category. If I' is the affine Dynkin diagram of type
Ay and (E; € D | i €T) a I'-configuration, then the subgroup

(Tg,,1 €T') C Aut(D)
is isomorphic to the braid group Br of type I.

Recall that the braid group By, of type A s just a free group on two generators (see
2.19). But for the proof of this theorem the following presentation of By turns out to be
more useful:

BA1 = <8i,i eZ | Si—18; = Sj_lsj,i,j S Z)

(see |4.3] and [McCO05l example 4.8]). As a corollary, we obtain (see and [4.16]):

Corollary 1.3. Let X be a K3 surface over k and C C X a (—2)-curve on X. Then the
subgroup
(Tou@ | i € Z) C Aut(D*(X))

is freely generated by To. and To(1)-

Chapter [5| deals with another question. Theorem from chapter [ raises the ques-
tion, whether for two Aj-configurations (Fo, 1) and (Ej, E}) in k-linear K3 categories D
and D’ the triangulated categories (Ey, E1) and (E{, E{) are actually isomorphic. (Here,
(Eo, En), (E{, E}) denote the smallest full, triangulated subcategories in D and D’ containing
Ey and E; resp. E) and E].) We answer this question in chapter [5| by showing the fol-
lowing theorem. To state it, we define the semi-simple ring R := k X k, which admits an
automorphism

c:R— R

permuting the two idempotents e; := (1,0) and ey := (0,1). We denote by M := R? the
R-R-bimodule R? with usual left multiplication and o-twisted right multiplication of R. Let
A = A*(M) and view this as a dg-algebra (see over R with trivial differential (for a
precise definition of A, see .

Theorem 1.4. Let D be a full triangulated category of the derived category of a K3 surface.
Assume that (Eg, Eq) is an Aj-configuration in D. Then there is a fully, faithful functor

F: <E0,E1> — D(A)

into the derived category of A sending E;,i = 0,1, to the right module e;1+1A. Hence, we have
an equivalence

(Eo, Br) —> (e14, eaA)

of (Ey, Ev) with the smallest full, triangulated subcategory (e1 A, eaA) of D(A) containing e; A
and exA.



Hence the isomorphism type of (Ey, E7) is indeed independent of the particular As-
configuration (Ep, Eq). The proof of this theorem uses Keller’s classification of algebraic
triangulated categories via derived categories of dg-categories. The main step in the proof
of theorem is that we show in theorem that the twisted exterior algebra A is Koszul
and hence intrinsically formal (theorem . We thank Prof. Catharina Stroppel for sug-
gesting this possibility to us.

In our last chapter |§| we discuss a geometric example for the case I' = Ay and derive a
partial result on faithfulness for the affine braid group B := B Ay As the example, we take
two (—2)-curves C, D C X on a K3 surface X meeting in a single point x € X and look at
the I'-configuration

(Oc,Op,Ocupll])

(see . Our partial result can be stated as follows (for the definition of strict decreasing
see [6.5)):

Proposition 1.5. Let o € B be strict decreasing, o # 1. Then a does not act as the identity
on DV(X).

To derive this partial result we prove the following presentation of the braid group B:
B = (ai,bj,i,j ez | ajbiaj == biajbi, a;-1a; = aj,laj, biflbi = bjflbj,

aoalbj = bj+1a0a1, boblaj = aj+1b0b1, i,j S Z>

(see[6.2).

Finally, we want to mention a paper of [Keal2] on faithfulness of braid group actions of
A -configurations on symplectic manifolds. For more informations about Homological Mirror
Symmetry and the analogy between spherical twists and generalized Dehn twists we refer to
[Huy06l, chapter 13.2] and [ST01) chapter 1.c)].

Acknowledgements: Prof. Dr. Daniel Huybrechts deserves a special thank for offering
me this well chosen topic. It was interesting because of its link to current research, i.e.
Bridgeland’s conjecture, but still accessible for me. Moreover, I want to thank him for his
constant help in preparing this master thesis and for carefully reading a preliminary version
of this thesis. For explaining Keller’s theorem to me I want to thank Hanno Becker. A crucial
point in chapter [5] is theorem [5.19] it was told to me by Prof. Dr. Catharina Stroppel and 1
am deeply grateful for her explanations.

My math studies have been a great time in my life, I want to thank my fellow students,
who had a major contribution to it, especially Andreas Mihatsch and Sebastian Posur for all
our inspiring discussions. On the non-math site I want to thank my family for their believe
in me and, finally, my girlfriend Katharina for her caring encouragement.



2 Spherical twists

In this chapter we briefly introduce the necessary background on K3 categories, spherical
objects and spherical twists needed for this master thesis. We try to give several examples
illuminating these notions.

2.1 Preliminaries on triangulated categories

If D is a triangulated category over a field k, we denote by [n] the n-th power of the shift
functor
1]: D — D.

For two objects E, F' in D and p € Z we will write [E, F], instead of Homp(E, F[p]). We also
set

[E, F]* = @[E,F]p[—pL

PEZL

which we view as a complex in the derived category D(k) of k.
By definition, a K3 surface X over k will mean a smooth projective surface over k, such
that wxy = Oy and H'(X,Ox) = 0.

Definition 2.1. Let X be K3 surface over a field k. Then we define the derived category
of X as
DY(X) := D°(Coh(X)).

So Db(X) is the bounded derived category of the abelian category of coherent sheaves on X .

Our examples of triangulated categories will be derived categories of K3 surface over some
field k£ and full triangulated subcategories of such. So our triangulated categories will have
special properties, which can be summarized in the abstract notion of a K3 category. Let us
denote by VV the k-dual of a k-vector space V.

Definition 2.2. Let D be a k-linear triangulated category. An autoequivalence

S:D—1D
is called a Serre functor for D if there exists isomorphisms

(EE,F : [E7F]0 i> [F,S(E)]E)/

for any E,F € D, which are natural in E and F'. We call D a K3 category if the double
shift

2]:D—D
is a Serre functor, i.e. for E, F € D there are natural isomorphisms

[E,Flo — [F, E]y.

As the terminology suggests, derived categories of K3 surfaces provide examples of K3
categories.



Example 2.3. 1. Let X be a K3 surface. Then D°(X) is a K3 category. Indeed, [Huy06,
theorem 3.12] shows that the composition

wx ®ox (=)o (=[2)) : D*(X) — D*(X)

of wx ®oy (=) and the double shift [2] is a Serre functor for D*(X). But wx = Ox, so
[2] is a Serre functor for D*(X) and D*(X) is a K3 category.

2. If D is a K3 category, then every full triangulated subcategory of D is again a K3
category. This is immediate from the definitions. In particular, we see that there are K3
categories, which do not arise as the derived category of a K3 surface. (For example,
one can use that the K-theory of a K3 surface cannot be generated by two elements.)

8. The derived category DP(A) of an abelian surface A is also a K3 category as wa = O4 is
trivial. Using Orlov’s result on the existence of Fourier—Mukai-kernels ([Huy06, theorem
5.12]) one can show that D°(A) is not equivalent to a full subcategory of the derived
category D (X) of a K3 surface X. In fact, any fully faithful Fourier—Mukai-transform
DY(A) — DY(X) would be an equivalence (see [Huy06, proposition 7.6]), which is
impossible ([Huy00, corollary 10.2]).

Every triangulated category comes with its group of autoequivalences.
Definition 2.4. Let D be a k-linear triangulated category. We denote by
Aut(D) :=={ ®:D — D | ® is a k-linear, exact equivalence }/ ~

the group of autoequivalences of D. Two autoequivalences are identified in Aut(D) if they
are isomorphic as exact functors.

In we will encounter spherical twists, which are autoequivalences of triangulated cat-
egories. In a geometric example, i.e. D = D?(X) for X some K3 surface, the shift functor,
automorphisms of X and tensoring with line bundles on X yield a subgroup

Z x Aut(X) x Pic(X) C Aut(D).

2.2 Spherical objects

For this section fix a field k and a k-linear K3 category D. All schemes in this chapter are
assumed to be schemes over k.

Definition 2.5. An object E € D is called spherical (or better 2-spherical), if
[, E]. = k& k[-2],
that is [E,E], =k if p=10,2 and [E, E], = 0 otherwise.

Remark 2.6. 1. For a general definition of spherical objects in triangulated categories see
[BT11, definition 3.1].



2. Slightly rewritten, an object E € D is spherical if and only if its Ext-algebra [E, E], is
isomorphic (as a graded algebra) to the singular cohomology of the 2-sphere:

[E7 E]* = H:ing(SQa k)
This is a first motivation for the terminology “spherical”.

3. As the double shift in D is a Serre functor, a spherical object E € D has the smal-
lest possible Ext-algebra of non-zero objects in D. In particular, if ® € Aut(D) is an
autoequivalence of D and E € D spherical, then ®(FE) is again spherical.

Example 2.7. Let X be a K3 surface and let L € Pic(X) be a line bundle on X. Then L is
spherical, as
L, L], = [Ox,0x]« 2 H*(X,0x) = k& k[-2].

Another class of spherical objects in the derived category of a K3 surface X, already
mentioned in the introduction, is provided by (—2)-curves on X.

Definition 2.8. Let X be a K3 surface. A curve C C X is called a (—2)-curve if C is
isomorphic to IP’,lC and the self.intersection C.C equals —2.

If X is a K3 surface, then an irreducible curve C' C X (smooth or not) is smooth and
rational if and only if the self -intersection number C.C' = deg(O¢(C)) is -2 (see [Har77,
exercise V.1.3]). Hence an integral curve C' on X is a (—2)-curve if and only if C' = Pk is
smooth and rational.

Lemma 2.9. Let X be a K3 surface and C C X a (—2)-curve. Then for every j € Z the
object Oc(j) € DP(X) is spherical.

Proof. Let E := O¢(j). Then clearly, [E, E]op = k and hence (by Serre duality) [E, E]s = k.
Moreover, [E, E], = 0 for p ¢ {0,1,2}. Finally, the Riemann-Roch formula for surfaces (see
[Har77, theorem 1.6]) implies that

X(E,E):=> (1)’ dimy[E, E], = -C.C = 2.
pEZ

Hence [E, E]; = 0 and E is spherical. O

Remark 2.10. The following converse to lemma also holds: If k is algebraically closed
and C' C X is an integral curve, such that Oc € DY(X) is spherical, then C = P'. To prove
this, we look at the exact sequence

0— Ox(-C) — Ox — Oc — 0
and apply [Oc, —|o to get an exact sequence
[0, 0x(=C)1 = [O¢, Ox]1 — [0, Ocl1 = 0.
But the map « vanishes (as it is induced by a global section s € Ox(C') vanishing on C), so
H'(C,0¢) = [0¢,0x]} =0

and hence C' = IP’}C.



A fundamental property of spherical objects is the following:

Lemma 2.11. Let E € D be spherical, then for every object F € D the composition of
morphism yields a perfect pairing

[E,F|; ® |[F,E, — |E,E]s = k.

Proof. See [BT11l remark 3.1] for the case that the triangulated category is arbitrary (i.e. not
a K3 category). In our case, D is a K3 category and thus, by definition, we have functorial
isomorphisms

dpr: [E,Flo — [F,E)y

for F' € D. Setting F' = E we get a canonical map (called “trace map”):
trg = CI)E7E(IdE) : [E,E]Q — k,

which is an isomorphism as F is spherical. By functoriality, the isomorphism ®g r is given
by
pr(f)9) = tre(gf)

for any F' € D and f € [E,F]i, g € [F,E];. Thus inverting the trace map trg yields the
result. O

2.3 Spherical twists
As in the previous section, we fix a field k and a k-linear K3 category D. Instead of
Y] — Yy — Y3 — Yi[1],

we will write
Y1 — Yy — Y3 — x[1]

to denote triangles in D.

Definition 2.12. Let E € D be spherical. We define the spherical twist Ty as a functor
T : D — D
by a distinguished triangle
[E,F,® E 8 F — Tp(F) — «[1]. (1)
Remark 2.13. 1. The object [E,F|, ® E is defined in [ST01, chapter 2.a)] and equals
DIE, F], ® E[—p|. A summand [E,F], ® E[—p| is (by definition) the dimy[E, F],-fold
chect sum of copies of E|—p|. The evaluation map
eval : [E, F], ® E[-p] — F
is then defined as follows: Let 6 € [E, F|,. Then § defines a morphism
0:FE[-p] — F

and on the summand § ® E[—p| = E[—p] of [E, F], ® E[—p] the evaluation map is given
by 9.



2. The above definition of the twist functor Tg is sloppy and ignores some difficulties
concerning to the non-functoriality of mapping cones in triangulated categories. Also,
our definition defines Tg not on morphisms and only up to non-unique isomorphisms.
However, these problems can be solved by the additional assumption that D comes with a
fized enhancement (to get functorial cones), see [BT11, chapter 3]. In the case of a full
triangulated subcategory of the derived category of a K3 surface such an enhancement
can always be found. We will from now on assume that our triangulated category D
comes with some fixed enhancement and do not pursue this topic any further - for our
purposes, the above triangle is enough. Actually, we will not need to know how Tg is
defined on morphisms.

3. If D = DY(X) is the derived category of a K3 surface, then spherical twists can be defined
using a Fourier—Mukai-kernel. This circumvents the necessity of some enhancement (see
[Huy06, definition 8.3]).

4. In the paper [STO1] P. Seidel and R. Thomas explain the origin of spherical twists. Un-
der Homological Mirror Symmetry spherical twists correspond to generalized Dehn twists
along Lagrangian spheres. This is the second motivation for the terminology “spherical”.

The following theorem is due to P. Seidel and R. Thomas (see [ST01, theorem 1.2]).

Theorem 2.14. Let EE € D be a spherical object. Then the spherical twist Tg is an autoequi-
valence of D.

We summarize some basic properties of spherical twists.
Proposition 2.15. Let F € D be a spherical object. Then we have the following:
1) Tg(E) = E[-1] and Tg(F) 2 F if [E, F]. = 0.
2) If ®: D — D is an exact autoequivalence, then Ty = ® o T o oL
3) Tpp) = Tk.

Proof. The first assertion is elementary, but we give a full proof showing how the triangle
can be used to compute spherical twists. Let 0 # 8 € [E, E]s. Then

[E,E,® E=1dpQ E® B ® E[-2| = E® E[-2]
and the triangle is isomorphic to the triangle:
EaE[-2 "V B o(E) — 41,
which is isomorphic to

Eo B2 " E s Tu(E) — «[1]

(IdE ﬁ[—?])
0 Idg_g
Tp(E)[-1] = E[-2]

and thus Tr(F) = E[—1]. The second assertion can be found in [Huy06, lemma 8.21]. Finally,
the last assertion follows easily from 2) as Ty is exact or directly from the triangle . O

via the automorphism

of E @ E[—2]. Hence,



Our main interest will be in the interplay of several spherical twists. Namely, we will
consider some special cases of the following general definition.

Definition 2.16. Let I' be an (undirected, possibly multi-edged) graph and let E; € D,i € T,
be spherical objects labeled by the vertices of I'. Then (E; | i € T') is said to form a T'-
configuration if fori,j € I',i # j, we have

number of edges in I" from itoj, p=1

dimg[E;, Ejlp, = { 0, otherwise

We will immediately restrict ourselves to the case where I' is a Dynkin diagram of type
ADE or an affine Dynkin diagram of type A.
Example 2.17. Let X be a K3 surface and C C X a (—2)-curve.

1) Then
[OX?OC]* = H*(Ca OC’) = ka

so (Ox,0c[-1]) form an Ay-configuration. Similarly, (Ox,Oc(1)[=1]) form an A;-
configuration.

2) For j € 7 the two spherical objects (Oc(j), Oc(j+1)[—1]) form an A;-configuration as
[0c(5), Oc(j + D) = k2,
which can be calculated as in[2.9. This example will occupy us in chapter [4)

3) Let D C X be another (—2)-curve such that C N D is a 0-dimensional subscheme of X
of length n. Then fori,j € Z

[Oc (i), Op(5)]s = K" [-1].
In fact, the local-to-global spectral sequence given by
By = HP(X, Eaty (Oc (i), Op(j))) = Exth™(Oc (i), Op(j))

shows that Ext’ (Oc(i),Op(j)) & HO(X, Exts (Oc (i), Op(j))) as Exti(Oc (i), Op(j))
s concentrated in dimension 0. A local computation shows

Exty (0c(i),0p(j)) = Ocnp[—1]

and thus
[Oc (i), Op(j)]x = Extyx (Oc(i), Op(j)) = k"[-1].

In particular, if n =1 (resp. n = 2), we get an Ag(resp. Ay )-configuration.

4) Assume that @ : X — P! is an elliptic K3 surface. Then the singular fibers of
yield examples of interesting configurations. Investigating these is one motivation for
this master thesis. But we can only describe the Ai-case completely.

10



Assume that (E; | ¢ € T') is a I'-configuration in D and define Frr to be the free group
on the set I'. We will write s; € Frr,7 € I, for the generator given by i. Then we get a

homomorphism
T : Frp — Aut(D) (2)

by sending s; € Frp to the twist Tg,. It is one main topic of this master thesis to determine
for some graphs I" the kernel of 77 in terms of T'.
Some known relations are provided by the following lemma.

Lemma 2.18. Let E1, Ey € D be two spherical objects.
1) If [Eq, Es)« =0, then Ty, (E2) = Ey and

Tz, Ts, = Te,Tx, .

2) If [E1, Ea)« = k[—1], then Ty, Tg,(E1) = E2 and

Tz, T5,T5, = Te,Tr, Tx,.

Proof. In the first case proposition implies both, T, (F2) = E9 and
T5,Tr, = Try (5T, = T, Tp, .
In general, shows that
T, Te, T, = T Ty, () TE, = Ty 1, (80) TEV TE, -
If [E1, Eo)« = k[—1] we claim that
Tp,Tr,(E1) = Es.

Indeed, we apply [E1, —|o to the distinguished triangle (coming from the triangle (1))

By L Ty (BY) — By — #[1] (3)
defining T, and receive two things. First, the map
f : E1 — TE2<E1)

is non-zero and second [E1,Tg,]« = k (use lemma [2.11). Thus Tr, Tk, (E1) is the mapping
cone of f, which is Ey by . We can conclude

TE1 TEQTEl g TTEI TE2 (El)TEl TE2 g TEQTEI TE2'

These known relations motivate the following definition.

Definition 2.19. Let I' be an undirected graph. Fori,j € I',i # j, let
eij = number of edges in I' joining i and j.
We define the braid group of type I' as

B[‘ = <Sl’,7; el ’ SiSj = 5554 ’Lf €ij = O, S$iSj8; = 55584 Zf €ij = ]., ’L',j S F,i ?é ]>

11



The relations s;s;js; = s;s;s; are usually called braid relations. Bythe homomorphism

T introduced in will factor through Br. We will also write 7' to denote the induced
homomorphism

TV : Br — Aut(D). (4)

Note that By, is just a free group on two generators.

We finish this chapter by giving some concrete examples for the action of spherical twists.
For this let X be a K3 surface and C' C X a (—2)-curve.

The first example shows that spherical twists do not necessarily preserve the support of an
object of Db(X ). Also, the example shows that in general spherical twists transform sheaves
into genuine complexes.

Example 2.20. Let z € X be a point and j € Z.
1. Ifx ¢ C, then T (j)(k(z)) = k().
2. If v € C, then the complex Tp,(;)(k(x)) has cohomology sheaves

OC(] - 1)7 b= -1
HP (Toq ) (k(2))) = ¢ Oc(j), p=0
0, otherwise

Proof. 1f « ¢ €' then [Oc(j), k(x)]. = 0 and hence To(;)(k(x)) = k(x) by P15 If v € C,
then
[Oc(5), k()] =k @ k[—1]

(for example, by the local-to-global spectral sequence for Ext). Thus Tp,,(;)(k(7)) is defined
by a distinguished triangle

Oc(j) & Oc()[~1] — k(@) —> Touq)(k(@)) — *[1
and the description of the cohomology sheaves follows easily. O
Example 2.21. Let j € Z. Then

Toq(;(Oc(j +1)) = O0c(j — D[]

and
TocyToc(j+1)(F) = 0x(C) ®@oy F

for F € D*(X). So the composition Tou(j) © To(j+1) s isomorphic to the functor given by
tensoring with the line bundle Ox(C).

Proof. We show the first claim and refer to [IU05, lemma 3.15] for the second. Recall the
definition of the Euler sequence on P} (see [Har77, theorem 8.13]):

Oc(—-2) — Oc(—1) ® Oc(—1) — Oc — *[1].
Tensoring with Oc(j + 1) yields
Oc(j = 1) — Oc(j) ® Oc(j) — Oc(j + 1) — *[1],
so O¢(j — 1)[1] is the mapping cone of the map
Oc(j) ® Oc(j) — Oc(i+1)
But this mapping cone is also To,;y(Oc(j+1)) as [Oc(j), Oc(j+1)] = k? (see[2.17/2)). O

12



Example 2.22. Assume that D C X is another (—2)-curve and that C N D = {z} is a single
point. Then

To,(Op(=z)) = Ocup.
In particular, the object Ocup € DP(X) is spherical.

Proof. We have a distinguished triangle
Oc[—l] — (’)D(—x) — OCUD — *[1],

so Ocup is the mapping cone of a non-zero morphism O¢[—1] — Op(—z). But by example

217
[OCv OD(_J;)]* = k[_1]7

so the mapping cone of every non-zero morphism Oc[—1] — Op(—z) is isomorphic to
To.(Op(—z)). Hence
To,(Op(=2)) = Ocup.
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3 The case I' = ADE

We fix a K3 category D and a graph I' of type ADE. In this chapter we present a proof of C.
Brav and H. Thomas ([BT11l chapter 3]) showing that the homomorphism

T : By — Aut(D)

coming from some I'-configuration is always injective. For later use in chapter [6] we improve
their result slightly.

3.1 A general lemma

In this section we prove a general lemma about the behavior of Hom-spaces under spherical
twists. This lemma will be the starting point for the combinatorics needed in section and

chapter [4], section [£.3]
Let E1, F» € D be two spherical objects, we define

m :=max{ p | [Eq, E1], # 0}.
Lemma 3.1. Let Y € D and define
li:=max{ p | [E;,Y], #0}, i =1,2.

Similarly, define
)\i = max{ p ’ [EiaTEl (Y)]p 7é 0}, 1= 1,2.

Then:
1)) M=hL+1
2) Ao < max{ly, l; + m—1}
3) Ifmax{ly, 1+ m—1} =101 +m —1, then A =11 + m — 1.
4) Ifly > 11 +m—+1, then Ay = 5.

Proof. The first statement is a trivial consequence of Tg, (E1) = E1[—1] and the fully faith-

fulness of Tg,:
[Er, T, (V)]s = [T, (E1), T, (Y)]i—1 = [E1, Y]

For the other statements consider the distinguished triangle
[E1, Y], @ By — Y — Tg, (Y) — (1]
giving the long exact sequence

o [B2, Y]y — [Ey, T, (V)] — EDIEL Y]pr1-i ® [Ba, Erli — ... (5)

i<m

Let p > max{la, {1 + m — 1}. Then [E3,Y], =0 and

GB[EM Y]pt1-i @ [Ee, E1]i =0

i<m

14



asp+1l1—i>li+m—1+1—9>11 +m—1i>1 for i <m. This shows the second claim in

view of .
Now assume p := max{ly, Iy + m —1} =13 +m — 1. Then [E5,Y],41 =0 and

@[Eh Ypr1-i @ [Bo, E1]; = [E1, Y]py1-m @ [Ea, E1]m # 0,

<m

so that [Es, Ty, (Y)], surjects onto something non-zero, therefore [Ey, T, (Y)], # 0 and Ay =
l1 + m — 1. Assume finally that lo > Iy +m + 1. Then

@[Eh Yl,—i ® [E2, E1];i =0

i<m
and 0 # [E2,Y];, injects into [E2, T, (Y)]i,. We get A2 = Iz and all four claims are proven. [

Now assume that (E; | i € ') is a configuration of type I' = ADE. We denote by £ the

direct sum
el

From lemma [3.1] we conclude:
Lemma 3.2. LetY € D and
li == max{ p | [E;,Y], # 0}
forieT. Then
1) B, TE,(Y)]« = [Ei,Y]«—1 fori e, in particular

li+1= maX{ p | [EivTEi(Y)]P e O}

2) [E;,TE,(Y)], =0 fori,j € T',i# j and p > max{l;,;}.

3) FizieT. Let
L= max{ §; | j € T} = max{ p | [£,Y], £ 0}

and
A=max{ p | [£,T, (Y)]p # 0}

Then Il < X <1+ 1. Moreover, A=1+1 if and only if l =1;.

Proof. Part 1) and 2) follow directly from and Part 3) follows from 1) and 2) with the
exception of the claim that [ < XN if [; <. Butif l; =1 — 1, then A = [, so we can assume
that [; <1 — 1. Then take j € I' such that [; = [. The lemma can then be applied with
E; and E; to show that A = 1. ]

Lemma (3.2 is taken from [BTTI) lemma 3.3].
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3.2 A Garside structure for Br

In this section we summarize some facts about a Garside structure for Br if T is of type ADE.
In our presentation we follow [BT11) chapter 2] closely.

Let T" be a graph of type ADE. We will recall same basic definitions regarding the corres-
ponding Weyl group.

Definition 3.3. Let H C Br be the normal subgroup generated by {s? | i € T'} and define
the Weyl group of type I' to be
Wr := Br/H.

Let o, i € I', be the image of s; in Wp. For 7 € W we define the length
I(7) :==min{ r | 341, ..,%, € I' such that 0;,..045, = 7}.

Let 7,0 € Wr. We call (1,0) a reduced factorization of 7o if (o) = (1) + (o).

An element 7 is called a left factor of o € W, if there exists a reduced factorization
(1,0) of a with o € W. Similarly, an element T is called a right factor of « € W, if there
exists a reduced factorization (o,7) of a with o € W.

We also recall some basic facts about Wr.

Lemma 3.4. 1. The group Wr is finite and there exists a unique element 6 € Wt such
that 1(5) is mazximal.

2. Fvery element 7 € Wr is a left factor and a right factor of 9.
Proof. See [BT11), chapter 2]. O

To relate the Weyl group Wr and the braid group Br further one defines a set-theoretic
section.

Definition 3.5. Define a map
@ . WF — BF

as follows: For o € Wr choose a reduced factorization o = ;,..04,, i1,..,4r € I'; and define
o(a) as sy, ..si, € Br.

Remark 3.6. The map ¢ is indeed well-defined, since different reduced expressions for o are
linked via braid relations. These are relations, which also hold in Br.

Let Bl‘f C Br be the monoid generated by the s;, ¢ € I'. For a € BF we define (as for the
Weyl group) the length of « as

l(a) :==min{ 7 | 3 4y,..,4%, € I' such that s;,..s;, = a}.

Using this length function we can also speak of reduced factorizations, left factors and right

factors for elements in Bf'. In Bf' we have the element A := (§). It has the following
important property: For every 7 € W the element ¢(7) is a left factor and a right factor of
A in B

To show the importance of this property we assume that G is a group generated by
some elements g. € G, r € J, and denote by G the monoid generated by g,,r € J. We
assume furthermore that there is an element A € G such that for every g,.,r € J, we
have A~'g,A € GT and some element m € G+ such that g,m = A, i.e. G is stable under
conjugation with A~! and every g,,r € J is a “left factor” of A in G+.
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Lemma 3.7. We keep the above notations. Then:
1) Every element g € G can be written as g = g* A with g* € G and j € Z.

2) If H is an arbitrary group and v : G — H a homomorphism, such that the restriction
Yo+ : Gt — H is injective, then 1) is injective.

Proof. A general element g € G is a word in g, and g-!,7 € J. Now every inverse g ! can
be written as
gy =mA™

with m € G, because every g, is a left factor of A in GT. So we can assume that g is a
word in g,,r € J, and A~!. In such a representation the elements A~! can “bubble” to the
right: Express A~1g, = mA~! with m € G*. Then A~! has moved across g,. So we can find
a representation as in 1).

Let us consider the second claim. Assume that g € G is some element in the kernel of .
Write g = mn~! with m,n € GT. This is possible because of the first claim. Then

as ¥(g) = 1. But ¢ is injective if restricted to G*, so m = n and therefore g = 1. This shows
that 1 is injective. ]

The assumption on GT in is satisfied for example if every g,,r € J, is a left divisor of
A in GT and the set of right divisors of A in G is contained in the set of left divisors of A
in GT. We conclude:

Corollary 3.8. Let H be a group and ¢ : Br — H be a homomorphism, then v is injective
if 1ZJ|B+ 1$ injective.
r

Proof. By what we have said so far the generators s; € Br,i € I', and the element A satisfy
the assumptions of O

Remark 3.9. For a general group G and generators hy,r € J, one can construct a set
of generators R and a suitable A fulfilling the assumptions of [3.7 as follows: Choose some
arbitrary element A € G and set

Ry :={ hy, n,:=h 'A|relJ}

Gf = the monoid in G generated by Ry.

By construction every element h,. is a left divisor of A in G . Also, n, becomes a left divisor
of A in GY if we add n'A = A=th,A to Ry. But A=th, A becomes a left divisor of A in G}
if we add A'n,A. So we set
Ri=[JAT"RA"
n>1
and see that the data
R, A
G* := the monoid in G generated by R

fulfills the assumptions of [3.7 See[{.] for an example, where this construction is applied.

17



Now we come to the desired Garside factorization for elements in Br.
Lemma 3.10. 1) For every a € Blf there exists a unique longest right factor f € o(Wr).

2) For every a € Br there exists unique wi, ..., w, € @(Wr) such that
o= wi..w,

and fori=1,..,r the element w; is the unique longest right factor of wy..w;.
Proof. See [BT11), chapter 2]. O

Definition 3.11. For an element a € Blf the factorization (w1, ..,w,) from lemma 18
called the Garside factorization of a with Garside factors wi, .., w,.

To illustrate Garside factorizations we discuss as an example the case
IF'=A;=(e—e).
2 (; ;)
The element 0 is given by o10201 = 020102. Clearly, every element of
e(Wr) = {1, 51, 52, 5152, 5251, 515251 = S25152}

is a left factor and a right factor of A = s15981 = $95182 in Bp. For the element o = 51595151
the Garside factorization is given by (s2, $15251).

To check whether some factorization is actually a Garside factorization, one can use the
following criteria.

Lemma 3.12. 1) If elements ai,..,q, € Bff are given, then (aq,..,a,) is the Garside
factorization of aq..aw. if and only if for every i = 1,..,7 — 1 the Garside factorization
Of Q0G4+ 1 18 (ai,aiﬂ).

2) For w,v € Wr, (p(w),p(v)) is the Garside factorization of ¢(w)p(v) if and only if the
following holds: For every i € I' the element o; is a right factor of w if and only if o; is
a left factor of v.

Proof. See [BT11), lemma 2.1 and lemma 2.2]. O

3.3 The main proposition in type ADE

In this section we proof the main proposition used in section to show faithfulness in type
ADE.

Assume that E; € D,i € T, are spherical and that (E; | i € ') is a I-configuration (recall
that T' is assumed to be a graph of type ADE). Examples of such configurations have been

given in Define

el
to be the direct sum of all E;.
We are aiming for a generalization of [BT1I, proposition 3.1]. A first step is provided
by the following lemma. We will write ¢, for T € Aut(D) with « € B* := Bl and ¢; for
ts,,1 €.
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Lemma 3.13. Let Y € D and m :=sup{ p | [£,Y], # 0}. Assume, m # —oo. If for every
1 € I' we have

[Ei Y]m # 0,

then
[Ej,tiY i1 #0 & j =i

fori,jel.
Proof. This follows from lemma If i = j, then
) tY st = [Ei, Y] # 0.

Conversely, if 7 # j, then by
1S,t:, Y], =0

for p > m. ]

Now let Y € D be an object fulfilling the assumptions of The next proposition shows
how an element o € By can be reconstructed using the graded vector space [€,t,Y ..

Proposition 3.14. Let o« € BT, a # 1, have Garside factors (wy,...,w1) and let Y € D be
with m :=max{ p | [£,Y], # 0}. Assume that

m =max{ p | [E;, Y], # 0}
for every i € I'. Then
1) max{ p | [£,taY], #0} =r+m
2) [Ei,toY]kem # 0 if and only if s; is a left factor of w,.

The proof is a long case-by-case calculation using induction. We will apply the induction
hypothesis more than 20 times, so better be prepared!

Proof. We proof the proposition by induction on the length

o) = Uuwy).
j=1

The case [(«) = 1 has been handled with in Note that the second statement is wrong if
l(a) =0.
So let I(«) > 2 and w, = s;u be a reduced expression for w,. Define

B = wp_q...w1.

Then 8 =1 is possible, but [(uf) > 1 because I(«) > 2. So the induction hypothesis may be
applied to uf.
First consider the case that u = 1 (so {(5) > 1). In view of statement 2) it suffices (for
proving 1)) to show
max{ p | [£,tY], #0} <r+m.
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So let p > r +m. Then by induction
[E,t5Y]p—1 =0
because ( has r — 1 Garside factors and p — 1 > (r — 1) + m, therefore by lemma
[€,titgY], = 0.
To prove 2) for this case we have to show
[EjtaY lgym # 0= i=]

because s; is the only left factor of w;.
First we show that [E;, t,Y ],+m # 0. By induction we know that

[Eia t,BY]r+m—1 7é 0

because § has k — 1 Garside factors and w,_; has s; as a left factor (see|3.12)). Therefore we
get
[Ei, titgY |ym # 0
by 3.2}1).
Now let j € ', j # i. We know by induction that
[EjitsY]p = 0= [Ei,tgY],

for p > r +m because [ has r — 1 Garside factors. So by 2) we get [Ej, titgElr4m = 0.
We are finished with the case [(w,) = I(s;u) = 1, so let us consider the case that u # 1
and assume that u = s;v is a reduced expression for u with v € BT. Then j # i (as s;u is a
Garside factor of o) and we write 7 := vf. Note that the case v = 1 is possible (if r = 1 and
l(wy) =2).
First let us show that [£,t,Y], =0 for p > r +m. Let p > r 4+ m, then we have

leT,I#i
because by induction [€,t,tgY], = 0 for p > r +m and therefore (by [3.212))
[Ey, titthY]p =0

for p > r4+m and | # i. Finally [E;, tit tgY], = [E; tutgY]p—1 = 0 for p —1 > r+m by
induction. But (also by induction)

[Ei, tutgY |r4m # 0 & s; is a left factor of u,

but s; is not a left factor of u because I(w,) > 2 and so we get [E;, tytgY ], 4m = 0.
The rest of the proof shows statement 2) for the case [(w,) > 2, namely that for [ € T we
have
[Ep,taY ]r+m # 0 < s; is a left factor of w.

First we show that [Ej,t;t;t,Y],+m # 0, which establishes one direction (because s; is an
arbitrary left factor of w;.), by dividing it into three cases:
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Case 1 i, j not adjacent in I, that is t;t; = ¢;t;.
Then by induction [Ej, t;t,Y |, +m # 0 because s;v has r Garside factors with last Garside
factor s;v and s; as a left factor of s;v. But then

0 # [t; i, tjtitsY lrpm = [Ei titjty Y rim

because t;E; = E; (see [2.18).

Case 2 i,j adjacent in I' and v has s; as a left factor.

Let v = s;e be a reduced expression. Then v = s, and we compute (using titik; = E;
and the braid relations):

[Ei7tOcY]r+m = [Ei7titjtitatﬁy]r+m = [tjtiEja tjtitjtatBY]T—I—m = [Ejvtjtetﬂy]r-i-m

and the last group is non-trivial (by induction applied to sje) because sje is the last Garside
factor of s;e3 and has s; as a left factor.

So we are left with the last case:

Case 3 i,j adjacent in I', but v does not have s; as a left factor.

We want to show that [Ej, titjt Y], rm = [Ei, tjtyY]p4m—1 is non-trivial. Consider the
distinguished triangle

[Ej, t,YY]* X Ej — t,yY — tjt»yY — *[1] (6)
and apply [E;, —]o. This gives an exact sequence:
[Eis tyY Trm—1 — [Eistjty Y lrpm—1 — [Ei, [Ej 7Y ]« @ Ejlrim — [Ei 83 Y lrpm (7)

We claim that [E;,t,Y],+m = 0. If v = 1, then the claim follows because r > 1, but if v # 1,
then we can apply induction to ~. If v has strictly less than r Garside factors, induction yields
the claim. But if v has r Garside factors, then [E;, t,S],+m = 0 because v does not admit s;
as a left factor.

By (and the vanishing of the last term) it suffices to show that

[Eh [Ej7 t'yy]* ® Sj]rer 7& 0

to get [Ey, tjtyY]r1m—1 # 0. We calculate (using that ¢, j are adjacent):

[Ei, [Ej, t2Y e ® Ejlrim = @B, tyY v tm—p @ [Ei, Ejlp = [Ej, 64 Y s 1 ® [Ei, Ejh
p

and so it suffices to show [E;,t,Y],4m—1 # 0. But [E;,t,Y],4m—1 = [Ej, tjty]r4m and the
last group is non-trivial by induction applied to s;. The case 3 is then finished.

We are still left with one statement, namely that if [E}, t,Y ], 4m # 0, then s; is a left factor
of w,. We will prove the contrapositive: If s; is not a left factor of w,., then [S},t,Y];4+m = 0.
So let [ € T" such that s; is not a left factor of w.

First consider the case that [ and i are not adjacent (remember the reduced decomposition
a = s;uf with uf having r Garside factors but l[(uf) < l(«)).

We get [Ey, titutgY |rom = [tiEy, titutgY | pm = [Ep, tutgY |r4m and can apply induction to
see that the last group is trivial because w (which is the last Garside factor of u3) does not
have s; as a left factor since a reduced expression u = s;v would give a reduced expression
a = s;85v08 = s18;v.
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Thus we can assume that [,¢ are adjacent. It follows that [ # i because s; is a left factor
of w, and s; not (by assumption).
Consider the distinguished triangle

[Ei, tutgY |« @ By — tytgyY — tit,tgY — *[1]
and apply [Ej, —]o. This yields an exact sequence:
o= [Biy tut 3Y |rsm—1 @ [Ep, Eilt 28 By tutsY lrom — [Ep titut 3Y lrpm — - (8)
Thus, if we can show that [E;, t,tgY ], 41m = 0 and that the composition map
[EistutsY rsm—1 @ [El, Bi1 % [Ey, tutgY |rsm 9)

is surjective, we are done, because then (by exactness of ) [Ep, titutgY |pqm = 0. First let
us show that [Ej, t,t8Y ], 1m = 0. But this is easy because we can apply induction to uf and
use that u does not admit s; as a left factor (as uf and s;uf = o have r Garside factors).

Now let us show that the composition map @ is surjective. If s; is not a left factor of u,
then (by induction applied to uf3)

[El, tut/BY]rer - O

as uf has r Garside factors. So we can assume that there is a reduced expression u = s¢.
Now consider the distinguished triangle

By, ttgY ]y ® By — ttgY —> tytgV —Ls «[1] (10)
and the exact sequence
Bty tet Y Trim — [Eus tutsY lrem 2 (B, [Bry et Y ]e @ Eilymen. (11)

If e # 1 let us apply induction to see that [Ej,t-tgY ] 1m = 0 because if €3 has r Garside
factors, then s; cannot be a left factor of € (as s;5:68 = « has r Garside factors). In the
case € = 1 induction (if 8 # 1) yields [Ej, tg],+m = 0 because 8 has r — 1 Garside factors. If
ef =1, then [Ej, t.tgY],4m = 0 as r = 1. This shows that f, is always injective.

Now the rightmost term in is given by

(£, (B, tetgY ) ® Eilrqma1 = [Ey (B tetgY e rme1 @ Eilo @ [Ey, [Eyy ttgY |rim—1 @ Eyl2
= By, (B tetgY |rim—1 @ Epl2
(by induction) and thus for every map x : E; — t,tgY [r + m] the composition
By -5 tutgY[r +m] -5 [By, tat Y], ® Bilr +m + 1)

factors through the summand [Ej, t:tgY | 4m—1 @ Ej[2] of [Ej, t-tgY ] ® Ej[r +m + 1].

Now [E}, t-tgY ] 1m—1 ® E;[2] is just a direct sum of copies of £;[2] and lemma shows
that every map E; — [E}, t:tgY ], ® &[2] factors through E;[1].

Let x : B} — t.tgY|[r + m] and remember that we want to show that the composition
map @ is surjective. That is we want to factor x through some morphism

Ei[1] — ttgY[r +m].
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First of all we can find a commutative diagram (without the dotted arrow %)

E, < Ei[1]

v PP Yo y \

tutgY [r +m] —Lv (B, ttgY ]y ® Eifr +m+ 1] —— totgYr +m+ 1]

9

where the bottom row is part of the (shifted) distinguished triangle , because we can
factor f o x over E;[1]. We want to construct the dotted arrow § making the upper triangle
in the square commutative.

We claim that z = 0, so that by exactness (coming from the distinguished triangle) the
morphism y factors through f giving some 3 making the lower triangle on the left commut-
ative. For this we will even prove that

[Ei[l]atst,ﬁy]r+m+1 = [Ei7 tetﬁy]r—i-m =0,

so that z must be zero.

If e = 1 we are done because r > 1, so let us assume that ¢ # 1, [Ej, tt3Y |,4m # 0 and
let us apply induction. Then we know that £/ has r Garside factors (because € cannot have
more than r because o has r Garside factors) and that € has s; as a left factor. So we can
find a reduced expression € = s;n giving a reduced expression a = s;5;8;m8 = $;5;5m8 which
is a contradiction because by assumption s; is not a left factor of . Therefore we proved
[Ei, tetgY |r+m = 0 and thus we have constructed the map 7.

Now we show that actually the upper triangle on the left must also commute, that is
x = Fog and we finished the proof. But it was shown (see the exact sequence (11])) that
composition with f is injective for maps from Ej, so we get x =7 o g because

fox=yog=foyoy.

This settles the last piece needed for the proof. O

3.4 Proof of faithfulness in type ADE

We keep the notations from section The main proposition [3.14] implies the following
theorem.

Theorem 3.15. Let Y € D be an object such that
max{ p | [£,Y], # 0} = max{ p | [E;, Y], # 0}

for alli e T'. Then for o« € B
taY 2Y & a=1.

In particular, the stabilizer of Y in B is trivial.

Proof. First let a, 8 € B* be such that t,Y = ¢3Y. Then we know that
. taY ], 2 €, 157,

and thus by [3.14] that the Garside factorizations & = w,....w; and 8 = v,...v; must have the
same length. In particular, if @« = 1, then § = 1. If now a # 1 we can find a left factor s; of
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w, and this left factor must also be a left factor of vy, again by [3.14] Proceeding by induction
on the length of a we get a = £.

Using the same reasoning as in we conclude that if & € B is arbitrary we can write
a = B~y with 8,7 € BY. Thus if t,Y 2 Y, then tgY =t,Y and thus 8 =~ because of the
first case. But 8 =~ implies @ = 1 and hence the theorem. O

The next theorem is now an easy corollary of

Theorem 3.16. For every I'-configuration (E; | i € I') in D the group homomorphism
T : Br — Aut(D)
s injective, i.e. the action of Br on D is faithful.
Proof. By it suffices to show the existence of some object Y € D such that
max{ p | [£,Y], # 0} = max{ p | [E;, Y], # 0}

forall ¢ € I'. Put Y := &, then Y has this property. O

The object Y := &£ is not the only possible choice, as the next example shows.

Example 3.17. Let X be a K3 surface and C,D C X two (—2)-curves on X meeting in a
(reduced) point x € X. Then

(OC(Z)7OD(j))7 (WAS Z

is an Ao-configuration in D?(X), see example . The object Y := k(x) fulfills the assump-
tions of theorem [3.15, see[2.20, We can conclude that the stabilizer of Y in

Ba, = (Toy ), Top )

is trivial. In particular, the “small” object k(x) already establishes faithfulness for By, in this
case.
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4 The case I' = Al

Fix a K3 category D. Similarly to chapter [3| we want to establish faithfulness of braid group
actions arising from I'-configurations, but this time for the graph

F=A=(e=19)

So define T' := A; for the rest of this chapter. In section we will give an application to
Bridgeland’s conjecture on autoequivalences of complex K3 surfaces.

4.1 A presentation of By,
In this section we aim for a presentation of the affine braid group
B := Br,
which is much more suitable for our purposes.
Definition 4.1. Define
B:= (81,1 €Z | 8i—18; = 8j—15j, 1,7 € ).
Let w := sps1 = 8182 = ... .

By definition, we have wsiw | = s;_g fori € Z.

Remark 4.2. The construction of B is motivated by with hg = sg, h1 = s1 and A =w =
s0s1. But additionally we also added generators w"™s;w™" with i =0,1 and n > 1.

We want to prove:
Proposition 4.3. The homomorphism
B—B:s;, i=0,1ws
is an isomorphism.

Proof. First we show that sg and s; generate B. Let H := (s0,51) C B. As w € H, the
equation

wsiw = S; 9, 1 €L

shows that every s; is contained in H. Thus, H = B. But sg, s1 do not have any relations in
B. To see this express the relation

S;i—18; = sj_lsj
with 2,7 € Z in terms of sy and s1. But sgs1 = w = s;_15; for ¢ € Z. So the relation reads
w=uw,

which is trivial. Hence, so and s; do not satisfy any relations in B, so the above morphism
B — B is indeed an isomorphism. O
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We found the presentation B of B in [McCO05, example 4.8]. From now on we will identify
B with B using the above isomorphism. We define Bt C B to be the monoid generated by
Si b € 7.

Lemma [3.7] implies:

Corollary 4.4. 1) FEvery element o € B can be written as
o = Sil..SZ’TUJj

with i1, ..,%.,7 € Z. If we require i; # ij41 — 1 for j =1,..,7 — 1, this representation is
Unique.

2) Let H be a group and ¢ : B — H be a homomorphism. If 1+ is injective, then v is
mjective.

Proof. By construction the assumptions of are satisfied with ¢, = s,,7 € Z, and A = w,
so we are only left with the uniqueness statement. But the condition i; # 741 for j =1,..,r
means that we cannot change the representation using the relations s;s;11 = s;jsj41, %,J € Z
in B. So the representation is indeed unique. O

For later use we give the following definition.

Definition 4.5. An element o € B is called w-free if in its unique representation from[{.4)
we have 7 = 0. In other words, o can be written as

& = §4;..54,
with i1, ..,4, € Z such that for every j =1,..,7 — 1 we have
ij 7 ij+1— L.

Remark 4.6. If sic € BT with i € Z is w-free, then sjsic is w-free if and only if j # i — 1.

4.2 Computation of Hom-spaces in Type A,

We fix Ey, Eq € D spherical and assume that (Ep, E1[—1]) form a I'-configuration. This just
means that
[E07E1]* = kQ-

Let us denote the spherical twists T, and Tg, by Ty and 7. Recall the homomorphism :
T : By — Aut(D)

sending s;, @ = 0,1 to T;. Using the identification B = B from proposition yields auto-
equivalences T; := T (s;) for i € Z. For a € B we will use the shorthand T, instead of T" (c).
In particular, T, = T; for @ € Z. Also recall the element w = sgs; € B. Define

By =T, Ey, j€7Z

and ‘
Eoyjr1:=T,7F1, j €Z.

These objects are again spherical objects in D. By construction T,,(E;) = E;_9, i € Z, and
T; 2 Tg,, © € Z. In particular, the autoequivalences 7; are again spherical twists.
To motivate this construction, we give the following example.
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Example 4.7. Let X be a K3 surface and C C X a (—2)-curve. Then set
Ey:= Oc € D'(X)

and
E; := 0c(1) € D(X).

E:mmple shows that [Eg, E1]. = k? and example that in this case
T,(-) = 0x(C) & (-)

and thus
E; = Oc(j)

as OX(C)\C = Oc(—2).

Our aim is the calculation of the Hom-spaces [E;, E;], for 4, j € Z, because this Hom-spaces
will play an important role for the combinatorics developed in section

Lemma 4.8. Leti € Z. Then
[EBio1, Bl 2 K.

Proof. By applying T,, we can restrict ourselves to the calculation of
[Eo, Er ]«

and
[E_1, Ep)«.

For the first case the claim follows by assumption and for the second case we compute
[E_1, Eoly = [ToTi(E1), Eols = [Ey, Boleyo & [Ey, E1]Y, = K
using Serre duality and T;(E;) = E;[—1] for ¢ =0, 1. O
Next, we establish an analogue to the “Euler sequence” on ]P’,lc.

Lemma 4.9. Let i € Z and let z,y € [Ejy1, Eit2]o be a basis. Then by completing the
morphism

(=)
Eii1®Eiy1 — Eiyo
we get a distinguished triangle (called “Euler triangle for i” in this chapter)

7b b
E; @) Eit1® Ein @y Eiyo — x[1] (12)

with a,b € [E;, Ei+1]p being a basis.
Proof. By definition we have an isomorphism
E; =2 T,(Eiy2) = Ti1Tiv2(Eiy2)

or equivalently an isomorphism
E;[1] 2 Tit1Fiyo. (13)
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By lemma [4.§] the (z,y) form also a basis of [Ej1, Ejo]« and thus by using the distinguished
triangle
1
[Bit1, Bivols ® Eiy1 = Eiro — Tip1(Eigpa) — #[1],
the basis (x,y) and the second isomorphism we conclude that we get a distinguished
triangle
7b b

E; @) Eit1® Ein @y Eiyo — x[1] (14)
with some a,b € [E;, Fi11]o. We have to show that they form a basis or equivalently that
they are linearly independent. Assume they are not. By changing the triangle by an
automorphism of F;y; @ E;+1 we then can assume that b = 0. But then (because Ej;o is
indecomposable) F;1 and F;s must be isomorphic, which is a contradiction. So the proof
is finished. O

For different choices of a basis x,y € [FE;, Fi11]o we get isomorphic triangles. Hence we
will speak of “the” Euler sequence (or Euler triangle) for 7.
In our next lemma we finally compute the Hom-spaces [E;, Ej], for i, j € Z.

Proposition 4.10. Let,5 € Z. Then:
1) Ifi < j, we have
a) for 0 # x € [Ej, Ejt1]o the map
B, Bjlp = [Bi, Bjialp

is injective for p =0 or p = 1.

b) for p € Z and j > i the Euler triangle for j (from lemma yields an ezxact
sequence

0— [EZ, Ej]p — I:Ei,EjJrl b Ej+1]p — [EZ, Ej+2]p — 0.

¢) for j > i we have - o
(B, Ej) = K7 @ k[—1)771,

2) If j <1, then o o
(Ei, Byl = K11 @ k[-2] 75+,

Proof. The assertion 2) follows from the assertions in 1) by Serre duality. So we can restrict
our attention to the claims for j > 4. First we show how we can derive statement 1.c) about
[Es, Ej]« if the other two parts are known. Let us compute [E;, F;; ], using the Euler triangle
for i:

E; — Ei 1 © By — Eipo — #[1].

Applying [E;, —]o and using the known spaces [E;, E;], and [E;, Ej11]s (see lemma[4.8) we get
[Ei, Ei+2]* ~ |3 D k‘[—l]
Thus we can proceed by induction using the claim 1.b) to show

(B, Byl = K~ @ k[-1) 7
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for j > 4. The statement boils down to the calculation
20+1—-i+£l)—(j—i+tl)=4+2—i+1.

So we establish the remaining claim 1.a),1.b) about the injectivity and the Euler triangle by
induction on j. For j = ¢ the injectivity assertion for some 0 # x € [E;, Fi11]o is clear by
evaluating at the identity of E;. So we can assume that j > i. Note that the statement 1.b)
about the Euler triangle for j follows from the injectivity statement 1.a) for j. In fact, using
the Euler apply and induction on j we get a (quite) long exact sequence

0

w
(- a, D)«

BB 2 1B By © By~ B B —
(d a, D)«

[E;, Ej] (a,5) (Ei, Ejr1 ® Ejy]

0
with some a,b € [E}, E;j41]o both non-zero. So if the injectivity assumption in 1.a) holds for
j > i, then the assumption 1.b) about the Euler triangle holds for j. Now we claim that if
the injectivity assumption of 1.a) holds for j, then the injectivity assumption also holds for

j + 1. This would clearly finish the proof. Assume the injectivity assumption 1.a) holds for
7 and let

X . Ej+1 — Ej+2 resp. d: E(] — Ej+1[p]

be homomorphisms with p € {0,1} and z o § = 0. If  is non-zero, then we can pick a basis
z,y € [Ejt1, Ej+2]o containing x and look at the corresponding Euler triangle for j:

7b b
Ej (LZ Ej+1 D Ej+1 (w_yg Ej+2 — *[1]

with some basis a,b € [Ej, Ej1]o. By assumption the element (6,0) € [Ey, Ej+1® Ej+1]p maps
under (z,y). to zero in [E;, Ej, 2], and hence there exists (by exactness) a map z € [E;, Ej],,
such that

(aoz,boz)=(6,0).

But b cannot be zero because a,b form a basis of [S;, Sj11]o according to lemma Thus
z = 0 by the injectivity assumption for j. This implies § = aoz = 0 and the desired injectivity
assumption for j + 1. O
4.3 The main proposition in type A;

In this section we develop the combinatorics for proving the main theorem on faithfulness in
type A1 (see section . We keep the notations from section and section
On BT we can define a length [, namely

l(a) :=min{ r | 3 iy, ..,9, € Z such that s;,..s;, = a}.

The next lemma gives a description how Hom-spaces change under a twist 7;. It is a
special case of [3.1] and can be seen as an analogue of

29



Lemma 4.11. Let Y € D and for j € Z let
L = max{ p | [E;, Y1, # 0.
Fizi € Z and let \j := max{ p | [E;,T;(Y)], # 0}. Then we have the following:
1) \i=1;+1.

2) Let j = i —1. Then \; < max{l;,l;} and if l; > l;, then \; = l;. If l; > l;, then
A=l — 1.

3) Let j <i—1. Then \; < max{l;,l;} and if l; > l; + 1, then \; = 1;. If l; > l;, then
A = i

4) Let j >i. Then A\j <max{l;,l; + 1} and if [; <1; + 1, then \j =1; + 1.
Proof. All statements follow from and O
We come to our main proposition of this chapter.
Proposition 4.12. Let Y € D and let
Iy = max{ p | [E}.Y], #0}, j € Z.

Assume that for every i,j € Z we have l; = 1j(# —00). Let « € BT be w-free and i € Z such
that s;« is again w-free. Write

Aji=max{ p | [Ej, TiTa(Y)]p # 0}

Then A\j = X\; — 1 for j <i—1 while \i—1 = X\; —2 and \j = \; for j > i.
In particular, we can determine © out of the \; as the least i such that

Ai :max{ )\j | Jj e Z}

Proof. We use induction on the length of the w-free element s;o and heavily our lemma [L.11]
First if & = 1, then we have to compute

Aj = max{ p | [Ej, Ti(Y)], # 0}.

We have \; = [; +1 and [; = [; for every j € Z. By lemma this implies \;_1 < [; = \;
and that \; =0, =\ —1for j <i—1and \; =1; +1 = \; for j > 4. So we have to show
only Ai—l = )\7, — 2. But

[Eie, Ti(Y )]s 2 [Ei1, Tia Ti(Y)]io1 2 [Ei1, Y] (15)
and so )\i—l = li+1 —1= )\i — 2.

We assume that the length of « is greater or equal to 1. Then write o = 5,8 with v € Z.
By our assumption that s;a = s;s,/3 is w-free we can conclude that ¢ > vy or ¢ <y — 1. Let

pj :=max{ p | [Ej, Toa(Y)], # 0}.

30



By induction we know that p; = py — 1 for j <y —1and py—1 = py — 2 and p; = p, for
J > 7. First consider the case that ¢ > . Let j <¢—1. Then p; < p; and thus by the lemma
)\j:,ui:)\i—l. If j > 4, then

pi =i < pi+1
(because j > i > =) and therefore by the lemma m

)\j = U; +1= >\z
This finishes the case that i > ~, because we can argue for A\;_1 asin to show \;_1 = \;—2.

Now assume ¢ <y — 1. Then p; = 1, — 1 and thus for j > i we have
Bi < pi + 1= py.

We can conclude that A\; = p; +1 = A; by the lemma m The argument in shows
Ai—1 = A; — 2. We are left with our last case, namely that j < ¢ — 1. Then u; = p; and
therefore by lemma [£.11] \j = y1; = A; — 1. This finishes the proof. O

4.4 Proof of faithfulness in type A;

We keep the notations from the previous sections and prove the following analog of theorem

Theorem 4.13. Let Y € D and for i € Z let l; :== max{ p | [E;, Y], # 0}. Assume that
l; =1j(# —o0) fori,j € Z. Then

By :={aeB|T,(Y)2Y} C (w).
Proof. Take a € By. Then according to [4.4] we can write o = fw” with r € Z and § w-free.

As o(Y) 2Y, we conclude )
pY)=Y

if we set Y := w"(Y). In particular, we see that
max{ p | [Ej, B(Y)], # 0} = max{ p | [E}, B(Y) # 0}
for all 4,5 € Z. But then 8 =1 as we can apply With B and Y. In fact, for i € Z,
[Bi Y]s 2 (B, TH(Y)) = [Eirar, Y]

iy L w

as w " (FE;) 2 Eij1o,. Hence 8 =1 and a € (w). O

Clearly, the action of (w) on D is faithful as the objects E;,i € Z, are pairwise non-
isomorphic (see , so to derive our main theorem on faithfulness in type A1 we have to
ensure the existence of Y as in For the construction of a suitable Y we first give an
example in the case D = D°(X) with X a K3 surface and F; = O¢/(4).

Example 4.14. Let X be a K3 surface and D = D’(X). Consider the spherical objects
E; := Oc¢(i) for a (—2)-curve C C X. Take a point x € C. Then by [2.2 (and its proof) we
have

[Ei, Y]« =2 k& Ek[-1]

and the object Y := k(x) fulfills the assumption Of. Note also that k(x) is a mapping
cone of a non-zero homomorphism Ey — E1.
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For the general case we mimic this example.

Lemma 4.15. Let
z: By — Fq

be a fized non-trivial homomorphism and let Y € D be the mapping cone of x. Then for all
1E€Z
[Ei, Y]« 2 k& k[-1].
In particular, Y fulfills the assumption in[].13.
Proof. Let i < 0. Then applying [E;, —]o to the distinguished triangle

Ey 5 By — Y — #[1]

gives an exact sequence

0

(£, Y]
/

[E;i, Eolo —— [Ei, ErJo — [Ei, Y]o

/

i By (B B BV
=k 0

i 2

with both maps z, being injective by lemma If i = 0, then using
[E(),EO]* =L@ k‘[—2]

and
[E07 El]* = kz

the claim follows. If ¢ < 0 the injectivity of the maps z, implies
dim[E;, Y], = dim[E;, Eq]p, —dim[E;, Eplp, =1—i£1+i—Fl =1
for p € {0,1}. The assertion for ¢ > 0 follows in the same matter if for ¢ > 0 the map
[EiaEO]p =5 [EivEl]p
is surjective for p € {1,2}. By Serre duality the surjectivity of
[E;, Eolp == [Ei, Erlp,p = 1,2
is equivalent to the injectivity
[Eo, Eilp = By, Eilp,p = 0,1.
But this can be established in the same way as the injectivity of x, in the proof of O

The following theorem answers the question about faithfulness of braid group actions in
type Aj.
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Theorem 4.16. For every I'-configuration (Ey, E2) in D the homomorphism
T" : Br — Aut(D)
from formula is injective.
Proof. The spherical objects E7, Es[1] satisfy the equality
[Er, Bo[1]). = &2,

which we imposed in this chapter. But T, = Tg,[1) € Aut(D) (see2.15), hence we can assume
that
[E1, By, = K2

Then shows that we can apply to conclude that Ker(T") C (w). But
(T) (Eo) 2 Eo, j € Z,j #0

by [4.10, Hence, Ker(TT) = {1}. O
As an application we derive the following (see [2.17)).

Corollary 4.17. Let X be a K3 surface and C, D C X two (—2)-curves meeting transversally
in two points or in one point with multiplicity 2. Then T, and To,, do not have any relations,
that is they generate a free group in Aut(D?(X)).

To determine the group (To.,To,,) as in corollary has been the initial task of this
master thesis.

4.5 Bridgeland’s conjecture

In this chapter we want to link our result to Bridgeland’s conjecture on the group of
autoequivalences of a complex, projective K3 surface.

Bridgeland’s conjecture aims at a complete description of the full group Aut(D%(X)) of
autoequivalences of Db(X ) of a smooth projective complex K3 surface X. Roughly, it describes
a part of the group of autoequivalences via the fundamental group of a certain open subset

Py C (HY(X,Z) @ NS(X) @ HY(X,Z))c.
More precisely, T. Bridgeland ([Bri08]) constructs a homomorphism
p:m(Py) — Aut(DP(X))

with image consisting (conjecturally) of all autoequivalences which act trivially on the co-
homology of X. T. Bridgeland conjectures that the homomorphism p is always injective. We
will show that our result on faithfulness confirms his conjecture.

The precise definition of Par is not relevant for use. We only mention that the full class
of spherical objects participate in the construction of Par , for details see [Bri08].

Our result on faithfulness implies

Corollary 4.18. Let Ey, E; € D°(X) be spherical and f,g € m1(Py) such that p(f) = T%O
and p(g) = T%l. If (Eo, Ey) is an T := A;-configuration, then P(f,g) 18 injective.
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Proof. Consider the homomorphism
TV : Br — Aut(D°(X))

arising from the configuration (Ep, E1). Recall that Br is a free group on generators sg, s1. By
the homomorphism T is injective. The subgroup H := (5(2), s?) is free by the well-known
theorem of Schreier—Nielsen as Br is free. Therefore, we can factor p o T‘I;I over m (Py) by

sending 8(2) to f and S% to g. The injectivity of T now yields the result the injectivity of
Pt + (fr9) — Aut(D).

O

A result of T. Bridgeland (see [Huyll) remark 5.10]) shows that the existence of f,g as
in corollary is always satisfied.
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5 The triangulated category in type A,

In this chapter we want to determine the triangulated category generated by two spherical
objects in an Al—conﬁguration and show that its isomorphism type is independent of the
given Aj-configuration (see . For showing this we will give a short review of Keller’s
classification of algebraic triangulated categories via derived categories of dg-categories (see
section . We want to add that if G;,i € J, is a class of objects in a triangulated category
D, we then write

(Gi,ie J)

to denote the smallest full triangulated subcategory in D containing the objects G;,i € J. In
the case (G;,i € J) = D, we say that the objects G;,i € J, generate the triangulated category
D.

5.1 Keller’s classification of algebraic triangulated categories

In this chapter we want to present a theorem of B. Keller about algebraic triangulated cat-
egories. Unfortunately, stating Keller’s theorem requires many definitions. Our main reference
for them will be [Kel06].

Let D be a triangulated category and G € D. Define the graded algebra

A =[G, Gl..
Sending an object Y € D to [G, Y], yields a functor
F:D — A-GrMod

from D into the category of graded right modules over A. As the category A-GrMod is
abelian, this functor F' is not a good candidate for being an equivalence or at least fully
faithful. But if one adds “more” informations to F', then a similar construction works with
the abelian category A-GrMod replaced by a derived category of a dg-category. Of course, to
say something reasonable over D one has to assume furthermore that G generates D. But
the construction also works with more than one chosen object in D.

Definition 5.1. Let k be a field and Com(k) be the category of (co)complexes over k. Then
a differential-graded category or dg-category A over k is a small category enriched
over Com(k). This means that for every objects B,C € A the morphisms Hom4(B,C) are
complexes in Com(k) such that the composition

Hom 4(C, D) ® Homy(B,C) — Homu(B, D)

is a morphism of complexes. The cohomology H*(A) of a dg-category A is the graded
category (i.e. category enriched over the category of graded k-modules) having objects as A
and as morphisms the cohomology

Homg+(4)(B,C) := H*(Homu(B,C)), B,C € H*(A).

A dg-category A with one object is also called a dg-algebra. It is just a graded algebra

A::@AP

PEZL
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together with a differential d : A — A[1] (that is dd = 0) such that for f € AP, g € A the
Leibniz rule

d(fg) = d(f)g + (1) fd(g)

holds. The cohomology of the dg-category A is the cohomology H*(A) of the complex A,
which inherits a multiplication due to the Leibniz rule. (See [Kel06, chapter 2.2] for more
details).

Remark 5.2. A typical example of a dg-category can be obtained as follows: Let M?,i € J,
be complexes in some abelian category. Define a category A with objects M?,i € J, and for
1,7 € J set
Hom? (M7, N?) := [ [ Hom(M{,N**P), p e Z
qEZ
and
Homu (M, M) := €D Hom? (M}, N})
PEZL
with the differential
d(f) =do f— (—1)f od.

for f € Hom?(M®,N®). The category A is then a dg-category. Taking as the objects M}
all complexes of k-vector spaces we get a (big) dg-category, which we call Cqq(k) see [Kel06,
chapter 2.2].

As in the case of ordinary algebras one can consider modules over a dg-category. Recall
that to give an abelian group M the structure of a right module over a ring R is the same as
to give a ring homomorphism

R — End(M).

Definition 5.3. Let A be a dg-category over a field k. Then a (right) dg-module over A
s dg-functor

M s AP s Cyy (k)

(a dg-functor is just a functor of categories enriched over Com(k)) and a morphism of right
dg-modules M, N is a natural transformation f : M — N such that for every B € A the
morphism fg : M(B) — N(B) is a morphism of complexes.

Example 5.4. Every object B € A gives rise to a dg-module via its Hom-functor
Homy(—, B) : A%? — Cqy(k).

As in the case of a dg-category, one defines the cohomology H* (M) of a dg-module M. It is
then a graded right module over the graded category H*(.A). Using this one obtains the notion
of a quasi-isomorphism of dg-modules as a morphism f : M — A of dg-modules inducing
an isomorphism in cohomology. We finally obtain the definition of the derived category for a
dg-category.

Definition 5.5. Let A be a dg-category and let A-dgMod be the category of dg-modules.
Define the derived category D(A) of A to be the localization of A-dgMod with respect to
the class of quasi-isomorphisms of dg-modules.
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Remark 5.6. The derived category D(A) carries the structure of a triangulated category (see
[Kel06, chapter 3.4]).

Again, if A is a dg-algebra, then a dg-module over the dg-category A is the same thing as
a graded module over A together with a differential

d: M — MI1]
such that the Leibniz rule
dimf) =d(m)f + (=1)’md(f), me M?, fe A

holds. To show that dg-categories are in some cases not far away from dg-algebras we proof
the following;:

Lemma 5.7. Let A be a dg-category such that the class of objects in A is finite. We define

A as the dg-algebra
A= @ [B, Cl,,
B,CeA
where the composition in A is extended by zero to morphisms not composable in A. Then the
categories A-dgMod and A-dgMod are equivalent via sending a dg-module M over A to the
direct sum
M := H M(B).
BeA
Proof. We just mention the construction of the inverse. The identities ep := Id g of the objects
B € A yield a decomposition of the unit in A into orthogonal idempotents:

12263.

Let M be a dg-module over A. Writing

M= M1= @MeB
BeA

gives a decomposition of M. Then define the dg-module M over A by
M: AP — Cdg(k?) :B— MGB.

Checking that both constructions extend to morphisms and are inverse to each other will be
omitted. O

The main theorem of B. Keller stated below describes algebraic triangulated categor-
ies in terms of derived categories of dg-categories. By definition, a triangulated category is
called algebraic if it is isomorphic (as a triangulated category) to the stable category of some
Frobenius category (see [Kel07, chapter 8.7]). Without going into the details of this definition,
we want to mention that derived categories of abelian categories are always algebraic. Also
full triangulated subcategories of algebraic triangulated categories stay algebraic (see [Kel06),
chapter 3.6]). So for our purpose we can restrict ourselves to algebraic triangulated categories
and we will do so.
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We now state Keller’s theorem ([Kel06l theorem 3.8]) and sketch its proof. Let D be an
algebraic triangulated category and G C D a class of objects. Define a graded category G,
as a category with objects G € G and morphisms

Homg,, (G, ') := PIG. G,

PEZL

for G,G' € G. Define a functor
F:D— Ggr-GrMod

into the category of graded G,-modules by sending ¥ € D to the module
G — k-GrMod : G — [G, Y]..
Theorem 5.8. With notations as above, there exists a dg-category A and an exact functor
F:D— D(A)

such that H*(A) = Gy and H* o F = F. Moreover, if D = (G,G € G) is generated by G,
then F' can be chosen to induce an equivalence

F:D — (Homy(—,G),G € A)
sending G to Hom 4(—, G).

Proof. The idea behind the proof is very much like the one discussed at the beginning of this
chapter but one furthermore considers everything in the dg-setting. Fix a dg-enhancement
D of D, this is possible as D is algebraic and it means that D is equivalent to the homotopy
category of D. Consider the dg-category A with objects G € G and morphisms

Homy(G,G') := Homp (G, G).
Sending an object Y € D to the dg-module
My : A% — Cyr(k) : G — Homp(G,Y)
yields a functor D — A-dgMod, which descends to a functor
F:D—D(A).
This functor F then satisfies all assertions. See [Kel94, chapter 4.3] for more details. O]

The theorem of B. Keller has the disadvantage that one does not have an immediate
description of the dg-category A and apparently there is no justified hope that the graded
category G, determines A in general (at least up to quasi-equivalence). But fortunately,
there is a non-empty - as we will see- class of graded categories, where this is the case.

Definition 5.9. Let A be a graded algebra. Then A is said to be intrinsically formal if for
every dg-algebra A such that H*(A) = A there is a quasi-isomorphism A = A in the category
of dg-algebras. (see [STOI1, definition 4.6]).

We also need
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Lemma 5.10. Let p: A — B be a morphism of dg-algebras, which is a quasi-isomorphism
of complexes. Then there is an equivalence

D(A) — D(B)
sending A to B.

Proof. See |[RSOT, example 7.15], taking the derived tensor product with the B-A-bimodule
B yields an equivalence D(B) — D(A) sending B to A. O

Example 5.11. Let k be a field. Then the graded algebra A := [E, E|. of a spherical object E
in a k-linear K3 category D is intrinsically formal, see [KYZ09, theorem 2.1]. In particular,
there is an equivalence

(E) — (4) € D(4)
sending E to A if A is considered as a dg-algebra with trivial differential.

5.2 The graded algebra in type A,

Let k be a field and D be k-linear K3 category equivalent to a full triangulated subcategory
of the derived category of a K3 surface. Assume that Ey, 1 € D are spherical. Fix the graph
[ := A;. Assume that (Ey, E1) is a T-configuration and set £ := Fy @ E;. In this section we
want to determine the graded algebra

A= PIE Elp.

Let R := Ap = (Idg,,Ids,) = k x k, which is a semisimple k-algebra admitting the auto-
morphism (as a k-algebra)
c:R— R

permuting the two factors. Denote by e; := Idg,(= (1,0)) and ez := Idg, (= (0,1)) the two
(non-trivial) idempotents of R.

Let M := Rby & Rbs be the free R-left module on by and bs and give M the R-R-bimodule
structure with right multiplication twisted by o.

Proposition 5.12.
Aq

I

M
as R-R-bimodules.

Proof. Let x,y € [Ey, Er]1 and d,e € [Eq, Eo|1 be two k-bases. Then x,y, 0, is a k-basis for
A1 2 [Ey, E1]1 @ [E1, Epli. We claim that « defined (as a morphism of R-left-modules) by

a:M—A1:by—>x+4+e€ bo—>y+9
defines an isomorphism of R-R-bimodules. For this we compute
a(bio(er)) = a(ebr) = e2(x +€) =z =xe1 = (x + €)ey

and similarly the other cases. O
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We denote by TM = @ M®P the tensor algebra of M considered as a bimodule over R.
p=>0
The last proposition implies that we can extend every bimodule homomorphism

a:M—)Al

to a homomorphism
a:TM — A

of graded R-algebras. Note that we speak of R-algebras, although R is not contained in the
center of A or T M.
We need the following result about Serre duality. Recall that the Serre functor

2]:D—1D
yields natural isomorphisms
Py ¢ [F1, Folo — [F2, Fiy
for Iy, F5 € D. In particular, we can define natural trace maps
trp: [F,Flo — k
as ®p p(Idp) for every F' € D.

Lemma 5.13. Let Fy, F» € D be two objects, and x € [F1, F3]1 and 6 € [Fy, Fi|; two morph-
isms. Then
trp (0x) = —trp, (0).

Proof. We can assume that D = D°(X) is the derived category of a K3 surface X and that
the isomorphism
Op 5yt [F1, Folo — [Fo, Fily

are obtained by the usual trace maps for locally free sheaves (see [Huy06, lemma 3.12]). Then
we can apply [HL10, lemma 10.1.3] and derive the claim. O

Lemma [5.13] is the reason why we assumed that D is equivalent to a full triangulated
subcategory of the derived category of a K3 surface. We do not know whether holds for
an arbitrary k-linear K3 category D.

Now we can determine the algebra A.

Proposition 5.14. We have
A= A*(M) = TM/(bl ® b1, by ® ba, by ®bg—|—bz®bl>
as R-algebras.

Proof. The pairing
[Eo, Er]1 @ [E1, Eol1 — [Ei, B2, i = 0,1,

given by composition is non-degenerate (see [2.11)), so the R-algebra A is generated by Aj.
Let z,y be a basis of [Ey, E1]; and let d,e € [E1, Eg|; be the dual basis with respect to the
pairing [Eo, El]l ® [El, EO]l — [E(), Eo]g. ‘We then have

trg,(0ox) =1, trg,(doy) =0, trg,(cox) =0, trg,(coy) = 1.
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Define
a: M — Ay

by sending by — x — €, by — y 4+ and extend it to T'M. It is easily calculated that
abi®b)=(r—¢)(x —¢) =azx —xe —ex +ee =0.

Similarly, a(bs ® by) = 0. Moreover, we see
albi@by+be@b)=(x—e)(y+0)+ (y+0)(xz—e¢)

=xy—cy+ad—¢ed+yr—ye+dxr —de =20 —ye — ey + dx.

We know that trg,(—ey + dz) = 0 and hence —ey + dx = 0. But by we also know that
trg, (xd — ye) = 0. So we conclude

a(b1 @by +by®@b1) =0
and hence A = A*(M) as both have the same dimension. O
The algebra A*(M) looks like an exterior algebra, but it is only a twisted version due to
the twisted right module structure of M.
5.3 Proof of formality

In this section we want to proof that the graded algebra A from section [5.2] is intrinsic-
ally formal by showing that it is Koszul. Using the results of we can then describe the
triangulated category of an A;-configuration.

First we introduce the notion of a Koszul algebra. Let R = k x k with k a field and let

A:@AP

p>0

be a graded algebra such that Ag = R. For every p > 0 the abelian group is an R-R-bimodule
via left and right multiplication in A. For a R-R-bimodule V we denote by V* the R-R-
bimodule Hompg(V, R) of homomorphisms of left R-modules.

Definition 5.15. We call A a quadratic algebra over R if the natural homomorphism of
graded algebras
TA1 — A

1s surjective and its kernel I is generated by the homogeneous part Is of degree 2. If
A=TA /I
is a quadratic algebra, then we define the (left) quadratic dual of A to be the algebra
A =TA T,
where I is the ideal generated by

{ Y e Aior Al | () =0}
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See [BGS96, chapter 2] for more details.

Example 5.16. Consider the twisted exterior algebra
A:=ANM= TM/<b1 ® b1,ba ® by, by ® by —|—b2®b1>

from section . In particular, we see that it is quadratic. The quadratic dual A' of A is
given by

SHM®) :=TM" /{1 ® B2 — B2 ® p1),
if B1, B2 is the dual basis of by, by. Note that the algebra A' is not commutative, a consequence
of the twisted module structure of M.

Koszul algebras are special quadratic algebras.

Definition 5.17. Let A be a quadratic R-algebra. Then A is called o Koszul algebra if the
A-left module Ag = R admits a linear projective resolution

w— P —P — Fp— R—0,

i.e. for every i > 0 the module P; is a direct summand of a sum of the shifted free module

A[—i].

Remark 5.18. 1) If
wo—>P—P  —F—R—0

is a linear free resolution, i.e. every P; is a direct sum of A[—i|, then the differentials
have coefficients in Ai. This explains the name “linear”.

2) For warious characterizations, including one using the Koszul complex, see [BGS96),
chapter 2J.

3) Examples of Koszul algebras are symmetric algebras and exterior algebras, see for ex-
ample [BGSI0)].

Now assume that A is a quadratic algebra such that A,, p € Z, is a finitely generated
R-left module. We then have the following theorem.

Theorem 5.19. 1) The algebra A is Koszul if and only if A' is Koszul.
2) If A is Koszul, then A is intrinsically formal.

Proof. Part 1) can be found in [BGS96l, proposition 2.9.1]. For part 2) we sketch a proof using
Aso-algebras (see [Kel99| for definitions). Let A be a dg-algebra having A as cohomology. By
a theorem of Kadeishvili (see [Kel99 chapter 3.3], which can be applied in this situation as
every A, is R-projective, see [Sagl0]) there is a structure of an A,.-algebra on A such that A
and A become quasi-isomorphic as As.-algebras. But the Aso-structure of A & Ext*A! (R,R)
(IBGS96, theorem 2.10.1]) can be chosen in such a way that the internal degrees are preserved.
Therefore it has to be formal by the same argument as in [Conl1l corollary V.0.6] because the
algebra A' is Koszul by 1). Hence A and A are quasi-isomorphic as As-algebras. Therefore
A and A are also quasi-isomorphic as dg-algebras and A is intrinsically formal. O
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For hinting 2) to us we want to thank Prof. Catharina Stroppel. Now we tie together
the results from section [5.1] and Recall the R-R-bimodule M from [5.12] and the algebra
A= ANM :=TM/{by ® b1,by ® ba, by @ by + by @ by) from which is isomorphic to the
graded algebra for an A;-configuration by

Theorem 5.20. The algebra
A=A (M)

is Koszul. In particular, A is intrinsically formal by Theorem [5.19
Proof. By Theorem it suffices to check that A' is Koszul. But shows that

A = T(M) /(B & By — B2 ® 1)
with By, B2 € M* the dual basis of b1, by. Consider the “Koszul complex”

(B2,81) (

0— A'[-2) 2 Ay e a1 DB A R0, (16)

which is obviously a linear projective resolution provided it is exact. (Here “5” denotes the
right multiplication with 3.) But as a sequence of R-left modules the sequence is isomorphic
to the usual Koszul complex for the symmetric algebra S*(R?), which is known to be exact.
Hence, is exact and therefore A' is Koszul. Applying we get that A is Koszul. [

We are now in the position to determine the triangulated category generated by two
spherical objects in an Aj-configuration.

Theorem 5.21. Let D be a full triangulated category of the derived category of a K8 surface,
Ey, E1 € D spherical and assume that (Eg, E1) form an Al—conﬁgumtion. Then we get an
exact, fully faithful functor

<E0, E1> — D(A)

sending Fg to et A and E1 to es A. Here we consider A as a dg-algebra with a trivial differential.
In particular, we get an equivalence

<EQ, E1> = (61A, 62A>.

Proof. By and we know that there exists a dg-algebra A with H*(A) = A and a
fully faithful functor (Eg, E1) — D(A). But as A is intrinsically formal (see [5.20)), we get a
quasi-isomorphism A = A. Hence, we can identify D(.A) and D(A) using|5.10, Following the
proofs of and we see that we can arrange things in such a way that under the
resulting fully faithful functor

<E(), E1> — D(A)

the objects E; are sent to e;41A. O
With this theorem at hand can give the following amusing application.

Corollary 5.22. With assumptions as in [5.21] we get an autoequivalence of order two of
(Eo, E1) sending Ey to Ej.

Proof. The automorphism ¢ : R — R permuting both factors can be extended to A*(M) by
applying it on coefficients. Denote this extension again by . Then o induces an autoequival-
ence of D(A) permuting the two modules of e; A and es A of A*(M). By theorem we can
conjugate o and get a desired automorphism of (Ey, E1) having the required properties. []
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Remark 5.23. 1) Using derived McKay-correspondence an automorphism as in the co-

2)

rollary could also have been obtained (in the case k = C) as follows. By theoremm
we can assume that Ey = Op, By = Op(—1)[1], where D is the exceptional divisor of a
minimal resolution X of the Aq-singularity of C? /G with Z/27 = G C SLy(C). Derived
McKay-correspondence yields an equivalence

DY(X) = DP(Coh®(C?))

sending Ey and Ey to the two irreducible representations Vo, Vi of G (considered as G-
equivariant sheaves supported in 0). It is then clear that tensoring with the non-trivial
character of G yields a desired autoequivalence (see [KVO0] for more details about the
derived McKay-correspondence).

Theorem yields a different way of proving theorem . Indeed, according to the-
orem it suffices to take Eg = O¢ and Ey = O¢(1) for some (—2)-curve C C X
on a K38 surface (such a curve exists). Then one can avoid the lengthy calculations in
section and directly apply because calculating the Hom-spaces [E;, Ejl«, i,j € Z,
15 much easier in this case.

44



6 An example in the case I' = A,

After having discussed the cases ADE or A; we now consider an example for I' :== A, and
obtain a partial result on faithfulness. For this let X be a K3 surface and C,D C X two
(—2)-curves meeting in a single point. We define D := D?(X) and the spherical objects

Aj = OC(])? JEZ,
Bj:=0p(j), j € Z,

in D.

6.1 An example for I = A,
We want to understand the group
H = (Ta;, T, | j € Z) C Aut(D).

Recall that
Tao(B-1) = To.(Op(-1)) = Ocup

by 2.22}

Lemma 6.1. We have
H= <TOC7TOD7TOCUD>

as subgroups of Aut(D). Moreover, (Oc,Op,Ocupll]) is a I'-configuration.
Proof. By and we see
Tocup 2 Troy,0p(-1) = TocTop-1Tog

SO
<TOC’TOD’ TOCUD> CH.

On the other hand, it follows as in [2.22] or from that
Tocup(Oc) = Op(=1)[1]

and
Toe,p(Op) = Oc(-1)[1].

So H C (To., To,, Toa,,) by the discussion at the beginning of [4.2] That
(Oc, Op, Ocupl(l])

is a [-configuration follows from the proof of O
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6.2 A presentation of Bj,
Let denote the vertices of I' = AQ by 0,1 and 2. Recall the definition of B := Br:
B = (sg, 51,52 | sisjsi = sjs;s;, for 4,5 € {0,1,2}, i # j).

In view of [6.1] and we will give a presentation of B which seems much more natural for
the example of We guess that our presentation is (at least in principle) known to people
working on braid groups, but we did not find it in the literature.

Define a group B as follows: Let B be the group given by generators aj,b; with 4,5 € Z,
and relations

ajbiaj = biajbi

Wq = Aj—10; = Aj-10a5
Wp = bi—lbz‘ = bj_lbj
wabj = ijwa
Wpaj = aj 11wy, 4,7 € 2.

Note that the relations imply that wewp = wpwy.
With the notation from the previous section [6.1] we get, by construction, a homomorphism

T:B — (Ta,, Tp, | i,j € Z)Aut(D), (17)

because we added all relations which are known to be satisfied by the Ta, and Tp,. At least
for the first three relations this has been discussed in and chapter For the last two
relations one computes

71 ~ ~Y
10, T8, T, = Tox (@)oo, 0p6) = Top(+1)

and
T, T, T, = Toy (D)oo, 00) = Toci+1)

because C and D meet in a single point. Note that indeed the elements w, and w;, are mapped

to Ox(C) ®oy (—) resp. Ox (D) ®oy (—) by [2.21}

Proposition 6.2. We get an isomorphism
¢0:B— B
by setting p(so) := ag, ¢(s1) := by and p(s2) := agb_1ay .
Proof. By proposition we know that B is generated by
a:=ag, b:=ay, c:=b_1 and d := by.

We throw away all other generators, express the relations in terms of a,b,c,d and see what
is left. Write b; = widwg”? for j # —1. The relation

wabj = ijwa

then reads as
g+l =i — at+1g ,—3j
Wl dw, ! = wlT dw™,
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which is a trivial relation and can be thrown away. But we have to keep the relation
WeC = dwy,.
Similarly, we can proceed with the relations wya; = ajy1wy, j € Z. To handle the relation
a;b;a; = bia;b;,

we argue as follows: Let us denote by R; ; the relation

1

1 —1;—
ajbiajbi aj bz .

Note that
walRijwy ' = Ri—g 1

and
-1
wbRi,jwb = Ri+17]’,2.

If any two relations are conjugate in B, then we can throw one of them away. S0 we are, in
particular, interested in the (wq,ws)-orbits on {R;; | 7,5 € Z}. These can be investigated as
follows: The elements w, and w, commute, so we look at the Z?-action on Z? generated by
addition with (1,—2) and (—2,1). But the orbits for that action are in bijection with the set

ZQ/«L _2)a (_Qa 1)>’

which consist of three elements with representatives (0,0), (1,0) and (0,—1). So we can throw
away all relations R; ;, only keeping R0, R1,0 and Ry 1. We therefore get an isomorphism

B2 {(a,b,c,d | ada = dad, bdb = dbd, aca = cac, abc = dab, cda = bed).
Writing ¢ = a~'ea yields
B = (a,b,e,d | ada = dad, bdb = dbd, aaleaa = a ‘eaaa 'ea, aba"‘ea = dab,
a teada = ba‘ead),
which simplifies to

B (a,b,e,d | ada = dad, bdb = dbd, aea = eae, aba™‘ea = dab, a ed = ba"e).

ledeLa:

Finally, we delete b using b = a~
B (a,e,d | ada = dad, a tede  adatede ™ a = da™tede ™ ad, aea = eae,

aa tede taa"tea = daatede1a).

This is just an awkward presentation for:
B (a,e,d | ada = dad, a tede tada tede ™ 'a = da"tede 'ad, aea = eae,

ede = ded).

We multiply the relation ¢ 'ede 'ada 'ede 'a = da~'ede'ad with da and get

dede tada 'ede 'a = dada 'ede 'ad
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1

& edee tada lede 'a = adaa 'ede 'ad

& edada Yede 'a = adede 'ad

1

& eadaa Yede ta = aedee tad

& eadede ta = aedad

& eae = aea
and so B = B (via ¢). O
We identify B and B from now on using the map ®.
Definition 6.3. Define Bt to be the monoid in B generated by the elements a;,b;, i,j € Z.
Lemma 6.4. The monoid BT satisfies the assumption of with A = wewp.
Proof. This follows by construction. O
For later use we make the following definition.
Definition 6.5. Let o € BT. Then we call o strict decreasing, if there is a representation
o= T1..77

with r; € {ai,b; | i,j € Z},i = 1,..,1, such that whenever r; = a;,r; = a; with i < j we have
i < j— 1, and similarly for r; = b;,r; = b;.

If « € BT is strict decreasing, then looking at the relations in B we see that its repres-
entation as in is unique. The element o = a_1bgayg is strictly decreasing, while o = a1bgag
is not.

6.3 Partial results on faithfulness in type A,
We keep the notation from the previous section and also keep identifying B and B. Let
R:={a;,b; | i,j € Z} C B*.
We also recall the homomorphism :
T : B —s Aut(D)

defined by sending a; to T4, and b; to Tp;. Composing T with the isomorphism @ from
yields the homomorphism T (defined in formula ) for the I'-configuration

(AOa BO) TAO (B—l)[l]) — (007 OD) OCUDU])
Now put Y := k(z). For a € B4 and i € Z we define
lago :=max{ p | [A;, To(Y)]p # 0}

resp.
lbi,a = max{ p | [Bi,TOé(Y)]p 7£ 0}
Then Iy, 1 = lo;1 = 1 for every j € Z (see [2.20). More generally, we define analogously

numbers li,a and lei ., for arbitrary Z € D.
For describing the combinatorics in proposition we give the following definitions.
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Definition 6.6. Let Z € D and o € B™.

1) If
1, j<i—1
lfja: 0, j=i—1
2, j=>i

for some i € Z we say that we have an (OA);-picture on T, (Z). Similarly, we speak
of an (OB);-picture.

2) If

Z _ 17 j S 1—1

aj,o - 2’ J Z ’L
for some i € Z we say that we have an (JA);-picture on T, (Z). Similarly, we speak
of an (JB);-picture.

3) If léa =1, i € Z, we say that we have an (CA)-picture on T,(Z). Similarly, we
speak of an (CB)-picture.

We will write (OA);+(JB), for the situation that we have an (OA);- and an (JB),-picture
on T, (Z). We proceed similarly with other combinations of pictures.

Proposition 6.7. Let o € By be strict decreasing. Let x € R and assume that xa is also
strict decreasing. Then

1) © = a; if and only if we have an (OA);-picture on Tpo(Y).
2) x = b; if and only if we have an (OB);-picture on Ty, (Y).

3) We can only have the possible pictures (OA); + (JB),, r € Z, and (OA); + (CB) on
Toa(Y) in the case x = a;. Similarly, for x = b; we only have the possible pictures
(JA), + (OB);, r € Z, and (CA) + (OB); on Tyo(Y).

4) If we have a constant picture (CB) (resp. (CA)) on Tpo(Y'), then xa is contained in
(aj | j €Z) (resp. (bj | j €Z)).

5) If we have the picture (OA); + (JB)y, i,7 € Z, on Tyo(Y) and if y is an element in
R such that yxa is again strict decreasing, then x = a; and furthermore y = a; with
j<i—1ory=>b; withj <r—1. The similar assertion also holds for the picture
(JA); + (OB),, i,r € Z.

6) If we have the picture (OA); + (CB),i € Z on Tyo(Y), then y is an element in R such
that yxo is strict decreasing if and only if y = a; with j <i—1 ory=1b;, j € Z.

Proof. We prove the assertions using induction on the length of « in terms of the set of
generators R. If a = 1, so the length of « is zero, then the statements are easy and follow
from [3.1] as in and So assume that o admits an expression o = 28 with z € R and
[ € BT strict decreasing. As the statements are symmetric in a and b, we can assume that
T = Q.

Case 1: Assume z = aj, j € Z, so that (by induction) we have an (OA);-picture on
T.(Y). As x = a;, the induction hypothesis together with the assumption that za is strict
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decreasing yields i < j — 1 and on T, we get a picture (OA); (see the proof of [£.12).
Furthermore, by induction, we have (JB), or (CB) as pictures on T, (Y). This implies (by
applying [3.2| with A; and B; for every | € Z) an (JB),41, (JB), or (CB)-picture on Ty (Y).
So we are left with statement 5). Take y € R an element such that yza is strict decreasing.
If y = ap, then as x = a; we get h < i — 1. If y = b;, then also yzf is strict decreasing, so
that j <7 —1 (by induction) in the case of an (JB),-picture on T.5(Y"). In particular,

j<r=r+1-1

showing the claim. In the case of an (C'B)-picture on T,(Y") (and hence also a (C'B)-picture
on Tyo(Y')), we have that yxa is strict decreasing if y = a; with j < i —1 or y = b; with
J € Z because zza does not contain any b,, r € Z (by induction). This finishes the first case.

Case 2: Assume z = b, with r € Z. We then consider the following two cases given by
induction. First the case of an (OB),+(JA)j-picture on T, (Y'), then that of an (OB),.+(C A)!-
picture. So assume an (OB), + (JA)p-picture on T, (Y"). By induction we know that ¢ < h—1
as xa is assumed to be strict decreasing. Then we get an (OA); + (J B)41-picture on Ty (Y)
by the proof of and To show statement 5) take y € R such that yza is strict
decreasing. If y = a;, then j <i—1asx = a;. If y = b, then | < r as z = b,. In particular,
[ <r+1—1 showing the claim. We come to our final case, that of an (OB), + (C'A)-picture
and z = a;. On Ty (Y) we definitely get an (OA);-picture by [.11] For the picture on Tha(Y')
we only get an (OB),1-picture or an (JB),11-picture by We want to exclude the case
of an (OB),y1-picture. As we have an (C'A)-picture on 7, (Y") we know (by induction) that
B is given as

B=bp, .. by,
with
r<hi—1<hy—2<..<h—t
as « is strict decreasing. We claim that ZY; = lY = 1. This is clear if ¢t = 0. Otherwise we

can apply induction to see that we have an (CA) (OB)p,-picture on Tg(Y). As « is strict
decreasmg, we know r < hy — 1, so in particular l = lY = 1. Now we can apply the result
of C. Brav and H. Thomas presented in to the AQ configuration A;, B, and T3(Y).

The result implies that
Tg(Y)
a;,bra;br

Tp(Y)

= 2 = lbrvbraibr

as a; and b, are left-factors of a;b,.a; = b.a;b.. In particular, we get

Y Y _ Y B(Y) _
lbr,xa - lbr,aibrﬁ - lbrybraibv"ﬂ 1 - lbrybrazbr o 1 - 1

This excludes the case of an (OB);,41-picture on T,4(Y"). Arguments as in the previous cases
show that also statement 5) is true, thus we are finished with the proof. O

We obtain our partial result.
Proposition 6.8. Let a, 8 € BT be strict decreasing. Then
Ty = Tg o= ﬁ,

so the homomorphism
T:B — Aut(D)

is injective on the subset of strict decreasing elements.
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Proof. Asin the proof of and one can reconstruct the last factor of a strict-decreasing
element o € BT using[6.7] Proceeding by induction on the length of a the claim follows. [

We give an example showing what prevents us from generalizing to more general
elements in BT,

Example 6.9. Consider an element o = bya;a; € BT, i,r € Z. Then using (or its
instances and |4.11), and that a;oc = bra;bra; one computes

2, 7<1
la]-,oz: 1, j=1
3, j=>i+1
and
2, 7<r—-1
bya=9 1, j=r—1,
3, j=r

so that (as a;+1 is not a left factor of a) one cannot reconstruct the last factor of a just by
looking at the pictures on To(Y). A similar problem also occurs for bra;a; € Bt with j < i.
The difficulty finally arises from the critical number i — 1 in an (OA);- or (OB);-picture.
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