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1. Solid G-modules

For a topological space T we denote by

T

the condensed set

S profinite 7→ T (S) := Homcont(S, T ).

The functor

(−) : (Top)→ Cond

is fully faithful on compactly generated topological spaces and admits as a
left adjoint the functor

Cond→ (Top), X 7→ X(∗)top

where

X(∗)top

denotes the global sections of X equipped with the compactly generated
topology (the unique topology such that U ⊆ X(∗) is open if and only if for
any morphism S → X with S profinite the preimage of U is open under the
map S = S(∗)→ X(∗)).

Let G be a locally profinite group. Then G is a condensed group.

Lemma 1.1. Let (A,M) be an analytic associative animated ring and let
g : A → B be a map of condensed animated associative rings. Then the
functor

N : S 7→ B[S]⊗A (A,M)

defines an analytic animated associative ring (B,N ).
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2 SOLID GROUP COHOMOLOGY

Proof. This statement can be found in [4, Proposition 12.8.]. �

Remark 1.2. Note that here the tensor product

−⊗A (A,M)

is just a different notation for the derived M-completion of the A-module

B[S].

By construction, the analytic animated associative ring (B,N ) depends only
on the M-completion of B (if A is commutative as then the M-completion
is symmetric monoidal).

Note that if A,B and theM[S] are concentrated in degree 0, the objects
N [S] need not.

Let G be a locally profinite group, and let Λ be a (condensed or topolog-
ical) ring of coefficients. For simplicity we will assume that

Λ ∈ {Z,Z`,Z/`n,F`}

for some prime `, although there should exist a theory for any (commutative)
analytic ring. The simplification comes mostly from the fact that the pre-
analytic ring

(Λ, S 7→ Λ[S]�)

is analytic (the solidification is underived here). If Λ ∈ {Z`,Z/`n,F`} the
Λ is even compact, which may be useful in some arguments. We call the
category of associated complete modules

Λ− Solid.

Note that by definition a condensed Λ-module is in Λ− Solid if and only if
its underlying abelian group is solid.

We denote by

Λ[G]

the Λ-group ring of the condensed group G.
Let us record the following consequence of Lemma 1.1.

Lemma 1.3. The pre-analytic ring

(Λ[G], S 7→ Λ[G][S]�)

(where the solidification is underived!) is analytic.

Proof. By Lemma 1.1 it suffices to see that

Λ[G][S]L� ∼= Λ[G][S]�.

We can write the LHS as

(Λ[G]⊗Z Z[S])L�

∼= (Λ[G])L� ⊗L�Z Z[S]L�,
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which is discrete as even both factors are projective solid abelian groups, cf.
Lemma 1.4 below.1 �

Lemma 1.4. Let S be a locally profinite set. Then

Λ[S]�

is a projective object in Λ− Solid.

Proof. By writing S as a disjoint union of profinite sets (which are send by
Λ[−]�) to direct sums), we can reduce to the case that S is profinite. In this
case,

Λ[S]� ∼=
∏
I

Λ

for some set I, and thus Λ[S]� is projective, by [5, Corollary 6.1.]. �

Note that the analytic ring

(Λ[G], S 7→ Λ[G][S]�)

is not normalized (cf. [4, Definition 12.9.]), but its normalization is given by

(Λ[G]�, S 7→ Λ[G][S]�),

where Λ[G]� is the solidification of Λ[G]. Following Kohlhaase, cf. [2], we
write

Λ(G) := Λ[G]�

as it is a condensed analog of the ring appearing there.
Let us now collect several possibilities to define a category of “continuous”

G-Λ-modules.

(1) topological G-Λ-modules, i.e., topological Λ-modules M with a con-
tinuous action

G×M →M

(here Λ is given its natural topology: discrete if Λ ∈ {Z,Z/`n,F`},
`-adic if Λ = Z`).

(2) Condensed G-modules, i.e., condensed Λ-modules2 M together with
an action

G×M →M

in the category of condensed Λ-modules. By definition, this category
is equivalent to

Λ[G]− Cond,

i.e., to the category of modules of the condensed ring Λ[G] in the
category of condensed abelian groups.

1The same argument also shows that if in Lemma 1.1 A = Z with its solid structure,
and B is concentrated in degree 0, then the analytic ring (B,N ) is again concentrated in
degree 0.

2More precisely, condensed Λ-modules.
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(3) The complete modules for the analytic ring

(Λ[G], S 7→ Λ[G][S]�),

or equivalently, the complete modules for the normalized analytic
ring

(Λ(G), S 7→ Λ[G][S]�).

We denote this category by

G− Solid,

or G− SolidΛ, when we want to stress Λ.
(4) The category of condensed Λ(G)-modules.

From analyticity we see that

G− Solid

resp.
D(G− Solid)

embed fully faithfully into

Λ[G]− Cond, Λ(G)− Cond

resp.
D(Λ[G]− Cond), D(Λ(G)− Cond),

cf. [4, Proposition 12.4.]. We don’t know if

Λ(G)− Cond

embeds fully faithfully in Λ[G]− Cond. In the following, we will mostly be
interested in the category G − Solid (and its derived category). Note that
by definition an object M ∈ Λ[G]−Cond is in G− SolidΛ if and only if the
underlying condensed abelian group of M is solid.

Remark 1.5. Let X be a small v-stack (i.e. a stack on the category of
perfectoid spaces in characteristic p, endowed with the v-topology, satisfying
a certain set-theoretic condition). In joint work in progress, Fargues-Scholze
define (by v-descent from spatial diamonds) a triangulated category

D�(X,Λ)

of solid sheaves of Λ-modules, for Λ ∈ {Z`,Z/`n,F`}, with ` prime to p. It is
a full subcategory of D(Xv,Λ). When X = [∗/G], with G locally profinite,
D�(X,Λ) should exactly be D(G− Solid).

For any topological Λ-module M the condensed set

M

is naturally in Λ[G]− Cond.
If M is discrete (or if the underlying topological abelian group is an inverse

limit of discrete abelian groups), then actually

M ∈ G− Solid.
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Let us note that the condition

”M is solid”

for topological abelian groups M is stable under various operations, e.g.
inverse limits, ... cf. the conditions in [1, Lemma 4.3.9.]. This yields a
natural source of examples of objects in G− Solid.

2. Solid group cohomology

Let us now pass to cohomology. By definition, the cohomology in Λ[G]−
Cond, i.e., the derived3 functor of

HomΛ[G](Λ,−)

on condensed Λ[G]-modules, computes the cohomology of the site

BGproet

of condensed sets with G-action from [1, Section 4.3.]. On solid coefficients,
this functor can also be constructed as the derived functor of

HomG−Solid(Λ,−)

on G− Solid, because the functor

D(G− Solid)→ D(Λ[G]− Cond)

is fully faithful by analyticity. For M ∈ Λ[G]− Cond let us denote by

H∗cond(G,M)

its condensed cohomology. If M is solid we also call it the solid group
cohomology of G with coefficients in M . Outside the case of solid coefficients
we won’t consider the derived functor of

HomΛ(G)(Λ,−).

Note that

Λ ∼= Z⊗Z[G] Λ[G] ∼= Z⊗L�Z[G]� Λ(G)

which implies that the cohomology of a solid G-module does not depend on
our choice of coefficients, and we are free with taking Λ = Z.

Let M be a topological G-module. We recall that the continuous coho-
mology H∗cont(G,M) of M is defined as the cohomology of the complex

C•cont(G,M) : M → Homcont(G,M)→ Homcont(G×G,M)→ . . .

of continuous cochains. We want to relate this to the solid group cohomology
of G(cf. [1, Lemma 4.3.9.] for a similar discussion).

Let H be any group in any topos X . Then we have an exact “standard
complex”

...→ Z[H ×H ×H]→ Z[H ×H]→ Z[H]

3The derived functor can be constructed using a projective resolution of the Λ[G]-
module Λ.
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(by sheafifying the usual standard complex), which is a resolution of the
trivial H-module Z. Moreover, the individual terms Z[H i] for i ≥ 1 (with
the diagonal action) are free Z[H]-modules, i.e.,

Z[H i] ∼= Z[H]⊗Z Z[H i−1]

with H-action only on the left factor. In particular, we obtain for every
H-module N a spectral sequence

Eij1 = Hj
X (H i, N)⇒ H i+j(X/H,N),

where H•X (U,−) denotes the cohomology in the topos X of some object
U ∈ X , and

H•(X/H,−)

the cohomology of the topos of H-objects in X . Assume that

Hj
X (H i, N) = 0

for all j > 0 and i ≥ 0. Then the above spectral sequence collapses and this
shows that

H•(X/H,N)

can be computed via the “standard complex with cochains in N“

N(∗)→ N(H)→ N(H ×H)→ ....

Let us apply this reasoning in the case that X = Cond, H = G for G
locally profinite, and N = M for some topological G-module M . Then
we obtain the following comparison of “condensed/solid” group cohomology
with continuous group cohomology.

Lemma 2.1. With the notation from above assume that N = M is solid.
Then

H∗cont(G,M) ∼= H∗cond(G,M),

i.e., continuous group cohomology agrees with solid group cohomology.

Proof. As

M(Gi) = Homcont(G
i,M)

for all i ≥ 0 the above discussion implies that it suffices to see that

Hj(Gi,M) = 0

for all j > 0. This is implied by Lemma 2.2 below. �

Lemma 2.2. Let S be a locally profinite set and let M be a solid abelian
group. Then

Hj(S,M) = 0

for j > 0.
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Proof. This follows from Lemma 1.4 and fully faithfulness of

D(Solid) ⊆ D(Ab(Cond))

because

Hj(S,M) = ExtjAb(Cond)(Z[S],M) ∼= ExtjSolid(Z[S]�,M) = 0

for j > 0 by projectivity of Z[S]� in Solid. �

We denote by
Rep∞Λ G

the category of smooth representations of G on Λ-modules, i.e., Λ-modules
M endowed with the discrete topology, with a continuous action

G×M →M.

Note that in the case Λ = Z` the Λ-action Λ×M →M is not required to be
continuous for the `-adic topology. On discrete topological abelian groups
the functor

M 7→M

is exact, and thus extends to a functor on the derived categories. As an
application of the comparison of continuous and solid group cohomology we
can prove the following strengthening in the case of discrete coefficients.

Proposition 2.3. Assume that Λ is discrete, i.e., Λ ∈ {Z,Z/`n,F`}. Then
the functor

D+(Rep∞Λ G)→ D+(G− SolidΛ),M 7→M

is fully faithful and its essential image is given by all objects C ∈ D+(G −
SolidΛ) whose cohomology is discrete as a condensed A-module

Proof. Fix N ∈ D+(Rep∞A G), and consider the full subcategory

C ⊆ D+(Rep∞Λ G)

of objects M ∈ D+(Rep∞Λ G) such that the canonical morphism

RHomD+(Rep∞
Λ G)(M,N)→ RHomD+(G−SolidΛRep∞

Λ G)(M,N)

is an isomorphism. Clearly, C is stable under homotopy colimits, in partic-
ular filtered colimits and geometric realizations. Thus, we may first reduce
to the case that M is concentrated in degree 0 and then that M ∼= cIndGUΛ
is the compact induction of the trivial U -module Λ for some compact-open
subgroup U ⊆ G (as modules of these form resolve any smooth representa-
tion). But

cIndGUΛ ∼= Λ(G)⊗L�Λ(U) Λ

and thus

RHomD+(G−SolidΛ
(cIndGUΛ, N) ∼= RHomD+(U−SolidΛ

(Λ, N).

This reduces the claim to showing that if G profinite and N ∈ D+(Rep∞Λ G),
then

RHomD+(Rep∞
Λ G)(Λ, N)→ RHomD+(G−SolidΛ)(Λ, N)



8 SOLID GROUP COHOMOLOGY

is an isomorphism. The full subcategory of such N is triangulated and
contains each object, which is concentrated in degree 0 by Lemma 2.1. We
have to show that

ExtiD+(Rep∞
Λ G)(Λ, N)→ ExtiD+(G−SolidΛ)(Λ, N)

is an isomorphism for each i ∈ Z. But for a fixed i we can reduce to the
case that N is bounded by taking a canonical truncation (as we assumed
N ∈ D+). �

Remark 2.4. When Λ = Z/`n, n ≥ 1, Fargues-Scholze generalize Proposi-
tion 2.3 as follows: if X is a small v-stack, one has a fully faithful embedding

Dét(X,Λ) ⊂ D�(X,Λ).

In Proposition 2.3 the case where Λ = Z` is more complicated and leads
to the definition of Dlis.

Up to now we only considered the derived functor of the functor

G− SolidΛ → Ab, M 7→ HomΛ(G)(Λ,M).

However, it is reasonable to consider as well the condensed version

G− SolidΛ → Solid, M 7→ HomΛ(G)(Λ,M),

where HomΛ(G) refers to the internal Hom in condensed abelian groups

(which is automatically solid here). Of course, taking global sections (which
is exact) of RHomΛ(G)(Λ,M) recovers RHomΛ(G)(Λ,M). Consider now a

topological G-module M such that M is solid. Then RHomΛ(G)(Λ,M) can
be calculated via the condensed standard complex

M → Hom(G,M)→ ....

Lemma 2.5. If G is profinite, and M a discrete G-module, then

RHomΛ(G)(Λ,M) ∼= RΓ(G,M).

Proof. This follows by calculating the LHS via the condensed standard com-
plex as our assumptions imply that each

Hom(Gi,M)

is discrete. �

Remark 2.6. The statement in Lemma 2.5 cannot be generalized to arbi-
trary locally profinite, or even discrete, groups G. For example, if G :=

⊕
N
Z

is an infinite direct sum of copies of Z and M is a discrete G-module with
trivial action, then

Hom(G,M) ∼=
∏
N
M
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for the product topology, while the RHS in Lemma 2.5 would be
∏
N
M with

the discrete topology (as we did not dare to put a topology on the continuous
resp. usual cohomology groups).

Remark 2.7. The question of considering a condensed structure on coho-
mology, i.e., to consider

RHomΛ(G)(Λ,−),

seems relevant in establishing (or reproving) some version of the Hochschild-
Serre spectral sequence in continuous group cohomology. Namely, if N ⊆ G
is a closed normal subgroup then for formal reasons there exists a spectral
sequence

Eij2 = H i
cond(G/N,ExtjΛ(N)(Λ,M))⇒ H i+j

cond(G,M)

for each M ∈ G − Solid. Now, one can ask the question when all terms
admit an interpretation in terms of continuous group cohomology.

Remark 2.8. Let f : X → Y be a map of small v-stacks. Fargues-Scholze
prove that the functor

Rfv∗ : D(Xv,Λ)→ D(Yv,Λ)

preserves the solid categories, and therefore induces a functor

Rf∗ : D�(X,Λ)→ D�(Y,Λ),

which is a right adjoint to f∗. The special case where f : [∗/G] → ∗ is our
functor

D(G− SolidΛ)→ D(Λ− Solid), M 7→ RHomΛ(G)(Λ,M).

3. Finiteness conditions

Let G be a profinite group, and Λ ∈ {Z,Z`,Z/`n,F`}. Let us start with
a general result.

Lemma 3.1. Let G be a profinite group. Then the object Λ ∈ G− Solid is
pseudo-coherent, and thus for each i ∈ Z the functor

H i
cond(G,−) : G− Solid→ Ab

commutes with filtered colimits.

Proof. Consider the standard resolution

...→ Λ[G×G]→ Λ[G]→ Λ

to the trivial G-module Λ and its solidification

...→ Λ[G×G]� → Λ[G]� → Λ

which is a resolution of Λ (as ΛL� ∼= Λ). Now the claim follows because
each

Λ[Gi]
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for i ≥ 1 is a compact projective object in G−Solid as it is the base change
of the compact projective solid Λ-module

Λ[Gi−1]

(here we used that G is profinite). �

In this section we want to give sufficient conditions which guarantee that
Λ is even perfect, at least if Λ = F`.

We will need the following proposition on inverse limits of compact abelian
groups, which we learned from Scholze.

Proposition 3.2. Let Ai, i ∈ I, be a cofiltered inverse system of compact
abelian groups. Then Rj lim←−

i∈I
Ai = 0 for j > 0.

Proof. Set Bi := Homcont(Ai,R/Z) be the Pontryagin dual of Ai. Then

R lim←−
i∈I

Ai = RHom(B,R/Z),

where
B := lim−→

i∈Iop

Bi

is the filtered colimit of the discrete groups Bi (note that B is still the filtered
colimit of the Bi as each Bi is discrete). Let S be extremally disconnected.
We have to show that

RHom(B|S ,R/Z|S) = 0

is concentrated in degree 0, where |S denotes restriction to the slice topos
Cond/S of condensed sets over S. Let

ν : C̃ond/S → S̃

be the natural morphism to the topos of the topological spaces S, i.e., ν−1U
of any open set S is sent to the condensed set U over S = S. Then

B|S = ν−1(B)

and thus
RHom(B|S ,R/Z|S) ∼= RHom

S̃
(B,Rν∗(R/Z)).

We claim that Rν∗(R/Z) is isomorphic to the sheaf R/Z sending U ⊆ S

open to Homcont(U,R/Z). Indeed, as the U ⊆ S quasi-compact open form
a basis for the topology it suffices to show that

H∗(ν−1U,R/Z) = Homcont(U,R/Z).

But this follows from [5, Theorem 3.2.] resp. [5, Theorem 3.3.]. By Lemma 3.3

R/Z is an injective sheaf of abelian groups on S̃. Hence,

Exti
S̃

(B,R/Z) = 0

for i > 0, which finishes the proof. �
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Lemma 3.3. Let S be an extremally disconnected space. Then the abelian
sheaf R/Z on S is injective.

Proof. It suffices to prove (cf. Lemma 2.13 by Spaltenstein in Borel, “Inter-
section cohomology”) that

R/Z(U)

is divisible for each open subset U ⊂ S (which follows from the vanishing
of the cohomology of Z/n, n ≥ 1, on locally profinite sets), and that the
restriction

R/Z(U)→ R/Z(V )

is a split surjection for any open subsets V ⊆ U of S. By Lemma 3.4 for any
open U ⊂ S the closure U ⊆ S agrees with the Stone-Čech compactification
of U . Moreover, by the condition of being extremally disconnected the
closure U is again open in S. As R/Z is compact Hausdorff we obtain that

Homcont(U,R/Z) ∼= Homcont(U,R/Z).

This implies the second statement as each continuous function V → R/Z
can be extend by zero to a continuous function U → R/Z. �

We learned the following observation from Scholze.

Lemma 3.4. Let S be an extremally disconnected space and let U ⊆ S be
open. Then the canonical morphism βU → U is an isomorphism.

Here βU is the Stone-Čech compactification of U .

Proof. As S is compact Hausdorff U is compact Hausdorff, too. In particu-
lar, the morphism U → U extends to βU → U by the universal property of
the Stone-Čech compactification. Then

U ×U βU ∼= U.

The closure U ⊆ S is again open because S is extremally disconnected.
Hence, the morphism

βU t S \ U
is a cover of S, which is therefore split. This yields a morphism U → βU ,
which is necessarily an isomorphism over U . As the morphism U → βU has
closed image containing U we can see that it is surjective. But the morphism
U → βU → U is the identity and hence βU ∼= U , as desired. �

Remark 3.5. Here is a simpler proof of Proposition 3.2, proposed by Juan
Esteban Rodriguez Camargo. In the following, we will use the fact that
underlining a strict exact sequence of locally compact abelian groups gives
a short exact sequence of condensed abelian groups. One resolves B (which
is discrete):

0→ ⊕IZ→ ⊕JZ→ B → 0.
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For any profinite set S and any index set I,

RHom(⊕IZ,R/Z)(S) = RHom(Z[S],
∏
I

RHom(Z,R/Z)) =
∏
I

RHom(Z[S]⊗ZZ,R/Z)

=
∏
I

RΓ(S,R/Z) =
∏
I

R/Z[0],

by [5, Theorem 3.2.] and [5, Theorem 3.3.]. Therefore, RHom(B,R/Z)(S)
is computed by the complex∏

J

R/Z→
∏
I

R/Z

which is what one gets by underlining the dual the above resolution of B;
thus it has cohomology only in degree 0.

Remark 3.6. Let X be a spatial diamond. Fargues-Scholze prove that
for any cofiltered system of constructible étale sheaves Fi, killed by some
non-zero integer, and any j > 0,

Rj lim←−
i

Fi = 0

(where the inverse limit is taken in the category of proétale sheaves over
X). This generalizes (in the finite case) Proposition 3.2, which is the special
case, where X is a geometric point.

Let us note the following more concrete description of G− SolidF`
for G

profinite.

Lemma 3.7. Let C be the category of finite dimensional F`-vector spaces
with a continuous G-action. The canonical functor

IndPro(C)→ G− SolidF`

is an equivalence.

Proof. By Proposition 3.2 we can deduce that the functor

Pro(C)→ G− SolidF`

is exact. It is moreover seen to be fully faithful (by definition of the inverse
limit topology). As the image consists of compact objects one can deduce
the statement on ind-objects. Combining these two facts, we deduce that
the image of IndPro(C) in G−SolidF`

is stable by kernels and cokernels. Let
M ∈ G− SolidF`

. One can find a surjection from a direct sum of F`[G][S]�,
with S profinite, which are in IndPro(C) by construction. The kernel is
again in G − SolidF`

, so receives itself a surjective map from a direct sum
of F`[G][S]�. This way, we have written M as the cokernel of a morphism
between two objects in IndPro(C) and so M is itself in IndPro(C) by the
above. This proves essential surjectivity. �

The same argument works with F` replaced by Z` or Z/`n.



SOLID GROUP COHOMOLOGY 13

Remark 3.8. Similarly, using Remark 3.6, Fargues-Scholze prove that if
X is a spatial diamond, D�(X,Z`) is the derived category of the abelian
category

IndPro(C),
where C is the category of constructible étale sheaves killed by a power of
`. This allows them to check many properties of D�(X,Z`) by descent to
spatial diamonds and reduction to the case of constructible étale sheaves
killed by a power of `, previously studied by Scholze, [6].

Proposition 3.9. Assume that G is of `-cohomological dimension ≤ n and
that H∗(G,M) is finite for each finite, discrete G-module M of `-power
order. Then F` ∈ G− SolidF`

is perfect with perfect amplitude ≤ n.

Here by perfect we mean quasi-isomorphic to a bounded complex of com-
pact projective objects in G− SolidF`

.

Proof. Let C ⊆ G− SolidF`
be the subcategory of all M for which

RHomF`[G]�(F`,M) ∈ D[0,n].

By assumption and the comparison Lemma 2.5, this is known for M dis-
crete. By Lemma 3.1, C is stable under direct sums. By Proposition 3.2
(applied twice) and the imposed finiteness for finite coefficients, the cat-
egory C contains all inverse of finite discrete G-modules. In particular,
all F`[G]�-modules whose underlying condensed set is compact, thus espe-
cially F`[G]�, lies in C. Moreover, cokernels of morphisms between compact
F`[G]�-modules lie in C. All of this together implies that C = G − SolidF`

,
by arguing similarly as in the proof of Lemma 3.7.

Let
0→ Q→ Pn−1 → . . .→ P0 → F` → 0

be a resolution with the Pi−1 compact projective (for example the beginning
of the standard resolution) and Q admitting a surjection from a compact
projective F`[G]�-module. Then

ExtiF`[G]�(Q,M) ∼= H i+n(G,M) = 0

for all i > 0 and all M ∈ G − Solid. This implies that Q is projective, and
thus that Q is compact projective. This finishes the proof. �

Remark 3.10. A similar argument applies to Λ = Z/`n or Λ = Z`.

4. Duality

Let G be a locally profinite group. A new feature of the solid G-modules
is the existence of solid group homology. Namely, if M ∈ G − SolidΛ, then
the homology of

Λ⊗L�Λ(G) M

is the condensed (or solid) group homology

Hcond
∗ (G,M).
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It is related to solid cohomology by ”trivial duality”, by which we mean the
following assertion, which is an immediate consequence of adjunction.

Proposition 4.1. Let G be a locally profinite group. Then for any M ∈
D(G− SolidΛ) and any Q ∈ D(SolidΛ) there is a natural isomorphism

RHomΛ(M ⊗LΛ[G]� Λ, Q) ∼= RHomΛ(G)(Λ, RHomΛ(M,Q)).

In particular, the dual of homology is cohomology of the dual.

Remark 4.2. Let f : X → Y be a map of small v-stacks. Fargues-Scholze
prove that the functor f∗ : D�(Y,Λ)→ D�(X,Λ) admits a left adjoint

f\ : D�(X,Λ)→ D�(Y,Λ).

It is defined as follows: since f is a slice in the site, it tautologically admits
a left adjoint fv\; then one sets f\ to be the solidification of fv\. It satisfies
the projection formula and base change. In the special case f : [∗/G] → ∗,
f\ coincides with

D(G− SolidΛ)→ D(Λ− Solid),M 7→ Λ⊗L�Λ(G) M.

Let G be a profinite group, and fix a prime `. From now on we assume
that G is of `-cohomological dimension n ≥ 0. Consider

RHomΛ(G)(Λ,Λ(G)).

As Λ(G) is a G-bimodule, we see that

RHomΛ(G)(Λ,Λ(G)) ∈ D(G− SolidΛ).

Following [3, II.5] we introduce for i ∈ Z the functor

Di(M) := lim−→
U⊆G

Hom(H i(U,M),Q/Z)

for each discrete G-module M , where the colimit is taken over all compact-
open subgroups in G (and the transition maps are the dual of the corestric-
tion maps).

We recall that G is a dualizing group of dimension n ∈ N at ` if Di(Z/p) =
0 for i 6= n, cf. [3, (3.4.6)]. Define the dualizing module

D` := lim−→
m

Dn(Z/`m).

Then G is called a Poincaré group (at `, of dimension n) if it is a dualizing
group and D`

∼= Q`/Z`. We can give the following rephrasement of this
condition.

Lemma 4.3. Let G be as before a profinite group, ` a prime, assume that
n := cd`(G) < ∞ and that H∗(G,M) is finite for every finite, discrete
`∞-torsion G-module M . Then G is a Poincaré group if and only if

RHomZ`(G)(Z`,Z`(G)) ∼= Z`[−n]

if and only if
RHomF`(G)(F`,F`(G)) ∼= F`[−n].
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Proof. and not Considering the short exact sequences

0→ Z/`m(G)→ Z/`m+1(G)→ F`(G)→ 0

we see that the last two conditions are equivalent to

RHomZ/`m(G)(Z/`m,Z/`m(G)) ∼= Z/`m[−n]

for all m ≥ 0. By definition

Z/`m(G) = Z/`m[G]� = lim←−
U

Z/`m[G/U ],

where U runs through the compact-open subgroups of G. By Proposition 3.2
the limit is derived. Using the imposed finiteness one can conclude that the
homology groups of

RHomZ(RHomZ/`m(G)(Z/`m,Z/`m(G)),R/Z)

are exactly the Di(Z/`m). As the functor RHomZ(−,R/Z) induces a duality
on finite, discrete Z/`m-modules we can conclude. �

Remark 4.4. Let G be a profinite group. Let f : X = [∗/G] → Y = ∗.
Pretend that functors f!, f

! are defined. Since f is proper, one has f! = Rf∗.
Therefore,

RHomD�(Y,Λ)(Rf∗Λ[G],Λ) = Rf∗RHomD�(X,Λ)(Λ[G], f !Λ) = Rf∗f
!Λ.

The LHS can be rewritten as

RHomΛ(RHomΛ[G]�(Λ,Λ[G]�),Λ).

In fact using that Λ[G]� is a G-bimodule, this object is naturally a Λ[G]�-
module, which should be f !Λ. So G being a Poincaré group is somehow
saying that the dualizing complex f !Λ is isomorphic to a shift of Λ, which
is in some sense saying that [∗/G] is “Λ-cohomologically smooth”.

Assume from now on that G is a Poincaré group (at `, of dimension n),
such that H∗(G,M) is finite for each finite discrete `∞-torsion G-module
M . Assume that

Λ ∈ {Z`,Z/`m,F`}.
Then G acts on

Λ[−n] ∼= RHomΛ(G)(Λ,Λ(G)).

via a character
χ : G→ Λ∗.

By −(χ) we mean in the following the twist of the G-action by χ. Let us fix
an isomorphism

τ : Λ(χ)[−n] ∼= RHomΛ(G)(Λ,Λ(G)).

Then we obtain the natural transformation

ητ : Λ[−n]⊗L�Λ(G) M
∼=−→ RHomΛ(G)(Λ,Λ(G))(χ−1)⊗L�Λ(G) M

→ RHomΛ(G)(Λ,M(χ−1))
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for any M ∈ D(G− SolidΛ). Here the second arrow is a special case of the
more general natural transformation

RHomΛ(G)(N,T )⊗L�Λ(G) M → RHomΛ(G)(N,T ⊗L�Λ(G) M)

for N,M ∈ D(G− SolidΛ) and T a (Λ(G),Λ(G))-bimodule.
The following theorem can be seen as a duality theorem, although it

is formulated as an isomorphism of homology and cohomology (up to a
shift/twist). The duality theorem [3, (3.4.6.)] can be derived from it (under
our more restrictive assumptions) by combining it with Proposition 4.1.

Theorem 4.5. Under the above assumptions, for any M ∈ D(G− SolidΛ)
the morphism

ητ : Λ[−n]⊗L�Λ(G) M → RHomΛ(G)(Λ,M(χ−1))

is an isomorphism.

Proof. By Proposition 3.9, Λ is a perfect Λ(G)-module, i.e., quasi-isomorphic
to a bounded complex of retracts of finite direct sums of products

∏
I

Λ(G).

This implies that the functor

M 7→ RHomΛ(G)(Λ,M(χ−1))

commutes with arbitrary colimits. As the category G− SolidΛ is generated
by the objects

∏
I

Λ(G) for sets I (and the LHS commutes with colimits in

M), we can assume that M ∼=
∏
I

Λ(G) for some set I. Note that Λ(G) ∼=
∏
J

Λ

as Λ-modules and thus

M ∼=
∏
I×J

Λ

as Λ-modules. We claim that

N ⊗L�Λ(G) M
∼=

∏
I

N

for any compact projective object in G − SolidΛ. Passing to retracts and
finite sums we may assume that

N ∼=
∏
J

Λ(G)

for some set J . Using Λ(G) ∼=
∏
K

Λ for some set K we can rewrite this as

N ∼=
∏
J

Λ⊗L�Λ Λ(G)

by [5, Proposition 6.3.] (which holds for our particular choice of Λ, too).
Therefore

N ⊗L�Λ(G) M
∼=

∏
J

Λ⊗L�Λ M ∼=
∏
J×I

Λ(G),
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again by [5, Proposition 6.3.]. As the target of ητ commutes with products
in M . We can therefore assume M ∼= Λ(G). But then it is clear that ητ is
an isomorphism as

RHomΛ(G)(Λ,Λ(G)) ∼= Λ(χ)[−n]

by our assumption. �

Remark 4.6. Let us highlight the crucial points in the comparison of ho-
mology and cohomology.

1) Λ is a perfect Λ(G)-module,
2) there exists an isomorphism (of solid Λ-modules)

τ : Λ[−n] ∼= RHomΛ(G)(Λ,Λ(G))

for some n ≥ 0.

Example 4.7. Here are two interesting class of examples of groups to which
Theorem 4.5 applies.

• Profinite groups with an open pro-p-group H, for p 6= ` (satisfying
the finitness conditions). For such a G, Λ ∈ G − SolidΛ is compact
projective and after choice of a non-trivial Haar measure

RHomΛ(G)(Λ,Λ(G)) ∼= HomΛ(G)(Λ,Λ(G))[0] ∼= HomΛ(G)(C(G,Λ),Λ)

is the space of Λ-valued Haar measures on G. Indeed,

RHomΛ(G)(Λ,Λ(G)) ∼= RHomΛ(H)(Λ,Λ(H),

which implies easily the above isomorphisms.
• Compact p-adic Lie groups of dimension n. Any such group G is

a Poincaré group of dimension n by the work of Lazard, and the
character χ is the dual of the determinant of its adjoint representa-
tion on its Lie algebra. From the work of Lazard, one can deduce,
for sufficiently small G, the existence of a resolution (in condensed
G-modules)

0→Mn →Mn−1 → . . .→M1 → Z`

of Z` with Mi
∼= Z`[G]�(ni).

Let us end this text with some questions:

(1) Assume G is locally profinite. Which condition on G assure that F`
is perfect?

(2) Can one recover the full [3, (3.4.6.)], and thus cover general dualizing
groups (not just Poincaré groups)?

(3) Can the same strategy be applied to locally profinite groups?

Regarding the first point, note that perfectness implies finite `-cohomological
dimension, and thus for many pairs of primes `, p the GLn(Qp)-module F`
cannot be perfect.
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For the last two points, the same strategy as above works if G = Z. Here
we can even take Λ = Z. Perfectness of Λ follows from the resolution

0→ Z[Z]→ Z[Z]→ Z→ 0

of discrete Z[Z]-modules. We moreover obtain that

RHomZ[Z](Z,Z[Z]) ∼= Z[−1]

(as G-modules).4 This is enough to apply the above strategy.
Let again Λ ∈ {Z,Z`,Z/`m,F`}. Recall that for any profinite set S we

have the equality
Λ[S]� ∼= HomZ(C(S,Z),Λ).

This suggests that there are two replacements for the (Λ(G),Λ(G))-bimodule
Λ(G) = Λ[G]� in Theorem 4.5 if G is a general locally profinite group.
Namely,

Λ(G) := Λ[G]� ∼= HomZ(C(S,Z),Λ),

or
∆(G) := HomZ(Cc(S,Z),Λ)

(which also appears in [2]), where the subscript (−)c denotes functions with
compact support. Let G be an `-adic Lie group of dimension n, and U ⊆ G
a compact-open subgroup, which is a Poincaré group. Then

RHomΛ(G)(Λ,∆(G)) ∼= RHomΛ(U)(Λ,Λ(U)) ∼= Z`[−n],

cf. [2, Proposition 3.2.], as

∆(G) ∼= RHomΛ(U)(Λ(G),Λ(U)).

But it is unclear how to compute (except if G = Z)

RHomΛ(G)(Λ,Λ(G))

as Λ(G) is not coinduced from a compact-open subgroup.
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