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Abstract. We prove that for a quasi-regular semiperfectoid Zcycl
p -algebra R

(in the sense of Bhatt-Morrow-Scholze), the cyclotomic trace map from the

p-completed K-theory spectrum K(R;Zp) of R to the topological cyclic ho-
mology TC(R;Zp) of R identifies on π2 with a q-deformation of the logarithm.
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1. Introduction

Fix a prime p. The aim of this paper is to concretely identify in degree 2, for a
certain class of p-complete rings R, the p-completed cyclotomic trace

ctr : K(R;Zp)→ TC(R;Zp)

from the p-completed K-theory spectrum K(R;Zp) of R to the topological cyclic
homology TC(R;Zp) of R. Our main result is that on π2 the p-completed cyclotomic
trace is given by a q-logarithm

logq(x) :=

∞∑
n=1

(−1)n−1qn(n−1)/2 (x− 1)(x− q) · · · (x− qn−1)

[n]q
,

which is a q-deformation of the usual logarithm (where q is a parameter which will
be defined later). Before stating a precise version of the theorem, let us try to put
it in context and to explain what the involved objects are.

During this project, J.A. was partially supported by the ERC 742608, GeoLocLang.
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1.1. K-theory and topological cyclic homology. We start with K-theory. For
any commutative ring A, Quillen defined in [20] the algebraic K-theory space K(A)
of A as a generalization of the Grothendieck group K0(A) of vector bundles on the
scheme Spec(A). The (connective) K-theory spectrum K(A) of a ring A is obtained
by group completing1 the E∞-monoid of vector bundles on Spec(A) whose addition
given by the direct sum. In other words, for the full K-theory one mimicks in a
homotopy theoretic context the definition of K0(A) with the set of isomorphism
classes of vector bundles replaced by the groupoid of vector bundles. Algebraic
K-theory behaves like a cohomology theory but has the nice feature, compared
to other cohomology theories, like étale cohomology, that it only depends on the
category of vector bundles on the ring (rather than on the ring itself) and thus
enjoys strong functoriality properties, which makes it a powerful invariant attached
to A.

Unfortunately, the calculation of the homotopy groups

Ki(A) := πi(K(A)), i ≥ 1,

is in general rather untractable. There is for example a natural embedding

A× → π1(K(A)),

which is an isomorphism if A is local, but the higher K-groups are much more
mysterious. One essential difficulty comes from the fact that K-theory, although
it is a Zariski (and even Nisnevich) sheaf of spaces (cf. [25]), does not satisfy étale
descent. One could remedy this by étale sheafification, but one would loose the
good properties of K-theory. This lead people to look for good approximations of
K-theory, at least after profinite completion : by this, we mean invariants, still
depending only on the category of vector bundles on the underlying ring, satisfying
étale descent - and therefore, easier to compute - and close enough to (completed)
K-theory, at least in some range.

The work of Thomason, [24], provides a good illustration of this principle.
Thomason shows that the K(1)-localization of K-theory, with respect to a prime `
invertible in A, satisfies étale descent2 and coincides with `-adically completed (for
short: `-adic) K-theory in high degrees. When the prime p is not invertible in A,
the situation is much more subtle. For instance, a theorem of Gabber [10] shows
that `-adic K-theory is insensitive to replacing A by A/I if (A, I) forms an henselian
pair ; in particular, the computation of `-adic K-theory of henselian rings (which
form a basis of the Nisnevich topology) is reduced to the computation of the `-adic
K-theory of fields. This is not true anymore for p-adic K-theory. Nevertheless,
the recent work of Clausen-Mathew-Morrow, [7], expresses this failure in terms of
another non-commutative invariant attached to A, the topological cyclic homology
of A, whose definition will be recalled below. Topological cyclic homology is related
to K-theory via the cyclotomic trace

ctr : K(A)→ TC(A).

1Cf. [17] for a discussion of homotopy-theoretic group completions and Quillen’s +-

construction.
2In fact, it even coincides with `-adic étale K-theory on connective covers.
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Clausen, Mathew and Morrow prove, extending earlier work of Dundas, Goodwillie
and McCarthy [8] in the nilpotent case3, that the cyclotomic trace induces, for any
ideal I ⊆ A such that the pair (A, I) is henselian, an isomorphism

K(A, I)/n ∼= TC(A, I)/n

from the relative K-theory

K(A, I)/n := fib(K(A)/n→ K(A/I)/n)

to the relative topological cyclic homology

TC(A, I)/n := fib(TC(A)/n→ TC(A/I)/n),

for any integer n. This has the consequence that p-completed TC provides a good
approximation of p-adic K-theory, at least for rings henselian along (p): namely,
it satisfies étale descent (because topological cyclic homology does) and coincides
with p-adic K-theory in high degrees. Under additional hypotheses, one can even
get better results: for instance, Clausen, Mathew and Morrow prove, among other
things, that the cyclotomic trace induces an isomorphism

K(R;Zp) ∼= τ≥0TC(R;Zp)

for all rings R which are henselian along (p) and such that R/p is semiperfect (i.e.,
such that Frobenius is surjective), cf. [7, Corollary 6.9.].

Examples for such rings are the quasi-regular semiperfectoid rings of [3]. A ring R
is called quasi-regular semiperfectoid, if R is p-complete with bounded p∞-torsion4,

the p-completed cotangent complex L̂R/Zp has p-complete Tor-amplitude in [−1, 0]
and there exists a surjective morphism R′ → R with R′ (integral) perfectoid. This
class of rings is interesting as for R quasi-regular semiperfectoid the topological
cyclic homology π∗(TC(R;Zp)) can be computed in more concrete terms.

Let us recall the description of topological cyclic homology π∗(TC(R;Zp)) from
[3], which builds heavily on the foundational work of Nikolaus and Scholze [18]. For
this, we need to spell some definitions. From now on, all spectra will be assumed to
be p-completed. One starts with the (p-completed) topological Hochschild homol-
ogy spectrum THH(R;Zp) of R, which is equipped with a natural T = S1-action
and a T-equivariant map, the cyclotomic Frobenius,

ϕcycl : THH(R;Zp)→ THH(R;Zp)tCp

to the Tate fixed points of the cyclic group Cp ⊆ T. Then one takes the homotopy
fixed points, the negative topological cyclic homology,

TC−(R;Zp) := THH(R;Zp)hT

and the Tate fixed points, the periodic topological cyclic homology,

TP(R;Zp) := THH(R;Zp)tT.

From the cyclotomic Frobenius on THH(R) one derives a map5

ϕhTcycl : TC−(R;Zp)→ TP(R;Zp).

3This is not a generalization though, since the result of Dundas-Goodwillie-McCarthy applies
also to non-commutative rings and is not restricted to finite coefficients.

4This means that there exists N ≥ 0 such that R[p∞] = R[pN ]. This technical condition is

useful when dealing with derived completions.
5Here one needs [18, Lemma II.4.2.] which implies TP(R;Zp) ∼= (THH(R;Zp)tCp )hT.
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Then the topological cyclic homology is defined via the fiber sequence

TC(R;Zp)→ TC−(R;Zp)
can−ϕhTcycl−−−−−−→ TP(R;Zp),

where can: TC−(R;Zp)→ TP(R;Zp) is the canonical map from homotopy to Tate
fixed points. The ring

�̂R := π0(TC−(R;Zp)) ∼= π0(TP(R;Zp)).

is p-complete, p-torsion free and the cyclotomic Frobenius ϕhTcycl induces a Frobenius

lift ϕ on �̂R (cf. [4, Theorem 11.10]).

Remark 1.1. The prismatic perspective of [4] gives an alternative description of

�̂R : it is the completion with respect to the Nygaard filtration of the (derived)
prismatic cohomology �R of R. In particular, using the theory of δ-rings, one can
give, when R is a p-complete with bounded p∞-torsion quotient of a perfectoid ring

by a regular sequence a construction of �̂R as the Nygaard completion of a concrete
prismatic envelope (cf. [4, Proposition 3.12]).

The choice of a morphism R′ → R with R′ perfectoid yields a distinguished

element ξ̃ of the ring �̂R. Using ξ̃ one defines the Nygaard filtration

N≥i�̂R := ϕ−1((ξ̃i))

on �̂R. The graded rings π∗(TC−(R;Zp)) and π∗(TP(R;Zp)) are then concentrated
in even degrees and

π2i(TC−(R;Zp)) ∼= N≥i�̂R
π2i(TP(R;Zp)) ∼= �̂R

for i ∈ Z (cf. [4, Theorem 11.10]).6 Moreover, on π2i the cyclotomic Frobenius

ϕhTcycl : π2i(TC−(R;Zp))→ π2i(TP(R;Zp))

identifies with the divided Frobenius ϕ

ξ̃i
. Thus from the definition of TC(R) we

obtain exact sequences

0→ π2i(TC(R;Zp)) ∼= �̂
ϕ=ξ̃i

R → N≥i�̂R
1− ϕ

ξ̃i−−−→ �̂R → π2i−1(TC(R;Zp))→ 0.

As mentioned in Remark 1.1, the ring �̂R tends to be computable. For example, if

R is perfectoid, then �̂R ∼= Ainf(R) is Fontaine’s construction applied to R and if

pR = 0, then �̂R is the Nygaard completion of the universal PD-thickening Acrys(R)
of R. Thus, for quasi-regular semiperfectoid rings the target of the cyclotomic trace
is rather explicit.

1.2. Main results. The results of [7] (together with those of [3]) therefore give
a way of computing higher p-completed K-groups of quasi-regular semiperfectoid
rings. But there is at least one degree (except 0) where one can be more explicit,
without using the cyclotomic trace map: namely, after p-completion of K(R) there
is a canonical morphism

Tp(R
×)→ π2(K(R;Zp))

6These identifications depend on the choice of a suitable generator v ∈ π−2(TC−(R;Zp)). If

R is an algebra over Zcycl
p we will clarify our choice in Section 6 carefully.
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from the Tate module Tp(R
×) of the units of R, which is an isomorphism in many

cases. The results explained in the previous paragraph show that the cyclotomic
trace identifies π2(K(R;Zp)) with

π2(TC(R;Zp)) ∼= �̂
ϕ=ξ̃

R .

What does the composite map

Tp(R
×)→ π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)) ∼= �̂
ϕ=ξ̃

R

look like ? The main result of this paper, which we now state, provides a concrete
description of it. Let R be a quasi-regular semiperfectoid ring which admits a
compatible system of morphisms Z[ζpn ]→ R for n ≥ 0. These morphisms give rise
to the elements

ε = (1, ζp, . . .) ∈ R[ = lim←−
x 7→xp

R , q := [ε]θ ∈ �̂R

and

ξ̃ :=
qp − 1

q − 1
.

Here

[−]θ : R[ →W (R[)

is the Teichmüller lift coming from the surjection θ : W (R[)→ R.

Theorem 1.2 (cf. Theorem 6.4). The composition7

Tp(R
×)→ π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)) ∼= �̂
ϕ=ξ̃

R

is given by the negative of the q-logarithm

x 7→ logq([x
1/p]θ̃) :=

∞∑
n=1

(−1)n−1qn(n−1)/2 ([x1/p]θ̃ − 1)([x1/p]θ̃ − q) . . . ([x1/p]θ̃ − qn−1)

[n]q
.

Here

[x1/p]θ̃ : R[ → �̂R
is the Teichmüller lift of x1/p coming from the surjection

θ̃ := θ ◦ ϕ−1 : W (R[)→ R

and we embed

Tp(R
×) ⊆ R[, (r0 ∈ R×[p], r1, . . .) 7→ (1, r0, r1, . . .).

By

[n]q :=
qn − 1

q − 1

we denote the the q-analog of n ∈ Z.

Remark 1.3. A similar result can be found in [11, Lemma 4.2.3.], but only before
p-completion and on π1, which makes it impossible to deduce Theorem 1.2 from
their result.

7Cf. Section 6 for a precise description of the isomorphism π2(TC(R;Zp)) ∼= �̂
ϕ=ξ̃
R .
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Remark 1.4. The appearance of the two different Teichmüller lifts can be avoided
as

[x]θ = [x1/p]θ̃

for x ∈ R[. In the definition of q we took the classical one, but in the definition of
logq we used [−]θ̃ as it fits better with the perspective of [3].

As a consequence of [7] and Theorem 1.2, one gets the following result.

Corollary 1.5. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. The map

logq([(−)1/p]θ̃) : Tp(R
×)→ �̂

ϕ=ξ̃

R

is a bijection.

This corollary is used in [1], which studies a prismatic version of Dieudonné the-
ory for p-divisible groups, and was our original motivation for proving Theorem 1.2.

Here is a short description of the proof of Theorem 1.2. By testing the universal
case R = Zcycl〈x1/p∞〉/(x−1) one is reduced to the case where (p, ξ̃) form a regular

sequence on �̂R, i.e., the prism (�̂R, ξ̃) is transversal (cf. Definition 3.2). In this
situation, we prove that the reduction map

�̂
ϕ=ξ̃

R ↪→ N≥1�̂R/N≥2�̂R
is injective (cf. Corollary 3.10). Thus it suffices to identify the composition

Tp(R
×)

ctr−−→ �̂
ϕ=ξ̃

R → N≥1�̂R/N≥2�̂R.

Using the results [3] the quotient N≥1�̂R/N≥2�̂R identifies with the p-completed
Hochschild homology π2(HH(R;Zp)) (cf. Section 5) and therefore the above compo-
sition identifies with the p-completed Dennis trace. A straightforward computation
then identifies the p-completed Dennis trace (cf. Section 2), which allows us to
conclude. We expect the results in Section 2 to be known, in some form, to the
experts, but we did not find the results anywhere in the literature.

Let us end this introduction by a remark and a question. One could try to reverse
the perspective from Corollary 1.5 and try to recover a (very) special case of the
result of Clausen-Mathew-Morrow (cf. [7]) regarding the cyclotomic trace map using
the concrete description furnished by Theorem 1.2. If R is of characteristic p, we
may arrange that q = 1 and then the q-logarithm becomes the honest logarithm

log([−]θ) : Tp(R
×)→ Acrys(R)ϕ=p.

In [22], it is proven (using the exponential) that the map log([−]) is an isomorphism,
when R is the quotient of a perfect ring modulo a regular sequence. If R is the
quotient of a perfectoid ring by a finite regular sequence and is p-torsion free, it is
not difficult to deduce from Scholze-Weinstein’s result that the map

logq([(−)1/p]θ̃) : Tp(R
×)→ �̂

ϕ=ξ̃

R

is a bijection when p is odd. Is there a way to prove it directly in general, for any
p and any quasi-regular semiperfectoid ring ?
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1.3. Plan of the paper. In Section 2 we concretely identify the p-completed Den-
nis trace on the Tate module of units (cf. Proposition 2.5) in the form we need
it. In Section 3 we prove the crucial injectivity statement, namely Corollary 3.10,
for transversal prisms. In Section 4 we make sense of the q-logarithm. Finally, in
Section 6 we prove our main result Theorem 1.2 and its consequence, Corollary 1.5.

1.4. Acknowledgements. The authors thank Peter Scholze for answering sev-
eral questions and his suggestion to think about Lemma 3.9. Moreover, we thank
Bhargav Bhatt, Akhil Mathew, Andreas Mihatsch, Emmanuele Dotto, Matthew
Morrow for answers and interesting related discussions. Very special thanks go to
Irakli Patchkoria, who helped the authors with all necessary topology.

The authors would like to thank the University of Bonn and the Institut de
Mathématiques de Jussieu for their hospitality while this work was done.

2. The p-completed Dennis trace in degree 2

Fix some prime p and let A be a commutative ring. The aim of this section is
to concretely describe the p-completed Dennis trace

Tp(A
×)→ π2(K(A;Zp))

Dtr−−→ π2(HH(A;Zp))
in degree 2 (cf. Corollary 2.2) and to deduce from this a description of the composite
map

Tp(A
×)→ π2(HH(A;Zp))→ π2(HH(A/R;Zp))

when A is the quotient of a p-complete ring R by a finite regular sequence. Here

K(A;Zp)
denotes the p-completed (connective) K-theory spectrum of A and

HH(A;Zp) resp. HH(A/R;Zp)
the p-completed Hochschild homology of A as a Z-algebra resp. as an R-algebra (if
A is an R-algebra for some commutative ring R), cf. [3, Section 2.2.].

Let us recall the construction of the first map Tp(A
×)→ π2(K(A;Zp)). Let

GL(A) = lim−→
r

GLr(A)

be the infinite general linear group over A. There is a canonical inclusion

A× = GL1(A)→ GL(A)

of groups which on classifying spaces induces a map

B(A×)→ B(GL(A)).

Composing with the morphism to Quillen’s +-construction yields a canonical mor-
phism

B(A×)→ BGL(A)→ K(A) := BGL(A)+ ×K0(A)

into the K-theory space

K(A) := BGL(A)+ ×K0(A)

of A. After p-completion of spaces8 we obtain a canonical morphism

ι : B(A×)∧p → K(A;Zp) := K(A)∧p .

8We use space as a synonym for Kan complex.
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We recall (cf. [16, Theorem 10.3.2.]) that the space B(A×)∧p has two non-trivial
homotopy groups which are given by

π1(B(A×)∧p ) ∼= H0(R lim←−
n

(A× ⊗L
Z Z/pn))

and
π2(B(A×)∧p ) ∼= H−1(R lim←−

n

(A× ⊗L
Z Z/pn) ∼= Tp(A

×).

In degree 2 we thus get a morphism

Tp(A
×) = π2(B(A×)∧p )→ π2(K(A;Zp)),

which is the first constituent of the map

Tp(A
×)→ π2(K(A;Zp))

Dtr−−→ π2(HH(A;Zp))
we want to describe. Now we turn to the construction of the Dennis trace

Dtr : K(A)→ HH(A).

as presented in [15, Section 8.4.].
By definition it will (on homotopy groups) factor through the integral group

homology of GL(A), i.e., through H∗(BGL(A),Z), which is by definition (and
the Dold-Kan correspondence) the homotopy of the space Z[BGL(A)] obtained
by taking the free simplicial abelian group on the simplicial BGL(A). As the +-
construction

BGL(A)→ BGL(A)+

is an equivalence on integral homology (cf. [26, Chapter IV.Theorem 1.5.]) the
morphism

Z[BGL(A)] ' Z[BGL(A)+]

is an equivalence of simplicial abelian groups and using the canonical inclusion

BGL(A)+ → Z[BGL(A)+]

we arrive at a canonical morphism

K(A)→ BGL(A)+ → Z[BGL(A)+] ' Z[BGL(A)].

We observe that for r = 1 the morphism BGL1(A) → BGL1(A)+ is an equiv-
alence as GL1(A) = A× is abelian. Thus there is a commutative diagram (up to
homotopy)

BGL1(A) //

��

Z[BGL1(A)]

��
K(A) // Z[BGL(A)]

with each morphism being the canonical one.
Let us explain the construction the Dennis trace map

Dtr′ : Z[BGL(A)]→ HH(A/Z)

from integral group homology to Hochschild homology (following [15, Chapter 8.4.]).
For this we need to recall first the definition of (derived) Hochschild homology (cf.
[3, Section 2.2.]). The Dennis trace from K-theory will then be defined as the
composition

Dtr : K(A)→ Z[BGL(A)]
Dtr′−−−→ HH(A/Z).
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If R is an arbitrary (commutative) ring and A an R-algebra (assumed to be com-
mutative) the (derived) Hochschild homology HH(A/R) is defined as the geometric
realization of the simplicial object

HH(A/R) := lim−→
∆op

A⊗
L
R
n+1

.

More concretely, if B• is a commutative differential algebra resolving A, i.e.,

B• =
⊕
n≥0

Bn

is a commutative differential R-algebra with a quasi-isomorphism B• ∼= A which
is a morphism of algebras such that each Bn is flat over R, then the n-fold tensor
product

B• ⊗R . . .⊗R B•
with differential extended multiplicatively is quasi-isomorphic to the n-fold derived
tensor product A⊗L

R⊗ . . .⊗L
RA and the derived Hochschild homology HH(A/R) is

computed by the totalization of the bicomplex

. . . // (B• ⊗R B• ⊗R B•)0
// (B• ⊗R B•)0

// B0

. . . // (B• ⊗R B• ⊗R B•)1
//

OO

(B• ⊗R B•)1
//

OO

B1

OO

. . . //

OO

. . . //

OO

. . .

OO

The first horizontal differentials are the (graded) maps

B• ⊗R B• → B•, a⊗ b 7→ ab− (−1)|a||b|ba

respectively

B• ⊗R B• ⊗R B• → B• ⊗R B•, a⊗ b⊗ c 7→ ab⊗ c− a⊗ bc+ (−1)|c||a|ca⊗ b.

By convention we set

HH(A) := HH(A/Z).

Moreover, we denote by

HH(A/R;Zp)

the p-completion of the Hochschild homology HH(A/R). After choosing a resolution
B• ∼= A as above the p-completed Hochschild homology can then be calculated, if
R is p-torsion free, by taking the total complex of the bicomplex

. . . // ((B ⊗R B ⊗R B)0)∧p // ((B ⊗R B)0)∧p // (B0)∧p

. . . // ((B ⊗R B ⊗R B)1)∧p //

OO

((B ⊗R B)1)∧p //

OO

(B1)∧p

OO

. . . //

OO

. . . //

OO

. . .

OO
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where each term is p-adically completed (note that in the totalization only finite
direct sums appear, which implies that the totalization remains p-adically com-
plete). Clearly, the derived Hochschild homology is functorial in the pair (A,R).
By construction the Dennis trace

Dtr′ : Z[BGL(A)]→ HH(A)

will be given as the colimit of compatible maps9

Dtr′r : Z[BGLr(A)]→ HH(A).

We content ourselves to only describe the case r = 1 and A flat over Z, the only
case relevant for us. Then the map Dtr′1 is the linear extension of a map

BA× → HH(A)

which in simplicial degree n is given by

(a1, . . . , an) 7→ 1

a1 . . . an
⊗ a1 ⊗ . . .⊗ an.

We can conclude that the composition

Dtr1 : BA× → K(A)→ Z[BGL(A)]→ HH(A)

we are interested in is given by the map

BA× → Z[BA×]
Dtr′1−−−→ HH(A)

described above. On π1 this map is very familiar. We recall that there is a canoni-
cal10 isomorphism

π1(HH(A/R)) ∼= Ω1
A/R, a⊗ b 7→ adb

with inverse adb 7→ a⊗b. Thus on homotopy the map Dtr1 is given by the dlog-map

A× ∼= π1(BA×)→ π1(HH(A)) ∼= Ω1
A/Z, a 7→ dlog(a) :=

da

a
.

In the following we want to describe, on π2, the p-adic completion

Dtr∧1 : (BA×)∧p → HH(A;Zp)

of the Dennis trace. This turns out to be more tricky. Let us define

h : BA× → Z[BA×].

as the canonical inclusion (the “Hurewicz morphism”). The map

Dtr′1 : Z[BA×]→ HH(A)

is Z-linear and thus its effect after p-completion is easy to calculate if A is p-torsion
free : simply apply the p-adic completion of abelian groups in each simplicial degree.
Thus our next task is to describe the p-adic completion of the Hurewicz map

h : BA× → Z[BA×]

on π2. More generally, we will do this for an arbitrary abelian group G.

9Here compatible means up to some homotopy. To obtain strict compatibility one has to use

the normalised Hochschild complex, cf. [15, Section 8.4.]
10Up to the choice of a tensor factor.
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Proposition 2.1. Let G be an abelian group then the map

h∧p : Tp(G) ∼= π2((BG)∧p )→ π2(Z[BG]∧p )

induced by the p-completed Hurewicz sends an element

(g1, g2, . . .) ∈ Tp(G) = lim←−
n

G[pn]

to the class represented by

∞∑
n=0

pn−1((1, gn) + (gn, gn) + . . .+ (gp−1
n , gn)),

where we set g0 := 1.

Proof. By definition

Tp(G) = Hom(Qp/Zp, G)

an thus by naturality it suffices to determine the image in π2(Z[BQp/Zp]∧p ) under
π2(h∧p ) of the canonical generator

(
1

p
+ Zp,

1

p2
+ Zp, . . .) ∈ Tp(Qp/Zp).

To avoid confusion let us for g in G = Zp, Qp or Qp/Zp denote the corresponding
element in Z[G] by tg.

To calculate the image of this canonical generator we will use the canonical short
exact sequence

0→ Zp → Qp → Qp/Zp → 0

with associated fiber sequence

BZp → BQp → BQp/Zp
on classifying spaces. Moreover, there is a commutative diagram

BZp //

��

BQp //

��

BQp/Zp

��
Z[BZp] // Z[BQp] // Z[BQp/Zp]

where the lower sequence computes integral homology, but is not a fiber sequence
of spaces anymore. Let K be the homotopy colimit in the diagram

Z[BZp]
π //

ι

��

Z[B{1}]

��
Z[BQp] // K

where {1} denotes the trivial group. In other words, K is the complex with n-th
term (in homological notation) given by

Kn = Z[{1}]⊕ Z[Qnp ]⊕ Z[Zn−1
p ]

and differential

(a, b, c) 7→ (da− π(c), db+ ι(c),−dc)
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(here we freely used the Dold-Kan correspondence to pass from simplicial abelian
groups to chain complexes). As Zp maps to 0 in Qp/Zp there is the natural mor-
phism

K → Z[BQp/Zp], (a, b, c)→ a+ b

(using the inclusion {1} and the projection BQp → BQp/Zp, b 7→ b). Now, we pass
to p-adic completion. The p-completion of BQp is weakly contractible because the
derived p-adic completion of Qp vanishes and BQ∧p has homotopy groups given by
the cohomology of

R lim←−
n

(Qp ⊗L
Z Z/pn) = 0

(cf. [16, Theorem 10.3.2.]). After p-adic completion the sequence

BZp∧ → BQp∧ ' ∗ → BQp/Zp∧

remains a fiber sequence11, thus the connecting homomorphism yields an isomor-
phism

Tp(Qp/Zp) = π2(BQp/Zp∧) ∼= π1(BZp∧) ∼= Zp
sending the canonical generator γ := ( 1

p + Zp, 1
p2 + Zp, . . .) to 1 ∈ Zp (as can be

calculated using the natural isomorphism of the homotopy of the p-completion with
the cohomology of the derived p-completion). Moreover, there is a commutative
diagram

π2((BQp/Zp)∧) //

��

π1((BZp)∧)

��
π2(Z[BQp/Zp]∧) π2(K∧p )

∼= //oo π1(Z[BZp]∧)

and we can use it to compute the image of (1/p+Zp, 1/p2+Zp, . . .) in π2(Z[BQp/Zp]∧).
The canonical generator 1 ∈ π1((BZp)∧) maps to the element t = t1 ∈ Z[Zp] in
degree 1 of Z[BZp]. In order to lift it to

π2(K∧p )

we have to find a cycle (a, b, c) ∈ (K∧p )2 = Zp⊕Z[Q2
p]
∧⊕Z[Zp] such that c = t. By

definition
d(a, b, t) = (da− 1, db+ t, 0)

and thus we can set a = 1 ∈ Zp = Z[B{1}]∧2 (where the subscript indicates the
simplicial degree). The element

b :=

∞∑
n=1

pn−1((1, t1/p
n

) + (t1/p
n

, t1/p
n

) + . . .+ (tp−1/pn , t1/p
n

)) ∈ Z[Q2
p]

satisfies db = −t. Namely, one calculates

t = t1/p + tp−1/p − d(tp−1/p, t1/p)

= . . . = pt1/p − d((tp−1/p, t1/p) + . . .+ (t1/p, t1/p) + (1, t1/p))

because
d(g, h) = g + h− gh

for (g, h) ∈ Z[Q2
p]
∧. Then one iterates the formula, i.e., takes it with t1/p and t1/p

2

instead of t and t1/p. As pnt1/p
n

tends to zero in (Z[Qp])∧p we arrive at the formula

11As this can be checked on homotopy groups.
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−t = db. Thus the element (1, b, t) ∈ Z[K∧p ] is a cycle as we searched for. Its image
in π2(Z[BQp/Zp]∧p ) is the class represented by the element

(1, 1) + b

as claimed. �

We arrive at our first description of the p-completed Dennis trace.

Corollary 2.2. Under the p-completed Dennis trace (BA×)∧p → HH(A;Zp) the
image of an element

(a1, a2, . . .) ∈ Tp(A×) = π2((BA×)∧p )

is represented by the cycle

∞∑
n=0

pn−1(a−1
n ⊗ 1⊗ an + . . .+ a−pn ⊗ ap−1

n ⊗ an)

with setting a0 = 1.

Proof. This follows from Proposition 2.1 and the definition of the Dennis trace

Dtr′ : Z[BGL1(A)]→ HH(A)

from integral group homology to Hochschild homology. �

Next we want to describe the Dennis trace in the context that A is p-complete
and the quotient A = R/I with I generated by some regular sequence for some
arbitrary (p, I)-complete ring R.

We want to describe the image of some element (a1, a2, . . .) ∈ Tp(A×) under the
composition

Tp(A
×)

Dtr−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp)) ∼= I/I2,

where in the last isomorphism we used the following simplification.

Lemma 2.3. There is a natural isomorphism

I/I2 ∼= π2(HH(A/R)).

and the Hochschild homology HH(A/R) is already p-adically complete.

Proof. The p-completeness follows as the Koszul complex for a generating regular
sequence of I is a flat resolution of A over R and the associated bicomplex has
p-adically complete terms as R is p-adically complete. The first assertion follows
from the HKR-filtration on HH(A/R;Zp) from [3, Section 2.2.] and the fact there
is a canonical isomorphism

I/I2 ∼= LA/R[−1]

of I is generated by a regular sequence. �

In the case that I = (f) is generated by some regular element f in R we make
the isomorphism explicit. The Koszul complex B• = (I → R) is a flat resolution of
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A and the bicomplex computing HH(A/R) reads as

. . . // R
1 // R

0 // R

. . . // I ⊕ I ⊕ I dh //

OO

I ⊕ I 0 //

OO

I

OO

. . . //

OO

I ⊗R I

dv

OO

// 0

OO

with

dh : I ⊕ I ⊕ I → I ⊕ I, (a, b, c) 7→ (a+ b+ c, 0)

and

dv : I ⊗R I → I ⊕ I, a⊗ b 7→ (ab,−ba)

while the other maps are the canonical summation maps. The isomorphism

I/I2 ∼= π2(HH(A/R))

is now induced by the map

I → I ⊕ I, a 7→ (0, a)

into the (1, 1)-component of the double complex.
We turn to the description of the map

Tp(A
×)→ I/I2

induced by the Dennis trace map (in the case that I is generated by some regular
sequence). We recall the following standard lemma.

Lemma 2.4. Let R be a ring, I ⊆ R and ideal and assume that R is (p, I)-adically
complete. Then the canonical map

lim←−
x 7→xp

R→ lim←−
x7→xp

A

with A = R/I is bijective.

Proof. It suffices to construct a well-defined, multiplicative map

[−] : lim←−
x7→xp

R/I → R

reducing to the first projection modulo I. Let

r := (r0, r1, . . .) ∈ lim←−
x 7→xp

A

be a p-power compatible system of elements in R/I with lifts r′i ∈ R of each ri.
Then the limit

lim
n→∞

(r′n)p
n

exists and is independent of the lift. Thus

[r] := lim
n→∞

(r′n)p
n

defines the desired map. �
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The morphism

[−] : lim←−
x 7→xp

R/I → R

is the Teichmüller lift for the surjection π : R → R/I. If we want to make its
dependance of the surjection clear, we write [−]π.

For some element γ = (a1, a2, . . .) ∈ Tp(A×) we obtain by the previous lemma
a p-power compatible system (r0, r1, . . .) ∈ lim←−

x 7→xp
R of units in R reducing to the

sequence (1, a1, a2, . . .) in A (note the additional 1 at the sequence). We define

[γ] := r0.

Clearly, [γ] ∈ 1 + I. Finally, we arrive at the following concrete description of the
Dennis trace map.

Proposition 2.5. Let R be a p-complete ring, I ⊆ R an ideal generated by a
regular sequence such that R is (p, I)-adically complete. Let A = R/I. Then the
composition

Tp(A
×) ∼= π2((BA×)∧p )

Dtr−−→ π2(HH(A/R)∧p ) ∼= I/I2

is given by sending γ ∈ Tp(A×) to 1−[γ]
[γ] = [γ−1]− 1.

Proof. By naturality we may assume

R = Z[Qp]∧p ,

I = (t− 1),

A = R/I ∼= Z[Qp/Zp]∧p
and

γ = (t1/p+Zp , t1/p
2+Zp , . . .) ∈ Tp(Z[A×]∧p ).

Then [γ] = t. We let B• be the Koszul resolution of A as an R-algebra, i.e., B• is
given by the complex

B• := (. . .→ 0→ I → R).

We can calculate the p-completed Hochschild homology HH(A/Z;Zp) either using
the chain complex

C• := (. . .→ A⊗∧Zp A⊗
∧
Zp A→ A⊗∧Zp A→ A)

or the total complex

D• := Tot(. . .→ B• ⊗∧Zp B• ⊗
∧
Zp B• → B• ⊗∧Zp B• → B•).

Concretely, let us look at the element

y :=

∞∑
n=0

pn−1(t−1/pn+Zp ⊗ 1⊗ t1/p
n+Zp + . . .+ t−p/p

n+Zp ⊗ tp−1/pn+Zp ⊗ t1/p
n+Zp)

in C2. It defines a cycle in C• and by Corollary 2.2 it represents the image of γ in
π2(HH(A;Zp)). We want to lift it to a cycle in D2. First, we lift y to

y′ :=

∞∑
n=0

pn−1(t−1/pn ⊗ 1⊗ t1/p
n

+ . . .+ t−p/p
n

⊗ tp−1/pn ⊗ t1/p
n

)
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which however is not a cycle in D•. Let us compute dy′. There is a commutative
diagram

Z[Qp ×Qp]∧p
α //

d

��

Z[Qp ×Qp ×Qp]∧p ∼= (R⊗Z R⊗Z R)∧p

d

��
Z[Qp]∧p

β // Z[Qp ×Qp]∧p ∼= (R⊗Z R)∧p

where the horizontal arrows are the ones defining the Dennis trace

Z[BQp]∧p → HH(R/Z;Zp),

i.e., are given by (g, h) → 1/gh ⊗ g ⊗ h resp. g → 1/g ⊗ g. By construction the
element y′ = α(x′) is the image of

x′ =

∞∑
n=0

pn−1((1, t1/p
n

) + (t1/p
n

, t1/p
n

) + . . .+ (tp−1/pn , t1/p
n

)) ∈ Z[Qp ×Qp]∧p .

In the proof of Proposition 2.1 we calculated dx′ = 1 − t (note that d((1, 1)) = 1
under the differential

Z[Qp ×Qp]→ Z[Qp], (g, h) 7→ g + h− gh).

Thus, we can conclude

dy′ = β(1− t) = 1⊗ 1− 1

t
⊗ t.

In order to lift y to a cycle in D2 we have to find some element

z ∈ (R⊗Z I ⊕ I ⊗Z R)∧p

such that dz′ = dy′ (i.e., a preimage of dy′ under the horizontal differential in the
double complex) as then y′ − z′ will be a cycle in D2 lifting the cycle y ∈ C2. We
can write

dy′ = 1⊗ 1− 1

t
⊗ t = 1⊗ 1− 1

t
⊗ 1 +

1

t
⊗ 1− 1

t
⊗ t = 1⊗ t− 1

t
+

1

t
⊗ (1− t)

and thus

dy′ = dz

with

z := (1⊗ t− 1

t
,

1

t
⊗ (1− t)).

To summarize, the cycle y − z ∈ D2 represents the image of γ ∈ Tp(A
×) in

π2(HH(A;Zp)). Mapping further to HH(A/R;Zp) = HH(A/R) means to replace
the tensor products over Z in D• by tensor products over R. Using Lemma 2.3, or
better the concrete example following it, we get that the image of γ in π2(HH(A/R))
is represented by the element ( t−1

t ,
1−t
t ) in π2(HH(A/R)), which maps to the el-

ement 1−t
t under the isomorphism π2(HH(A/R)) ∼= I/I2 from Lemma 2.3. This

finishes the proof. �

We recall the following lemma. For a perfect ring S we denote its ring of Witt
vectors by W (S).
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Lemma 2.6. Let S be a perfect ring and let A be an W (S)-algebra. Then the
canonical morphism

HH(A;Zp)→ HH(A/W (S);Zp)
is an equivalence.

Proof. By the HKR-filtration from [3, Section 2.2] it suffices to see that the canon-
ical morphism

LA/Z → LA/W (S)

of cotangent complexes is a p-adic equivalence, i.e., an equivalence after −⊗L
Z Z/p.

Computing the right hand side by polynomial algebras over W (S) we see that it
suffices to consider the case that A is p-torsion free. Then by base change

LA/Z ⊗L
Z Z/p ∼= L(A/p)/Fp

resp.
LA/W (S) ⊗L

Z Z/p ∼= L(A/p)/S

and the claim follows from the transitivity triangle

A/p⊗L
S LS/Fp → L(A/p)/Fp → L(A/p)/S

using that S is perfect which implies that the cotangent complex LS/Fp of S over
Fp vanishes. �

3. Transversal prisms

In this section we want to prove the crucial injectivity statement (Corollary 3.10)
mentioned in the introduction. Let us recall the following definition from [4].

Definition 3.1. A δ-ring is a pair (A, δ), where A is a commutative ring, δ : A→ A
a map of sets, with δ(0) = 0, δ(1) = 0, and

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p
; δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

for all x, y ∈ A.
A prism (A, I) is a δ-ring A with an ideal I defining a Cartier divisor on Spec(A),

such that A is derived (p, I)-adically complete and p ∈ (I, ϕ(I)).

Here, the map
ϕ : A→ A, x 7→ ϕ(x) := xp + pδ(x)

denotes the lift of Frobenius induced from δ-structure on A. We will make the
(usually harmless) assumption that I = (ξ̃) is generated by some distinguished

element ξ̃ ∈ A, i.e., ξ̃ is a non-zero divisor and δ(ξ̃) is a unit.

Definition 3.2. We call a prism transversal if (p, ξ̃) is a regular sequence on A.

Let us fix a transversal prism (A, I). In particular, A is p-torsion free. Moreover,

A is classically (p, I)-adically complete. Indeed, (p, ξ̃) being a regular sequence
implies that

A⊗L
Z[x,y] Z[x, y]/(xn, yn) ∼= A/(pn, ξ̃n)

and therefore

A ∼= R lim←−
n

(A⊗L
Z[x,y] Z[x, y]/(xn, yn) ∼= R lim←−

n

(A/(pn, ξ̃n)) ∼= lim←−
n

A/(pn, ξ̃n)

using Mittag-Leffler for the last isomorphism.
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We set

Ir := Iϕ(I) . . . ϕr−1(I)

for r ≥ 1 (where ϕ0(I) := I). Then Ir = (ξ̃r) with

ξ̃r := ξ̃ϕ(ξ̃) · · ·ϕr−1(ξ̃).

Lemma 3.3. For all r ≥ 1 the element

ϕr(ξ̃)

is a non-zero divisor and (ϕr(ξ̃), p) is again a regular sequence. In particular, the

elements ξ̃r, r ≥ 1, are non-zero divisors.

Proof. Replacing ξ̃ by ϕ(ξ̃), which is again distinguished, it suffices to prove the

statement for r = 1. Let x ∈ A and assume ϕ(ξ̃)x = 0. Then we get

0 = ϕ(ξ̃) = ξ̃px+ pδ(ξ̃)x.

As δ(ξ̃) ∈ A× is a unit we see by reducing mod ξ̃ that ξ̃ divides x, i.e., there exists

y ∈ A with ξ̃y = x. As A is ξ̃-torsion free we get ϕ(ξ̃)y = 0 and thus

x ∈
⋂
i≥0

ξ̃iA = 0

using ξ̃-adic completeness of A. As p ∈ A is by assumption a non-zero divisor
the sequence (ϕ(ξ̃), p) is regular if and only if the sequence (p, ϕ(ξ̃)) is regular (cf.

[23, Tag 07DW]). But ϕ(ξ̃) and ξ̃p agree modulo p, which shows that (p, ϕ(ξ̃)) is a
regular sequence. �

Lemma 3.4. The ring A is complete for the topology induced by the ideals Ir, i.e.,

A ∼= lim←−
r

A/Ir.

Proof. First note that the ideal (p, I) is stable by ϕ. Namely, as (p) ⊆ (p, I) this
may be checked modulo (p), but for the characteristic p ring A/(p) every ideal
J ⊆ A/I is stable under Frobenius. Thus we see ϕr(I) ⊆ (p, I) for all r ≥ 1 and
thus

Ir ⊆ (p, I)r.

In particular,
⋂
r≥1

Ir = 0 as A is separated for the (p, I)-adic topology. Now let

xr ∈ Ir be elements. We have to show that the sequence

an :=

n∑
r=1

xr

converges in A. As Ir ⊆ (p, I)r the limit

a := lim
n→∞

an

for the (p, I)-adic topology exists. We want to see that it is also the limit for the
topology given by the ideals Ir. Fix n ≥ 0. It suffices to show that

a− an ∈ In
because then

a− am = a− an + an − am ∈ In
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for all m ≥ n as an − am = −
m∑

r=n+1
xr ∈ In. We calculate

a− an =

∞∑
r=n+1

xr =

∞∑
r=n+1

ξ̃nyr

for some elements yr ∈ A, which may be chosen to lie in (p, I)r−n. As A is (p, I)-
adically complete the sum

y :=

∞∑
r=n+1

yr

converges thus in A. Hence

a− an = ξ̃ny

lies in In. This finishes the proof. �

Lemma 3.5. For r ≥ 1 there is a congruence

ϕr(ξ̃) ≡ pu modulo (ξ̃)

with u ∈ A× some unit.

Proof. For r = 1 this follows from

ϕ(ξ̃) = ξ̃p + pδ(ξ)

because by definition of distinguishedness the element δ(ξ) ∈ A× is a unit. For
r ≥ 2 we compute

ϕr(ξ̃) = ϕr−1(ξ̃p + pδ(ξ̃)) = ϕr−1(ξ̃)p + pϕr−1(δ(ξ̃)).

By induction we may write ϕr−1(ξ̃) = pu + aξ̃ with u ∈ A× some unit and thus

modulo ξ̃ we calculate

ϕr(ξ̃) ≡ (pu)p + pϕ(δ(ξ̃)) = p(ϕ(δ(ξ̃)) + pp−1up)

with ϕ(δ(ξ̃)) + pp−1up ∈ A× some unit. �

Lemma 3.6. For all r ≥ 1 the sequences (ϕr(ξ̃), ξ̃) and (ξ̃, ϕr(ξ̃)) are again regular.

Moreover, Ir =
r−1⋂
i=0

ϕi(I) for all r ≥ 1.

Proof. We can write ϕ(ξ̃) = pδ(ξ̃) + ξ̃p, where δ(ξ̃) ∈ A× is a unit. By Lemma 3.5

we get ϕr(ξ̃) ≡ pu modulo (ξ̃) with u ∈ A× a unit. As (ξ̃, p) is a regular sequence

we conclude (using [23, Tag 07DW] and Lemma 3.3) that (ϕr(ξ̃), ξ̃) is a regular
sequence. To prove the last statement we proceed by induction on r. First note the
following general observation: If R is some ring and (f, g) a regular sequence in R,
then (f) ∩ (g) = (fg). In fact, if r = sg ∈ (f) ∩ (g), then sg ≡ 0 modulo f , hence

s ≡ 0 modulo f as desired. Thus, it suffices to prove that (ξ̃r, ϕ
r(ξ̃) is a regular

sequence for r ≥ 1 (recall that ξ̃r = ξ̃ϕ(ξ̃) · · ·ϕr−1(ξ̃)). By induction the morphism

A/(ξ̃r)→
r−1∏
i=0

A/(ϕi(ξ̃))

is injective. Hence, it suffices to show that for each i = 0, . . . , r − 1 the element
ϕr(ξ̃) maps to a non-zero divisor in A/(ϕi(ξ̃)). But this follows from Lemma 3.5

which implies ϕr(ξ̃) ≡ pu modulo ϕi(ξ̃) for some unit u ∈ A×. �
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We can draw the following corollary.

Lemma 3.7. Define ρ : A→
∏
r≥0

A/ϕr(I), x 7→ (x mod ϕr(I)). Then ρ is injective.

Proof. This follows from Lemma 3.4 and Lemma 3.6 as the kernel of ρ is given by
∞⋂
r=1

ϕr(I) =
∞⋂
r=1

Ir = 0. �

We now define the Nygaard filtration of the prism (A, I) (cf. [4, Definition 11.1]).

Definition 3.8. Define

N≥nA := {x ∈ A | ϕn(x) ∈ InA},
the n-th filtration step of the Nygaard filtration.

By definition the Frobenius on A induces a morphism

ϕ : N≥1A→ I.

Note that we do not divide the Frobenius by ξ̃. Moreover, we define

σ :
∏
i≥0

A/ϕi(I)→
∏
i≥0

A/ϕi(I), (x0, x1, . . .) 7→ (0, ϕ(x0), ϕ(x1), . . .).

Here we use that if a ≡ b mod ϕi(I), then ϕ(a) ≡ ϕ(b) mod ϕi+1(I) to get that σ
is well-defined. Then the diagram

(1) N≥1A
ρ //

ϕ

��

∏
i≥0

A/ϕi(I)

σ

��
I

ρ // ∏
i≥0

A/ϕi(I)

commutes where ρ is the homomorphism from Lemma 3.7.

Lemma 3.9. The reduction map

Aϕ=ξ̃ → A/I, x 7→ x mod (ξ̃)

is injective.

Proof. Let x ∈ Aϕ=ξ̃ ∩ I. We want to prove that x = 0. Clearly, x ∈ N≥1A. By
Lemma 3.7 it suffices to prove that

x ≡ 0 mod ϕi(I)

for all i ≥ 0. Write
ρ(x) = (x0, x1, . . .)

By the commutativity of the square (Equation (1)) we get

ρ(ϕ(x)) = σ(ρ(x)) = (0, ϕ(x0), ϕ(x1), . . .).

As ϕ(x) = ξ̃x and therefore ρ(ϕ(x)) = ξ̃ρ(x) we thus get

(ξ̃x0, ξ̃x1, . . .) = (0, ϕ(x0), ϕ(x1), . . .).

We assumed that x ∈ I, thus x0 = 0 ∈ A/I. Now we use that ξ̃ is a non-zero
divisor modulo ϕi(I) (cf. Lemma 3.6) for i > 0. Hence, if xi = 0, then

0 = ϕ(xi) = ξ̃xi+1 ∈ A/ϕi+1(I)
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implies xi+1 = 0. Beginning with x0 = 0 this shows that xi = 0 for all i ≥ 0, which
implies our claim. �

The same proof shows that also the reduction map

Aϕ=ξ̃n → A/I

is injective for n ≥ 1.
The following corollary is crucially used in Theorem 6.4.

Corollary 3.10. The reduction map

Aϕ=ξ̃ → N≥1A/N≥2A

is injective.

Proof. Let x ∈ Aϕ=ξ̃ ∩N≥2A. Then

ξ̃x = ϕ(x) = ξ̃2y

for some y ∈ A. As ξ̃ is a non-zero divisor in A we get x ∈ I = (ξ̃). But then x = 0
by Lemma 3.9. �

4. The q-logarithm

In this section we recall the definition of the q-logarithm and prove some prop-
erties of it. Recall (cf. [21] for more on q-mathematics) that the q-analog of the
integer n ∈ Z is defined to be

[n]q :=
qn − 1

q − 1
∈ Z[q±1].

If n ≥ 1, then we can rewrite

[n]q = 1 + q + . . .+ qn−1

and then the q-number actually lies in Z[q]. For n ≥ 0 we moreover get the relation

(2) [−n]q =
q−n − 1

q − 1
= q−n

1− qn

q − 1
= −q−n[n]q.

The q-numbers satisfy some basic relations, for example

(3) [n+ k]q = qk[n]q + [k]q

for n, k ∈ Z, or

[m]q =
(qn)k − 1

qn − 1

qn − 1

q − 1
=

(qn)k − 1

qn − 1
[n]q,

if n|m. As further examples of q-analogs let us define the q-factorial for n ≥ 1 as

[n]q! := [1]q · [2]q · . . . · [n]q ∈ Z[q]

(with the convention that [0]q! := 1) and, for 0 ≤ k ≤ n, the q-binomial coefficient
as (

n

k

)
q

:=
[n]q!

[k]q![n− k]q!
.

Lemma 4.1. 1) For 0 ≤ k ≤ n the q-binomial
(
n
k

)
q
∈ Z[q].
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2) For 1 ≤ k ≤ n the analog(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

of Pascal’s identity holds.

Proof. 1) follows from 2) using induction and the easy case
(
n
0

)
q

= 1. Then 2) can

be proved as follows: Let 1 ≤ k ≤ n, then

qk
(
n−1
k

)
q

+
(
n−1
k−1

)
q

=
[n−1]q !

[k−1]q ![n−1−k]q !
( q

n

[k]q
+ 1

[n−k]q
)

=
[n−1]q !

[k−1]q ![n−1−k]q !
(
qk[n−k]q+[k]q

[k]q [n−k]q

=
[n−1]q !

[k−1]q ![n−1−k]q !
[n]q

[k]q [n−k]q

=
(
n
k

)
q

using the addition rule (Equation (3)). �

Let us define a generalized q-Pochhammer symbol by

(x, y; q)n := (x+ y)(x+ yq) . . . (x+ yqn−1) ∈ Z[q±1, x, y]

for n ≥ 1 (setting x = 1 and y := −a recovers the known q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1) = (1,−a; q)n).

Moreover we make the convention

(x, y; q)0 := 1.

In the q-world the generalized q-Pochhammer symbol replaces the polynomial

(x+ y)n.

For example one can show (using Lemma 4.1) the following q-binomial formula

(4) (x, y; q)n =

n∑
k=0

qk(k−1)/2

(
n

k

)
q

xn−kyk.

Let us now come to q-derivations. We recall that the q-derivative ∇qf of some
polynomial f ∈ Z[q±1][x±1] is defined by

∇qf(x) :=
f(qx)− f(x)

qx− x
∈ Z[q±1][x±1].

Thus for example, if f(x) = xn, n ∈ Z, then we can calculate

∇q(xn) =
qnxn − qx
qx− x

=
qn − 1

q − 1
xn−1 = [n]qx

n−1.

The q-derivative satisfies an analog of the Leibniz rule, namely

∇q(f(x)g(x)) = ∇q(f(x))g(qx) + f(x)∇q(g(x)).

Similarly to the classical rule

∇x((x+ y)n) = n∇x((x+ y)n−1)

we obtain the following relation for the generalized q-Pochhammer symbol.
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Lemma 4.2. Let ∇q := ∇q,x denote the q-derivative with respect to x. Then the
formula

∇q((x, y; q)n) = [n]q(x, y; q)n−1

holds.

Proof. We proceed by induction on n. Let n = 1. Then (x, y; q)n = x+ y and

∇q((x+ y)) = 1.

Now let n ≥ 2. We calculate using induction

∇q((x, y; q)n) = ∇q((x, y; q)n−1(x+ yqn−1))
= (x, y, q)n−1∇q(x+ yqn−1) + (qx− qn−1)∇q((x, y; q)n−1)
= (x, y; q)n−1 · 1 + q(x− qn−2)[n− 1]q(x, y; q)n−2

= (1 + q[n− 1]q)(x, y; q)n−1

= [n]q(x− 1)[n−1]q

where we used the q-Leibniz rule and (Equation (3)). �

Similar as the polynomials

1, x− 1,
(x− 1)2

2!
, . . . ,

(x− 1)n

n!
, . . .

are useful for developing some function into a Taylor series around x = 1 (because
the derivative of one polynomial is the previous one) the q-polynomials

1, (x,−1; q)1,
(x,−1; q)2

[2]q!
, . . . ,

(x,−1; q)n
[n]q!

, . . .

are useful for developing a q-polynomial into some “q-Taylor series” around x = 1.
However, for this to make sense we have to pass to suitable completions and localize
at {[n]q}n≥1. Let us be more precise about this. The (q − 1, x − 1)-completion
Z[[q − 1, x− 1]] of Z[q, x] contains expressions of the form

∞∑
n=0

an(x,−1; q)n

with an ∈ Z[[q − 1]] because

(x,−1; q)n = (x− 1)(x− 1 + 1− q) . . . (x− 1 + (1− q)1− qn−1

1− q
) ∈ (q − 1, x− 1)n.

Finally, the next calculations will take place in the ring

Rq := ̂Z[[q − 1, x− 1]][1/[n]q|n ≥ 1](q−1,x−1)

because
(x,−1; q)n

[n]q!
∈ (q − 1, x− 1)Rq .

The ring Rq admits still surjection to

Rq → Q[[x− 1]]

with kernel generated by q − 1. Similarly, there is a morphism

ev1 : Rq → ̂Z[[q − 1]][1/[n]q|n ≥ 1](q−1)
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with kernel generated by x−1. Finally, the q-derivative∇q extends to a q-derivation
on Rq and it induces the usual derivative after modding out q − 1. We denote by
∇nq the n-fold decomposition of ∇q and by

f(x)|x=1 := ev1(f(x))

the evaluation at x = 1 of an element f ∈ Rq.
Lemma 4.3. Let f(x) ∈ Rq. If ∇nq (f(x))|x=1 = 0 for all n ≥ 0, then f(x) = 0.

Proof. As ∇q reduces to the usual derivative modulo q − 1, we see that f must be
divisible by q − 1, i.e., we can write f(x) = (q − 1)g(x) with g(x) ∈ Rq. But then
∇nq (g(x))x=1 = 0 for all n ≥ 0 and we can conclude as before that q− 1|g(x) which
in the end implies

f(x) ∈
∞⋂
k=1

(q − 1)k = {0}

because Rq is (q − 1)-adically separated. �

Now we can state the q-Taylor expansion around x = 1 for elements in Rq.

Proposition 4.4. For any f(x) ∈ Rq there is the Taylor expansion

f(x) =

∞∑
n=0

∇nq (f(x))|x=1
(x,−1; q)n

[n]q!
.

Proof. Because

∇q(
(x,−1; q)n

[n]q!
) =

(x,−1; q)n−1

[n− 1]q!

we can directly calculate that both sides have equal higher derivatives at x = 1.
Thus they agree by Lemma 4.3. �

Using this we can in Lemma 4.6 motivate the following formula for the q-
logarithm.

Definition 4.5. We define the q-logarithm as

logq(x) :=

∞∑
n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

∈ Rq.

In the ring Rq the element x is invertible, as

1

x
=

1

1− (1− x)
= 1 + (1− x) + (1− x)2 + . . . .

The q-derivative of the q-logarithm is 1/x, similarly to the usual logarithm.

Lemma 4.6. The q-logarithm logq(x) is the unique f(x) ∈ Rq satisfying f(1) = 0

and ∇q(f(x)) = 1
x . Moreover,

logq(x) =
q − 1

log(q)
log(x).

Proof. That logq(x) has q-derivative 1/x can be checked using Proposition 4.4 after
writing 1/x in its q-Taylor expansion. Moreover, logq(1) = 0. For the converse pick
f as in the statement. By Proposition 4.4 we can write

f(x) =

∞∑
n=0

∇nq (f(x))|x=1
(x,−1; q)n

[n]q!
.
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and thus we have to determine

an := ∇nq (f(x))|x=1

for n ≥ 0. By assumption we must have a0 = f(1) = 0. Moreover, for n ≥ 1

an = ∇nq (f(x))|x=1 = ∇n−1
q (x−1)|x=1 = [−n+ 1]q . . . [−1]q.

Using [−k]q = −q−k[k]q for k ∈ Z the last expression simplifies to

[−n+ 1]q . . . [−1]q = (−1)n−1q−n(n−1)/2[n− 1]q!.

Thus we can conclude

f(x) =

∞∑
n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

= logq(x).

For the last statement note that

f(x) :=
q − 1

log(q)
log(x)

exists in Rq (because n ∈ R×q for all n ≥ 1) and satisfies f(1) = 0. Moreover,

∇q(f(x)) =
f(qx)− f(x)

qx− x
=

q − 1

log(q)

log(q) + log(x)− log(x)

(q − 1)x
=

1

x

which implies f(x) = logq(x) by the proven uniqueness of the q-logarithm. �

We now turn to prisms again. Define

ξ̃ := [p]q = 1 + q + . . .+ qp−1

and

ξ̃r = ξ̃ϕ(ξ̃) . . . ϕr−1(ξ̃)

for r ≥ 1. Here, ϕ is the Frobenius lift on Z[q±1] satisfying ϕ(q) = qp. Then ξ̃ is a

distinguished element in the prism Zp[[q− 1]]. The ξ̃r are again q-numbers, namely

ξ̃r = [pr]q.

Let us recall the following situation from crystalline cohomology. Assume that
A is a p-complete ring with an ideal J ⊆ A equipped with divided powers

γn : J → J, n ≥ 1.

In this situation the logarithm

log(x) :=

∞∑
n=1

(−1)n−1(n− 1)!γn(x− 1)

converges in A for every element x ∈ 1 + J . We now want to prove an analogous
statement for the q-logarithm. Recall that for a prism (A, I) we defined the Nygaard
filtration

N≥nA := {x ∈ A | ϕ(x) ∈ In}, n ≥ 0

in Definition 3.8. From now on, we assume that the prism (A, I) lives over (Zq[[q−
1]], (ξ̃)). The expression

γn,q(x− y) :=
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!
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is called the n-th q-divided power of x − y (cf. [19, Rem. 1.4]). We will study the
divisibility of

(x− y)(x− qy) · · · (x− qn−1y)

by

ξ̃, ϕ(ξ̃), . . . .

The following statement is clear.

Lemma 4.7. For r ≥ 1 the polynomial (in q)

ϕr−1(ξ̃) =
qp
r − 1

qpr−1 − 1

is the minimal polynomial of a pr-th root of unity ζpr , i.e., the morphism

Z[q]/(ϕr−1(ξ̃))→ Z[ζpr ], q 7→ ζpr

is injective.

Thus reducing modulo ϕr−1(ξ̃) is the same as setting q = ζpr . Moreover, in
Z[ζpr ] there is the equality

zp
r

− 1 =

pr−1∏
i=0

(z − ζipr ).

Setting z = x
y one thus arrives at the congruence

(5) xp
r

− yp
r

≡ (x− y)(x− qy) · · · (x− qp
r−1y) mod ϕr−1(ξ̃),

which will be useful.

Lemma 4.8. Let n ≥ 1 and for r ≥ 1 write n = arp
r + br with ar, br ≥ 0 and

br < pr. Then in Zp[[q − 1]]

[n]q! = u

∞∏
r≥1

ϕr−1(ξ̃)ar

for some unit u ∈ Zp[[q − 1]]×.

Proof. We may prove the statement by induction on n. Thus let us assume that it
is true for m = n−1 and for r ≥ 1 write m = crp

r+dr with cr, dr ≥ 0 and dr < pr.
If n is prime to p, then [n]q is a unit in Zp[[q − 1]] and it suffices to see that the
righthand side is equal (up to some unit in Zp[[q − 1]]) to

∞∏
r≥1

ϕr−1(ξ̃)cr .

But n prime to p implies that br > 0 for all r ≥ 1. Thus cr = ar and dr = br − 1,
which implies that both products are equal. Now assume that p divides n and write
n = psn′ with n′ prime to p. Moreover, write m = n − 1 = crp

r + dr as above.



THE p-COMPLETED CYCLOTOMIC TRACE IN DEGREE 2 27

Then we can conclude ar = cr = 0 for r > s while cr = ar − 1 for 1 ≤ r ≤ s (as
dr = pr − 1 for such r). Altogether we therefore arrive at

[n]q! = [n]q[n− 1]q!

= u′[n]q
∞∏
r≥1

ϕr−1(ξ̃)cr

= u′v
∞∏
r≥1

ϕr−1(ξ̃)ar

,

u′ ∈ Zp[[q − 1]]×, where we used that

[n]q = v[ps]q = vϕs−1(ξ̃) . . . ξ̃

for some unit v ∈ Zp[[q − 1]]. �

Proposition 4.9. Let (A, I) be a prism over (Zp[[q − 1]], (ξ̃)) and let x, y ∈ A be

elements of rank 1 such that ϕ(x− y) = xp − yp ∈ ξ̃A. Then for all n ≥ 1 the ring
A contains a q-divided power

γn,q(x− y) =
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!

of x−y. Moreover, γn,q lies in fact in the n-th step N≥nA of the Nygaard filtration
of A.

Proof. Replacing A, x, y by the universal case we may assume that A is flat over
Zp[[q−1]]. In particular, this implies that ξ̃, ϕ(ξ̃), . . . are pairwise regular sequences
(cf. Lemma 3.6). Fix n ≥ 1. For r ≥ 1 we write n as

n = arp
r + br

with ar, br ≥ 0 and 0 ≤ br < pr. We claim that for each r ≥ 0

ϕr−1(ξ̃)ar

divides

(x− y)(x− qy) · · · (x− qn−1y).

This implies the proposition, namely by Lemma 4.8 we have

[n]q! = u
∏
r≥1

ϕr−1(ξ̃)ar

for some unit u ∈ A× while furthermore the morphism

A/([n]q!)→
∏
r≥1

A/(ϕr−1(ξ̃))ar

is injective by Lemma 3.6. Thus fix r ≥ 1. To prove our claim we may replace n
by n− br as

(x− y)(x− qy) · · · (x− qn−br−1y)

divides

(x− y)(x− qy) · · · (x− qn−1y).
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Thus let us assume that n = arp
r. We claim that each of the following ar many

elements (note that their product is (x− y) · · · (x− qn−1y))

(x− y)(x− qy) · · · (x− qpr−1y),
(x− qpry)(x− qpr+1y) · · · (x− q2pr−1y),

...

(x− q(ar−1)pry)(x− q(ar−1)pr+1y) · · · (x− qarpr+1−1y),

is divisible by ϕr−1(ξ̃). For this recall the congruence (Equation (5))

xp
r

− yp
r

≡ (x− y)(x− qy) · · · (x− qp
r−1y) mod ϕr−1(ξ̃).

Replacing in this congruence y by qp
r

y, . . . , q(ar−1)pry shows that each of the above
ar elements is congruent modulo ϕr−1(ξ̃) to an element of the form

xp
r

− qkyp
r

with k ≥ 0 divisible by pr. But we have

xp
r

− qkyp
r

= (xp
r

− yp
r

) + yp
r

(1− qk)

and we claim that under our assumptions both summands are divisible by ϕr−1(ξ̃).
For the first summand we use that x, y are of rank 1 to write

xp
r

− yp
r

= ϕr−1(xp − yp) = ϕr−1(ξ̃)ϕr−1(
xp − yp

ξ̃
)

which makes sense as we assumed that

xp − yp ∈ ξ̃A.

For the second summand we note that

1− qk =
1− qk

1− qpr
ϕr−1(ξ̃)(1− qp

r−1

)

with all factors in Zp[[q − 1]] as pr divides k. It remains to prove that

γn,q(x− y) =
(x− y)(x− qy) · · · (x− qn−1y)

[n]q!

lies in N≥nA. But

ϕ(γn,q) =
(xp − yp)(xp − qpyp) · · · (xp − qp(n−1)yp)

ϕ([n]q!)

and as we saw above ξ̃ divides each of the n factors

(xp − yp), (xp − qpyp), · · · , (xp − qp(n−1)yp).

But ξ̃ and ϕ([n]q!) form a regular sequence by Lemma 3.6 which implies that

(xp − yp)(xp − qpyp) · · · (xp − qp(n−1)yp)

is divisible by ξ̃nϕ([n]q) as was to be proven. This finishes the proof of the propo-
sition. �

Moreover, we get the following lemma concerning the convergence of the q-
logarithm.
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Lemma 4.10. Let (A, I) be a prism over (Zp[[q−1]], (ξ̃)). Then for every element
x ∈ 1 +N≥1A of rank 1 the series

logq(x) =

∞∑
n=1

(−1)n−1qn(n−1)/2 (x− 1)(x− q) · · · (x− qn−1)

[n]q

is well-defined and converges in A. Moreover, logq(x) ∈ N≥1A and

logq(x) ≡ x− 1 mod N≥2A.

Proof. By our assumption on x we get ϕ(x − 1) ∈ ξ̃A and thus we may apply
Proposition 4.9 to x = x and y = 1. Thus the q-divided powers

γn,q(x− 1) =
(x− 1)(x− q) · · · (x− qn−1)

[n]q!

lie in A. Moreover, as

logq(x) =

∞∑
n=1

(−1)n−1qn(n−1)/2[n− 1]q!γn,q(x− 1)

and the elements [n− 1]q! tend to zero in A we can conclude that the series logq(x)

converges because A is ξ̃-adically complete. The claim concerning the Nygaard
filtrations follows directly from γn,q(x− 1) ∈ N≥nA, which was proven in Proposi-
tion 4.9. �

5. Prismatic cohomology and topological cyclic homology

This section is devoted to the relation of the prismatic cohomology developed
by Bhatt and Scholze [4] with topological cyclic homology (as described by Bhatt,
Morrow and Scholze [3]) following [4, Section 11.5.].

Let R be a quasi-regular semiperfectoid ring (cf. [3, Definition 4.19.]), and let S
be any perfectoid ring with a map S → R.

Proposition 5.1. The category of prisms (A, I) with a map R → A/I admits an

initial object (�init
R , I), which is a bounded prism. Moreover, �init

R identifies with the
derived prismatic cohomology �R/Ainf (S), for any choice of S as before.

Proof. See [4, Proposition 7.2, Proposition 7.10] or [1, Proposition 3.4.2]. �

In the following, we simply write �R = �init
R = �R/Ainf (S).

Theorem 5.2. Let R be a quasi-regular semiperfectoid ring. There is a functorial

(in R) δ-ring structure on �̂
top

R := π0(TC−(R;Zp)) refining the cyclotomic Frobe-

nius. The induced map �R = �init
R → �̂

top

R identifies �̂
top

R with the completion with
respect to the Nygaard filtration (Definition 3.8) of �R, and is compatible with the
Nygaard filtration on both sides.

Proof. See [4, Theorem 11.10]. �

The Nygaard filtration on �̂
top

R is defined as the double-speed abutment filtration
for the (degenerating) homotopy fixed point spectral sequence

Eij2 := Hi(T, π−j(THH(R;Zp)))⇒ π−i−j(TC−(R;Zp))
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for the T = S1-action on THH(R;ZP ). If v ∈ H2(T,Z) is a generator, then
multiplication by v induces isomorphisms

π2i(TC−(R;Zp) ∼= N≥i�̂
top

R

for i ∈ Z.

Remark 5.3. We will only use the fact that �̂R is a prism in this paper (as we
will apply the results of 3 to π0(TC−(R;Zp))) and that the topological Nygaard
filtration, defined via the homotopy fixed point spectral sequence, agrees with the
Nygaard filtration from Definition 3.8, but the way one proves this is by showing

the stronger statement that �̂
top

R is the Nygaard completion of �R. We ignore if

there is a more direct way to produce the δ-structure on �̂R (cf. [4, Remark 1.14.]).

We now discuss our choice of a generator of H2(T,Z). Consider the morphism
Z[x]→ Z, x 7→ 0. The relative Hochschild homology

HH(Z/Z[x]))

is concentrated in even degrees with

π2(HH(Z/Z[x])) ∼= (x)/(x)2.

This implies that the homotopy fixed point spectral sequence

Eij2 = Hi(T, π−j(HH(Z/Z[x]))⇒ π−i−j(HC−(Z/Z[x]))

degenerates. In particular, multiplication by a generator w ∈ H2(T,Z) induces an
isomorphism

π2(HH(Z/Z[x]) ∼= H2(T, π2(HH(Z/Z[x])))

where H2(T, π2(HH(Z/Z[x]))) identifies with

N≥1π0(HC−(Z/Z[x]))/N≥2π0(HC−(Z/Z[x]))

where we denoted byN≥∗π0(HC−(Z/Z[x])) the abutment filtration on π0(HC−(Z/Z[x])).
By definition the T-action on HH(Z/Z[x]) is Z[x]-linear which implies that π0(HC−(Z/Z[x]))
is canonically a Z[x]-algebra.

Lemma 5.4. Via the natural morphism

Z[x]/(x)2 ∼= π0(HC−(Z/Z[x]))/N≥2π0(HC−(Z/Z[x])).

Proof. This can be proved by a calculation in Hochschild homology (like in [14,
Proposition 2.12]) or deduced from the well-known statement

π0(HC−(Fl/Zl))/N≥2π0(HC−(Fl/Z/)) ∼= Zl/l2

for all primes l as follows (cf. [14, Proposition 2.12]). Set

A := π0(HC−(Z/Z[x]))/N≥2π0(HC−(Z/Z[x])).

From the degenerate spectral sequence

Eij2 = Hi(T, π−j(HH(Z/Z[x]))⇒ π−i−j(HC−(Z/Z[x]))

one deduces that there is an exact sequence

0→ I → A→ Z→ 0

with I ∼= Z. The natural Z[x]-algebra structure onA induces a morphism (x)/(x)2 →
I because x 7→ 0 ∈ Z and I2 = 0. If l is a prime then

A⊗Z[x] Zl ∼= π0(HC−(Fl/Zl)) ∼= Zl/l2
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where x 7→ l ∈ Zl. In particular, x maps to (a multiple of) l ∈ I ⊗Z[x] Zl ∼= Zl. As

this holds for all primes l we get that (x)/(x2) ∼= I as desired. �

Definition 5.5. We define wcan ∈ H2(T,Z) to be the unique generator such that
the multiplication

(x)/(x2) ∼= π2(HH(Z/Z[x]))
wcan−−−→ π0(HC−(Z/Z[x]))

sends the class of x to x · 1π0(HC−(Z/Z[x]))/N≥2π0(HC−(Z/Z[x]))). Here · denotes the

canonical Z[x]-algebra structure on π0(HC−(Z/Z[x])).

Let R be a quasi-regular semiperfectoid ring and let θ : W (R[)→ R. Set

J := ker(θ : W (R[)→ R).

We denote again by wcan ∈ H2(T, π0(HH(R;Z)) the image of the canonical gen-
erator wcan ∈ H2(T,Z) from 5.5 under the canonical morphism coming from
Z 7→ π0(HH(R;Z)).

Let v ∈ π−2(TC−(R;Zp)) be a lift of the element wcan ∈ H2(T, π0(HH(R;Zp)).
The multiplication by v induce an isomorphism

π2(TC−(R;Zp)) ∼= N≥1π0(TC−(R;Zp)) ∼= N≥1�̂R
By construction this multiplication fits into a commutative diagram

π2(TC−(R;Zp))
v //

��

π0(TC−(R;Zp)

��
π2(HH(R;Zp)

wcan // π0(HC−(R;Zp)).

The ring π0(TC−(R;Zp)) is canonically a W (R[)-algebra.12

The following lemma is immediate.

Lemma 5.6. The multiplication by v (with v a lift of wcan) from π2(TC−(R;Zp))→
π0(TC−(R;Zp) induces on

J/J2 ∼= π2(HH(R;Zp))→ π0(HC−(R;Zp))/N≥2π0(HC−(R;Zp))
the morphism which sends j ∈ J to j · 1π0(HC−(R;Zp)/N≥2π0(HC−(R;Zp)) where · de-

notes the canonical W (R[)-algebra structure on π0(HC−(R;Zp)).

Proof. Consider the relative Hochschild homology HH(R/W (R[)) (where R is an
W (R[)-algebra via θ). Then

HH(R;Zp) ∼= HH(R/W (R[))

by 2.6. Fix j ∈ J . We obtain a morphism

Z[x]→W (R[), x 7→ j.

Then the claim follows from the definition of wcan using naturality. �

The following lemma clarifies the calculation of π∗(TC−(R;Zp)) for a perfectoid
ring R (as done in [3, Proposition 6.2., Proposition 6.3.]) with the condition that
v lifts the canonical generator wcan.

12One can use that W (R[) ∼= π0(TC−(R′;Zp) for some suitable perfectoid ring R′ mapping
to R or that the canonical morphism π0(TC−(R;Zp)) → π0(THH(R;Zp) ∼= R is a pro-nilpotent

thickening ofR. In both cases, theW (R[)-algebra structure extends the morphism θ : W (R[)→ R.
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Lemma 5.7. Let R be a perfectoid ring and let ξ be a generator or ker(θ : W (R[)→
R). Let u ∈ π2(TC−(R;Zp)) be a lift of the class of ξ in π2(THH(R;Zp) ∼= (ξ)/(ξ2).

Let v ∈ π−2(TC−(R;Zp)) such that uv = ξ ∈ π0(TC−(R;Zp). Then v lifts wcan ∈
H2(T, π0(THH(R;Zp))).

Proof. Let ṽ ∈ π2(TC−(R;Zp)) be a lift of (the image of) the canonical generator
wcan ∈ H2(T, π0(THH(R;Zp)). By 5.6 we see that

ṽu

reduces to ξ ∈ π0(TC−(R;Zp))/N≥2π0(TC−(R;Zp)). In particular, uv = uṽ mod-
ulo N≥2. This implies that v and ṽ agree in H2(T, π0(THH(R;Zp)). �

6. The p-completed cyclotomic trace in degree 2

Now we are settled to prove our main theorem on the identification of the p-
completed cyclotomic trace. Let us fix the following notation. Set Zcycl

p as the
p-completion of Zp[µp∞ ] and choose some p-power compatible system of p-power
roots of unity

ε := (1, ζp, ζp2 , . . .) ∈ (Zcycl
p )[

with ζp 6= 1. This choice determines several elements as we will now discuss. Set

q := [ε]θ ∈ Ainf(Zcycl
p ) := W ((Zcycl

p )[) ∼= π0(TC−(Zcycl
p ;Zp)),

µ := q − 1,

ξ̃ := [p]q =
qp − 1

q − 1
= 1 + q + . . .+ qp−1.

and

ξ = ϕ−1(ξ̃).

We now carefully construct elements

u ∈ π2(TC−(Zcycl
p ;Zp)),

v ∈ π−2(TC−(Zcycl
p ;Zp))

such that uv = ξ ∈ π0(TC−(Zcycl
p ;Zp)).13 The elements u, v will be uniquely

determined by ε. Let

ctr : Zp(1)(Zcycl
p )→ π2(TC(Zcycl

p ;Zp))

be the cyclotomic trace in degree 2. We denote by the same symbol the composition

ctr : Zp(1)(Zcycl
p )→ π2(TC−(Zcycl

p ;Zp))

with the canonical morphism TC(−;Zp)→ TC−(−;Zp). Let

can: TC−(−;Zp)→ TP(−;Zp)

be the canonical morphism (from homotopy to Tate fixed points).

Lemma 6.1. The element

can(ctr(ε−1)) ∈ π2(TP(Zcycl
p ;Zp))

is divisible by µ.

13We need a finer statement than [3, Proposition 6.2. and Proposition 6.3.] which asserts the

existence of some u, v as above with uv = aξ for some unspecified unit a ∈ Ainf(Zcycl
p )×.
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A similar statement (in terms of TF) is proven in [12, Proposition 2.4.2.] (cf.
[13, Definition 4.1.]) using the explicit description of the cyclotomic trace in degree
1 via TR from [11, Lemma 4.2.3.].

Proof. Fix a generator

σ′ ∈ π2(TP(Zcycl
p ;Zp)).

It suffices to show that can ◦ ctr(ε) maps to 0 under the composition

π2(TP(Zcycl
p ;Zp))

σ′−→ π0(TP(Zcycl
p ;Zp)) ∼= Ainf(Zcycl

p )→W (Zcycl
p )

because the kernel of Ainf(Zcycl
p ) → W (Zcycl

p ) is generated by µ (cf. [2, Lemma

3.23.]). It therefore suffices to prove the statement for OC for C/Qcycl
p an al-

gebraically closed, complete non-archimedean extension. Over OC we can (after
changing σ′) find

u′ ∈ π2(TC−(OC ;Zp)),

v′ ∈ π−2(TC−(OC ;Zp))
such that

u′v′ = ξ =
µ

ϕ−1(µ)
,

can(v′) = σ−1

and the cyclotomic Frobenius maps u′ to σ′. Then multiplication by v induces an
isomorphism

π2(TC(OC ;Zp)) ∼= Ainf(OC)ϕ=ξ̃.

By [9, Proposition 6.2.10.]

(Ainf(OC)[1/p])ϕ=ξ̃

is 1-dimensional over Qp and thus generated by µ (as µ 6= 0 and ϕ(µ) = ξ̃µ). But
µ is not divisible by p in Ainf(OC) as it maps to a unit in W (C). This proves that

Ainf(OC)ϕ=ξ̃ = Zpµ, which implies the claim. �

It follows from 6.4 that in fact

ctr(ε−1) = µ.

Let us define

σ :=
ctr(ε−1)

µ
∈ π2(TP(Zcycl

p ;Zp))

and

u := ξσ ∈ π2(TC−(Zcycl
p )).

More precisely, the element u is defined via can(u) = ξσ (note that ξσ lies indeed
in the image of

can: π2(TC−(Zcycl
p ;Zp))→ π2(TP(Zcycl

p ;Zp))

as the abutment filtration for the Tate fixed point spectral sequence on π2(TP(Zcycl
p ;Zp))

is the ξ-adic filtration.

Lemma 6.2. The element u defined above lifts the class of

ξ ∈ π2(THH(Zcycl
p ;Zp)) ∼= π2(HH(Zcycl

p ;Zp) ∼= (ξ)/(ξ2).
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Proof. By definition

can(u) =
ξ

µ
ctr(ε−1) ∈ π2(TP(Zcycl

p ;Zp)).

Now
ξ

µ
=

1

ϕ−1(µ)

and (ξ)/(ξ2) is ϕ−1(µ)-torsion free as a module over Ainf(Zcycl
p ) (because

θ(ϕ−1(µ)) = ζp − 1 6= 0 ∈ Zcycl
p ).

Moreover, by construction the cyclotomic trace lifts the Dennis trace in Hochschild
homology (this, together with the fact that its target is TC(−), is the only prop-
erty of the cyclotomic trace we need, cf. [5, Section 10], [6, Section 5]). Thus by
Proposition 2.5,

ctr(ε−1) ≡ [ε]− 1 ∈ (ξ)/(ξ2).

Thus

u ≡ [ε]− 1

ϕ−1(µ)
= ξ ∈ (ξ)/(ξ2)

as desired. �

In particular, we see that the element

σ ∈ π2(TP(Zcycl
p ;Zp))

is a generator. Set

v := σ−1 ∈ π−2(TC−(Zcycl
p ;Zp))

can∼= π2(TP(Zcycl
p ;Zp)).

Then

uv = ξ.

Moreover, one has the following (important) additional property (which, up to
changing ξ by some unit, is implied by the conjunction of [3, Proposition 6.2.,
Proposition 6.3.]).

Lemma 6.3. The cyclotomic Frobenius

ϕhT : π2(TC−(Zcycl
p ;Zp))→ π2(TP(Zcycl

p ;Zp))

sends u to σ.

Proof. The cyclotomic Frobenius ϕhT is linear over the Frobenius on Ainf . Thus we
can calculate (note ξ

µ = ϕ−1(µ))

ϕhT(u) = ϕ(
ξ

µ
)ϕhT(ctr(ε−1)) =

1

µ
ϕhT(ctr(ε−1)).

But

ϕhT(ctr(ε−1)) = can(ctr(ε−1))

as the cyclotomic trace has image in π2(TC(Zcycl
p ;Zp)). This implies that ϕhT(u) =

ctr(ε−1)
µ = σ as desired. �
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By Lemma 6.3 one can conclude that there is a commutative diagram, whose
vertical arrows are isomorphisms,

π2(TC(R;Zp)) //

α
��

π2(TC−(R;Zp))
ϕhT−can//

v

��

π2(TP(R;Zp))

σ−1

��
�̂
ϕ=ξ̃

R
// N≥1�̂R

ϕ

ξ̃
−1

// �̂R

for any quasi-regular semiperfectoid Zcycl
p -algebra R. We remind the reader that

the induced isomorphism

α : π2(TC(R;Zp)) ∼= �̂
ϕ=ξ̃

R

depends only on ε.
For a quasi-regular semiperfectoid ring R we denote by

[−]θ̃ : R[ = lim←−
x 7→xp

R→ �R

the Teichmüller lift. More precisely, the canonical morphism R → �R induces a

morphism ι : R[ → �
[

R and [−]θ̃ is the composition of ι with the Teichmüller lift for
the surjection

�R → �R.
We set

[−]θ := [(−)1/p]θ̃.

We will consider the p-adic Tate module

TpR
× = lim←−

n≥0

R×[pn]

of R× as being embedded into R[ as the elements with first coordinate equal to 1.
We are ready to state and prove our main theorem.

Theorem 6.4. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. Then the

composition

TpR
× → π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp))
α∼= �̂

ϕ=ξ̃

R

is given by sending x ∈ Tp(R×) to

logq([x
−1]θ) =

∞∑
n=1

(−1)n−1qn(n−1)/2 ([x−1]θ − 1)([x−1]θ − q) · · · ([x−1]θ − qn−1)

[n]q
.

Proof. Replacing R by the universal case Zcycl
p 〈x1/p∞〉/(x−1) we may assume that

R is p-torsion free and (thus) that (�̂R, (ξ̃)) is transversal (by 3.3 it suffices to see

that (p, ξ) is a regular sequence which follows as �̂R/ξ ∼= ̂LΩR/Zcycl
p

, by [3, Theorem

7.2.(5)], is p-torsion free).
Let us define

ctr2 : TpR
× → π2(K(R;Zp))

ctr−−→ π2(TC(R;Zp)).

By Theorem 5.2 the canonical morphism

ι : �R → π0(TC−(R;Zp))
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is compatible with the Nygaard filtrations and identifies π0(TC−(R;Zp)) with the

Nygaard completion �̂R of �R. By 3.10 the morphism

�π=ξ̃
↪→ N≥1�R/N≥2�R ∼= N≥1�̂R/N≥2�̂R

is injective. Hence it suffices to show that the two morphisms logq([−]θ) and α◦ ctr

agree modulo N≥2�̂R. Multiplication by the element v ∈ π−2(TC−(Zcycl
p ;Zp))

constructed after 6.2 induces an isomorphism

J/J2 ∼= π2(THH(R;Zp))
v∼= N≥1�̂/N≥2�̂R

where J is the kernel of the surjection

θ : W (R[)→ R.

By 5.6, 5.7 and 6.2 this isomorphism sends the class of j ∈ J to j · 1�̂R/N≥2�̂R
for

the canonical W (R[)-algebra structure on

�̂R/N≥2�̂R ∼= π0(TC−(R;Zp))/N≥2π0(TC−(R;Zp))

∼= π0(HC−(R/W (R[)))/N≥2π0(HC−(R/W (R[)))

(which lifts the morphism θ). Let x ∈ Zp(1)(R). By 4.10

logq([x]θ) ≡ [x]θ − 1 mod N≥2�̂R.

On the other hand, as the cyclotomic trace reduces to the Dennis trace Dtr, we can
calculate using 2.5 and 5.6

α(ctr(x)) ≡ vDtr(x)

= v([x−1]θ − 1) = ([x−1]θ − 1) · 1�̂R/N≥2�̂R
mod N≥2�̂R

Thus we can conclude

logq([x
−1]θ) = α ◦ ctr(x)

as desired. �

Corollary 6.5. Let R be a quasi-regular semiperfectoid Zcycl
p -algebra. The map

logq([−]θ) : Tp(R
×)→ �̂

ϕ=ξ̃

R

is a bijection.

Proof. Since both sides satisfy quasi-syntomic descent14, one can assume, as in [3,
Proposition 7.17], that R is w-local and such that R× is divisible. In this case, the
map

Tp(R
×)→ π2(K(R;Zp))

is a bijection. Moreover, [7, Corollary 6.9] shows that

ctr : π2(K(R;Zp))→ π2(TC(R;Zp))

is also bijective. As by Theorem 6.4, the composite of these two maps is the map
logq([(−)1/p]θ̃), this proves the corollary. �

14For Tp(−)× this follows from p-completely faithfully flat descent on p-complete rings with

bounded p∞-torsion, cf. [1, Appendix], for �̂
ϕ=ξ̃
R this is is proven in [3].
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Remark 6.6. As explained at the end of the introduction, one can give a direct
and more elementary proof of Corollary 6.5 when R is the quotient of a perfect
ring by a finite regular sequence ([22]) or when R is a p-torsion free quotient of a
perfectoid ring by a finite regular sequence and p is odd. But we do not know how
to prove it directly in general.
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[5] Andrew J Blumberg, David Gepner, and Gonçalo Tabuada. A universal characterization of

higher algebraic k-theory. Geometry & Topology, 17(2):733–838, 2013.

[6] Marcel Bökstedt, Wu Chung Hsiang, and Ib Madsen. The cyclotomic trace and algebraic
K-theory of spaces. Inventiones mathematicae, 111(1):465–539, 1993.

[7] Dustin Clausen, Akhil Mathew, and Matthew Morrow. K-theory and topological cyclic ho-

mology of henselian pairs. arXiv e-prints, page arXiv:1803.10897, March 2018.
[8] Bjørn Ian Dundas, Thomas G. Goodwillie, and Randy McCarthy. The local structure of

algebraic K-theory, volume 18. Springer Science & Business Media, 2012.

[9] Laurent Fargues and Jean-Marc Fontaine. Courbes et fibrés vectoriels en théorie de
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