BREUIL-KISIN-FARGUES MODULES WITH COMPLEX
MULTIPLICATION

JOHANNES ANSCHUTZ

ABSTRACT. We prove that the category of (rigidified) Breuil-Kisin-Fargues
modules up to isogeny is Tannakian. We then introduce and classify Breuil-
Kisin-Fargues modules with complex multiplication mimicking the classical
theory for rational Hodge structures. In particular, we compute an avatar of
a “p-adic Serre group”.

1. INTRODUCTION

In [7] L. Fargues introduced an analog, called Breuil-Kisin-Fargues modules, of
Breuil-Kisin modules (cf. [I3]) over Fontaine’s first period ring

Apg = W(Op»)

of Witt vectors of the ring of integers Oc» inside C” where C' denotes a non-
archimedean, complete and algebraically closed extension of Q, and
b .

C a:glz;’lp C
its tilt. To define Breuil-Kisin-Fargues modules let £ € Aj,s be a generator of the
kernel of Fontaine’s map

0: Ainf — OC
(cf. Section [3)) and let

¢ Aint = Aint
be the Frobenius of Ajy¢ (induced by the Frobenius of Of»). Concretely, a Breuil-
Kisin-Fargues modules (M, ) is then a finitely presented A;ns-module M together
with an isomorphism

1 1
M (p* M)|—| =2 M|——
Mg =M
such that M[%} is finite projective over Ainf[%] (cf. Definition . The study of

Breuil-Kisin-Fargues modules, which are mixed-characteristic analogs of Drinfeld’s
shtuka, was taken over in [I6] and [3]. More precisely, in [3] to every proper smooth
formal scheme X over O¢ and every i > 0 there is associated a Breuil-Kisin-Fargues
module

Hj,,. (%)
interpolating, at least rationally, various cohomology groups attached to X. Namely,
Breuil-Kisin-Fargues modules admit various realizations (cf. Definition : Let
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(M, ppr) be a Breuil-Kisin-Fargues module and denote by k the residue field of Oc.
We can associate to M

e its “étale realization”
T := (M ®a

a finitely generated Z,-module,
e its “crystalline realization”

D =M ®a,,, W(k),

a finitely generated W (k)-module equipped with a @p-semilinear isomor-

phism ¢p : @*(D[%]) = D[%] after inverting p,
e and its “de Rham realization”

Vi=M®®u

W(C)P=,

inf

inf

9 Oc,

inf,
a finitely generated Oc-module.

If (M,p) = H) (%) for a proper smooth formal scheme X/O¢, then the main
result of [3] shows that these various realizations are, at least after inverting p,
given by the étale cohomology H%,(X,Q,) of the generic fiber X := X¢ of X, the
crystalline cohomology Hérys(xo/W(k))[]%] of the special fiber Xy C X, and the

de Rham cohomology Hip(X/C) of X. Thus we see that Breuil-Kisin-Fargues
modules have a “motivic flavour”. But the general picture surrounding motives
is looking for the existence of a tensor functor from smooth projective schemes
into some Tannakian category, and the category of Breuil-Kisin-Fargues modules
is not Tannakian. In fact, it is even not abelian (cf. [3, Remark 4.25.]). To remedy
this we follow an idea in [3] and introduce rigidifications of Breuil-Kisin-Fargues
modules. Fix a section k& — O¢/p of the projection Oc/p — k. If (M, pp) is a
Breuil-Kisin-Fargues module then a rigidification for (M, ¢as) (cf. [3, Lemma 4.27.]
and Definition is an isomorphism

a: M ®a,, Bt = (M®a

inf *crys

of p-modules over B inducing the identity when base changed to W(k)[}%] The

first main theorem of this paper is the following (the result is already stated in [3]
Remark 4.25.]).

Theorem 1.1 (cf. Theorem [3.15)). The category
BKF,ig

of rigidified Breuil-Kisin-Fargues modules is abelian.

inf

We remark that the analogous statement for Breuil-Kisin modules is true, but
much simpler. The problems for Breuil-Kisin-Fargues modules arise as the ring
Ajne is highly non-noetherian. But luckily we can profit from [3], where enough
commutative algebra of Aj,s-modules is developed. From Theorem it is not
difficult to deduce that the Q,-linear category

BKF?. = Qp ®Zp BKFrig

rig *
of rigidified Breuil-Kisin-Fargues modules up to isogeny is Tannakian (cf. Theo-
rem . The statement is known for Breuil-Kisin modules, and again it is much
simpler. Every Breuil-Kisin-Fargues module arising from geometry, i.e., quinf(.’{)
for i > 0 and X/O¢ a proper smooth formal scheme, has a canonical rigidification
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(cf. [3, Proposition 13.9.]) and thus defines naturally a rigidified Breuil-Kisin-
Fargues module (up to isogeny).

We investigate the (neutral) Tannakian category BKFﬁig a bit: for example,
we prove that it is “connected” (cf. Lemma , of homological dimension 1 (cf.
Lemma [3.30) and construct some fiber functors (cf. Lemma [3.23).

In Section [4] we start to classify rigidified Breuil-Kisin-Fargues modules admit-
ting “complex multiplication”, i.e., Breuil-Kisin-Fargues modules whose Mumford-
Tate group in the Tannakian category BKFy, is a torus (cf. Definition and
Lemma . More concretely, a rigidified Breuil-Kisin-Fargues module (M, ¢, «)
up to isogeny admits CM if and only if there exists a commutative, semisimple
Qp-algebra E and an injection £ — Endpkre, (M, ¢, @)) of Qp-algebras such that

dimeE = rkAinf (M)

(cf. Lemma . Using the crucial theorem about different descriptions of (fi-
nite free) Breuil-Kisin-Fargues modules (cf. Theorem due to Fargues/Kedlaya-
Liu/Scholze we can then prove our main theorem about the classification of Breuil-
Kisin-Fargues modules admitting CM.

Theorem 1.2 (cf. Lemmald.2)). For every finite dimensional commutative, semisim-
ple Qp-algebra E there exists a (natural) bijection between isomorphism classes of
(rigidified) Breuil-Kisin-Fargues modules (up to isogeny) admitting CM by E and
functions ®: Homg, (E,C) — Z.

Moreover, we can write down for given pair (E,®: Homg,(E,C) — Z) the
corresponding (rigidified) Breuil-Kisin-Fargues module (up to isogeny) explicitly
(cf. Theorem . We remark that a similar result has been obtained by Lucia
Mocz in the case of Breuil-Kisin modules associated with p-divisible groups (cf.
[14]).

Finally, let T C BKFfig be the full Tannakian subcategory spanned by rigidified
Breuil-Kisin-Fargues modules up to isogeny admitting CM and let

Dq

be the pro-torus over Q, with group of characters the coinduced discrete Galois
module
X*(Dg,) = Coind®*(@/%)7

(cf. Lemma [2.11)). We prove the following description of the category T of Breuil-
Kisin-Fargues modules admitting CM.

Theorem 1.3 (cf. Proposition [4.10). The étale realization defines an equivalence
T = Repg, (Dg,)
of Tannakian categories.

This theorem can be understood as the computation of a “p-adic Serre group”,
analogous to the case of rational Hodge structures (cf. [6]), and resembles a theorem
of Serre (cf. [I7, Théoréme 4]) over p-adic fields.

The referee pointed out to us that there should be an analogous theory over R
where the Fargues-Fontaine curve is replaced by the twistor projective line, P :=
PL/z ~ —1/z. This will be a subject of future research.
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In order to prove Theorem [I.3]we develop in Section [2] some language concerning
CM-objects and reflex norms in an arbitrary Tannakian category to formalize the
known case of rational Hodge structures admitting CM.

In Section [5| we relate the category BKFfig to p-adic Galois representations and
discuss some possible relations with previous results of Serre (cf. [I7]) and Winten-
berger (cf. [20]) on Tannakian groups associated with p-adic Galois representations
resp. weakly admissible filtered (¢, N)-modules.

The question of classifying the Breuil-Kisin-Fargues modules with complex mul-
tiplication originated from [I4] where the change of the Falting’s height within an
isogeny class of abelian varieties with complex multiplication is investigated. A
small input for this is a precise understanding of the Breuil-Kisin module associ-
ated with an abelian variety with CM by the maximal order. Using Theorem
and in particular, Theorem one might hope to extend these results further to
other Shimura varieties. In a similar vein, it is an interesting (and probably diffi-
cult) question to extend Theorem to Breuil-Kisin-Fargues modules with CM by
non-maximal orders.

Acknowledgement. The author wants to thank Lucia Mocz heartily for sharing
her notes [14] on Breuil-Kisin modules with CM, which eventually led to the ques-
tion of defining and classifying Breuil-Kisin-Fargues modules with CM answered
in this paper. Moreover, the author wants to thank Bhargav Bhatt, Peter Scholze
and Sebastian Posur for discussions surrounding this paper. Especial thanks go to
Peter Scholze for providing the hint to the remark following [3| Lemma 27.] (i.e.,
Theorem which lead to the construction of the Tannakian category BKFY,.
The author is very grateful to an anonymous referee for his/her various comments
and the suggestion to include the discussion in Section

2. ForMAL CM-THEORY

In this section we write down a general theory of “CM-objects” in a Tannakian
category 7, mainly fixing terminology. Concretely this means that we reformulate
the maximal torus quotient of the band of the category 7 internally in 7. We will
apply this theory to the case that 7 = BKFSig is the category of rigidified Breuil-
Kisin-Fargues modules up to isogeny (cf. Definition . The formalism of this
section is a straightforward translation of CM-theory for rational Hodge structures
or categories of (CM) motives to the case of general Tannakian categories. Therefore
we expect it to be known in principle and do not claim any originality. We advise
the reader to have a look at [6].

Let k be a field (later it will assumed to have characteristic 0) and let 7 be a
Tannakian category over k (not necessarily assumed to be neutral). For an object
X € T we denote by (X)® the full Tannakian subcategory spanned by X.

Definition 2.1. An object X € T is called a CM-object, or to admit CM, if the
connected component of the band of the Tannakian category (X)® is multiplicative,
i.e., for every fiber functor
w: (X)® — Bung,
where S/k is a scheme, the connected component G° of the group scheme
G = Aut®(w)

is a multiplicative group scheme over S.



BREUIL-KISIN-FARGUES MODULES WITH COMPLEX MULTIPLICATION 5

Equivalently, the condition can be required only for the case S = Spec(k’) is the
spectrum of a field extension k’/k, or even only for one fiber functor over some field
extension k’/k. Moreover, if k’/k is a finite field extension and T; the base change
of T from k to k' (cf. [2I] Section 2.5.]), then X € T is a CM-object if and only if
k' @i X € T is a CM-object, because a fiber functor w: (X)® — Vecy, where k"
is a field extension of k containing &’ extends to a fiber functor w’: (k' @ X)® (cf.
[2T], Section 2.5.]).

If k is of characteristic 0, then a connected multiplicative group scheme of finite
type is automatically a torus.

Definition [2.1]is a formalization of the definition of a CM-rational Hodge struc-
ture (cf. [II]). Namely, let V be a (polarisable) rational Hodge structure and
let S := Resc/rGm be the Deligne torus. Then V is called of CM-type if the
“Mumford-Tate group” of V, i.e., the minimal closed subgroup G C GL(V') over
Q containing the image of the morphism h: S — GL(V) induced by the Hodge

structure Vo = €@ VP% on V, is a torus (cf. [I1]). This definition agrees with
P,qE€EL
ours as the Mumford-Tate group of V' is precisely the automorphism group of the

canonical fiber functor
w: (V)® — Vecg.

Lemma 2.2. Let T'/k be an affine group scheme of finite type which is an extension
of a finite discrete group G and multiplicative group TC, i.e., there exists an exact

sequence (of fopf-sheaves)

1 =TT —G—1.
Then every V € Rep,(T) is a CM-object.

Proof. Let V' € Rep,(T) and set T := (V)® to be the Tannakian subcategory
generated by V. Let w: T — Vec be the restriction of the canonical fiber functor.
Then the canonical morphism

T — Aut®(w)

is faithfully flat and of finite presentation. This implies that this morphism is open
and hence the connected component TP of T surjects onto the connected component
Aut®(w)° of Aut®(w). In particular, the group Aut®(w)° is multiplicative, i.e., V
is a CM-object. O

Lemma 2.3. Let T be a Tannakian category over k and let X € T be a CM-
object. Then every Y € (X)® is again a CM-object. Moreover, if X, Y € T are
CM-objects, then X @Y and X ® Y are CM-objects as well.

Proof. For the first statment we may replace 7 by (X)®, and, after enlarging k,
assume moreover that 7 is neutral. As X is a CM-object, the category 7 =
Rep,(T) is thus equivalent to the category of representations of an affine group
scheme T', which is an extension of a finite discrete group by a multiplicative group
as in Lemma Lemma implies that Y € 7 = (X)® is again a CM-object.
Now let X,Y € T (with T arbitrary) be CM-objects. Then X ® Y € (X ® YV)®
and thus it suffices to proof that X @Y is again a CM-object by what has already
been shown. But if

w: (X oY)® — Bung
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is a fiber functor, and we let wy, resp. ws, be the restrictions of w to (X)® C
(X ®Y)®, resp. (Y)® C (X @ Y)®, then the canonical morphism

Aut®(w) — Aut®(wr) x Aut®(ws)

is a closed immersion. In particular, the connected component of Aut®(®) is again
multiplicative. 0

Definition 2.4. Let T be a Tannakian category over k. We denote by Tom C T
the full subcategory of CM-objects of T.

By Lemma the category Tcnm is a Tannakian subcategory. In general, it is
not closed under extensions, e.g., for representations of unipotent groups.

Lemma 2.5. Let n: T — T’ be an exact tensor functor and let X € T be a CM
object. Then n(X) € T' is a CM object. In particular, n induces an exact tensor
functor n: Tem — Téy on the full subcategories of CM-objects.

Proof. Let w': (n(X))® — Vecy be a fiber functor where k'/k is a field extension.
Set w := w’ o n. The morphism

n*: H := Aut(w') — G := Aut(w)

is then injective. As the connected component of G is multiplicative, the connected
component H° of H will therefore be multiplicative as well. O

The following direct corollary can be useful to prove that certain Breuil-Kisin-
Fargues modules admit CM.

Corollary 2.6. Let T/k be a torus and let w: Rep,(T) — T be an exact tensor
functor. Then for every object V'€ Repy(T) the object w(V) has CM.

Proof. This is a special case of Lemma as any object in the category Rep,(T')
of representations of T admits CM (cf. Lemma [2.2). d

We now want to give a more explicit definition of CM objects. From now on
assume that k has characteristic 0. Recall that every object X € T in a Tannakian
category 7 has a rank

rk(X) € End(17) = k

defined as the trace of the identity on X. In general, the rank is an endomorphism
of the unit object 1. But as we assumed that k is of characteristic 0, the rank of
X equals the dimension (over k') of w(X) for one, or equivalently any, fiber functor
w: T — Vecy for k'/k some field extension.

We call a Tannakian category T connected if its band is connected. For a neutral
Tannakian category 7 = Rep,(G), where G/k is an affine group scheme, this is
equivalent to saying that G is connected.

Lemma 2.7. Let T be a neutral, connected Tannakian category over k (where k is
assumed to have characteristic 0). Then an object X € T admits CM if and only
if there exists a commutative, semisimple k-algebra E of dimension rk(X) and an
injection (of k-algebras)

E < Endy(X).
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Proof. Assume that X is a CM-object. Then, replacing 7 by (X)®, we may assume
that T = Rep,, (T') for T/k a torus (as 7 is neutral and connected). In other words,
X corresponds to a representation V of the torus 7. Decomposing X into a sum
of simple objects, we may assume that X is simple. Over an algebraic closure k of
k the representation X splits into a direct sum

Xpk=X, ®...0 Xy,

of eigenspaces for distinct characters x;: T3 — G,,. As X is simple all eigenspaces
over k must be one-dimensional. In particular, we see that the endomorphism
algebra Endy(X) of X, the formation of which commutes with extensions of k, is a
commutative semisimple algebra of dimension the rank of X. Actually, Ends(X)
is a field in this case as X is simple.

Conversely, assume that there exists an injection E < Endy(X) of a commuta-
tive, semisimple k-algebra E such that dimiE = rk(X). We may pass to a finite

n
extension of k (cf. the remarks after Definition [2.1) and assume that E = [] k is
i=1

isomorphic to copies of k. The idempotents in E define a decomposition X = € X;
with X; of rank 1 over k. Hence, replacing X by one of the X;, we may a;sfnne
that F = k and rk(X) = 1 (cf. Lemmal[2.3). But as 7 is neutral, i.e., T = Rep,(G)
for some affine group scheme G, a representation p: G — G, of rank 1 defines a
CM-object X € T because the automorphism group scheme of the canonical fiber
functor on (X)® is given by the image p(G) of p which is multiplicative. O

In general it can happen that for a simple CM-object X in a (non-neutral)
Tannakian category in characteristic 0 the endomorphisms

Endr(X)

do not form a field. For example, this happens if 7 is the category of isocrystals
over .
We record the following terminology.

Definition 2.8. If X € 7T is an object in the Tannakian category 7 and ¢: E <
End7(X) an injection of a commutative semisimple k-algebra E such that rk(X) =
dimg E, we say that X admits CM by F.

Now we assume that the Tannakian category T is neutral (of characteristic 0)
and we fix a fiber functor

wo: T — Vecy.
Moreover, we assume that for some field extension C/k the base extension
wo Q C: T — Veceo
is equipped with a filtration, i.e., we fix a filtered fiber functor

w: T — FilVece

such that w = wy ® C. We assume furthermore that C' is algebraically closed. Of
course this situation models the case of rational Hodge structures. But it will apply
as well to the case of (rigidified) Breuil-Kisin-Fargues modules up to isogeny (cf.

Lemma [3.25]).

In this situation we can define the type of a CM-object.
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Definition 2.9. Let E/k be a commutative, semisimple k-algebra and let T be
a Tannakian category over k, equipped with fiber functors as above. For a pair
(X,t) with X € T an object, necessarily admitting CM, and an injection ¢: F —
Endy(X) such that n :=rk(X) = dimy F we define the type
®: Homy(E,C) — Z
of (X,¢) to be the unique function such that for every i € Z
g I o
TEP1(4)
as a representation of
E®,C= H C,.
T€Homy (E,C)

If E/k is a commutative semisimple algebra and ®: Homy(E, C') — Z a function,
then we call (E, ®) a CM-type (over k). Note that

Homy (E,C) = Homy(E, k)

where k C C denotes the algebraic closure of k in C. In particular, the Galois
group Gal(k/k) acts naturally on the set

Homy (E, C).

Definition 2.10. Let (E, ®) be a CM-type. Then the reflex field E¢ C C of (E, ®)
is defined to be the fixed field Eg C k of the stabilizer of ®: Homy(E,C) — Z.

If we write E = [] E; as a product of fields and thus accordingly ® = [ ®; for
functions ®;: Homy (E;, C) — Z, then the reflex field Eg of (E, ®) is the composite
(in k) of the reflex fields Eg, of the CM-types (E;, ®;).

We now introduce some notation resembling the classical construction of the
reflex norm of a CM-type in order to construct a “universal reflex norm” for Tcm
in Lemma

Let E be a commutative semisimple algebra over k and set T' := Resg,,Gy, to
be the Weil restriction of the torus G,, over E. Then the group

X, (T) := Homy(G,, , T%)

m,E’
of cocharacters of T is isomorphic (as a Galois module) to the module
{®: Homy(E,C) — Z}

of types ®. Indeed, given a type ®: Homy(E, C') — Z we get the associated cochar-
acter

JIE Gm,% — TE = H Gm = t— (t':b(T))T
T€Homy (E,C)
of T over k. By definition the reflex field Eg of the type (F,®) is the minimal

subfield of k over which the cocharacter pg is defined. In particular, we obtain a
cocharacter

IR Gm,Eq> — TEq).
In the end, we obtain the reflex norm of (E, ®) as the composition

M) ReSEq,/k(TE(I,) i} T

where the second morphism denotes the natural norm map.

re: Resg, /k(Gm)
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Let L/k be a finite field extension contained in k. Then we denote by
L = ResL/k(Gm)

the Weil restriction of the multiplicative group G,, over L to k. The character
group of the torus L* is naturally isomorphic to the Galois module

Z[Homy, (L, k)].

Concretely, let 7: L — k be an embedding (over k) and let R/k be a k-algebra.
Then the character y,: L:— G, Is given on R-points by

LE(R) = (R®y L)X 22270 (R @y k)* 4 RX

where the right arrow denotes the multiplication R ® k — R of the k-algebra R.
Let £k € L1y € Ly C k be a tower of field extensions. Then there are natural
norm maps

NLZ/Ll: L; — LT
which on R-valued points for a k-algebra R are given by
L3(R) = (R®p L2)* — (R®y L1)* = Li(R)
x — detR®kL1((£|R Rk Lg)

where the determinant is taken of the multiplication by x on the finite free R®y L1-
module R ®j Lo. We define the pro-torus

Dy, = @ L*
LCEk
where the transition maps are given by the norms Ny, r, for L1 C Lo. In particular,
the group of characters of Dy, is given by
li_}niZ[Homk (L, k)]
LCk

where for L; C Lo the transition morphism

Z[Homy (L1, k)] — Z[Homy (Lo, k)]

Z 7'/.

7/ Lo—k
-

L1

send 7: L1 — k to the sum

In particular, we see that the norm morphisms of tori
NLQ/Ll: L; — LT
are surjective (as fppf-sheaves).

Lemma 2.11. Let G := Gal(k/k). The character group X*(Dy) of the pro-torus
Dy, is canonically isomorphic to the coinduced module

Coind®Z :={f: G = Z | f has open stabilizer in G}

Proof. This is a general statement about discrete G-modules for G a profinite group.
Namely, for H C G open,

CoindGZ := {f: G — Z | f is constant on H — cosets}
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is isomorphic to the free abelian group Z[G/H] via
fe > flo)g

geG/H

and
Coind“Z = lim CoindjZ

HCG open
by the continuity requirement in the definition of Coind®Z. Moreover, one checks
that the transition maps agree under the isomorphism Coind$7Z = Z[G/H]. O

Recall that we have fixed a fiber functor
wo: T — Vecy
such that its base extension
w:i=wy®r C: T — Vece

underlies a filtered fiber functor.

Lemma 2.12. There is a natural tensor functor
r: Tem — Repy (Dy),
which can be explicitly described as follows: Let X € Tcm be a CM-object with
CM-type (E,®) and let E¢ C k be the reflex field of (E,®). Then the reflex norm
re: By — E*
defines an action of the torus Ej on wo(X), which defines the action of Dy, on

wo(X) as Dy, — E} surjects onto Ej.

Proof. Let G := Aut®(wp) be the automorphism group of the fiber functor wy.
Then the graded fiber functor

gr(w): T — GrVece, X — @gr”(w(X))
nez
defines a cocharacter
Ja Gm % GE
over k (this is spelled out more generally in [21, Construction 3.4.]). Let T be the
maximal torus quotient of G, i.e.,

T = Aut® (wo‘TCM)

is the Tannakian fundamental group of the Tannakian category Tcym C T of CM-
objects in 7. Composition with the canonical morphism G — T yields the cochar-
acter

T Gm,% — TE
of T (which we denote by the same letter). On character groups this corresponds
to a morphism

e XNT) = Z
of abelian groups. By the universal property of coinduction this defines a Galois-
equivariant morphism

W XH(T) — Coind®*/M7, s (g = xoag10p)
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where for g € Gal(k/k) the morphism ay: T — T} denotes the action of g on T%.
In particular, we obtain (using Lemma [2.11]) the canonical tensor functor

r: Tom = Rep (T) — Repy (Dk)
as the morphism induced by the morphism (over k)
;F: Dk — T

associated with p*: X*(T) — Coind®**/®7z =~ Xx*(D,). We now identify the
functor r with the construction given in the lemma. Let X € 7 be a CM-object
with CM-type (E, ®). Without loss of generality let X be simple. By naturality of
the construction in 7~ we may further assume that 7 = (X)®. Then

E = Endr(X)
(cf. the proof of Lemma[2.7) and we get
T = Aut®(wg) = E*

with 7" acting on X via the action of £*. Indeed, T equals the centralizer Cgna, (w,(x)) (£")
of E* in the endomorphisms of wy(X), which itself is E*. The containment

TC C’Endk (wo (X)) (E*)

is clear and equality follows after base change to k where X splits into 1-dimensional
representations with distinct characters. Let Eg be the reflex field of (E, ®) (which
is given by the stabilizer of p), and set H := Gal(k/Eg) C G := Gal(k/k). In
particular,

G,z — Ty =E

is already defined over Eg. We have to show that the diagram

ljesEé/k(/ﬁ
Dy — Ey —— Resg, x(TE,)
=
iNorm

T=FE"

commutes. On character groups it gives rise to the diagram

Coind®Z <~ Coind$(Z) <= Coind$ (X*(T))

X(T)

where the arrows without a label are the canonical ones. Here we note that
w*: X*(T) — Z defines an H-equivariant map by the definition of the reflex field
(note that the G-module of maps ¥: Homy(E, C') — Z is canonically isomorphic to
the cocharacter group X.(T') of T because T'= E*). Using the universal property
of coinduction it suffices to check that the diagram commutes after composition
with the canonical map

Coind®(Z) — Z, f+ f(1).

But then the commutativity follows directly from the definitions. O



12 JOHANNES ANSCHUTZ

In the case of rational Hodge structures the above functor yields the classical
(connected) Serre group (cf. [6]) as a quotient of the pro-torus Dg. In the case of
Breuil-Kisin-Fargues modules we will show that the functor r in Lemma is an
equivalence using the following criterion. We define the full Tannakian subcategory

ToCT
consisting of all objects X € T such that
gr' (W(X)) =0
for i # 0, where
w: T — FilVecco

is our fixed filtered fiber functor. Moreover, for a finite field extension E/k and an
embedding 7: F — C' we denote by

®.: Homy(E,C) = Z
the map sending 7 to 1 and all 7" # 7 to 0. Clearly, the reflex field of (E, ®,) is
T(E)CkCC.

Corollary 2.13. Assume that the canonical functor Vecy, — To is an equivalence.
Then the functor
r: Tom — Repy Dy,

from Lemma [2.13 is fully faithful. Assume moreover that for every finite field
extension E/k and every embedding 7: E — C there exists an object X € T with
CM by (E,®,). Then the functor r is essentially surjective. If this is the case,
then furthermore T is generated by objects X € T with CM by (E, ®..) for E/k
a finite field extension and 7: E — C an embedding.

Proof. We can assume Tcey = 7. Define
T := Aut®(wp)
as the torus representing the tensor automorphisms of the fixed fiber functor
wo: T — Vecy.
Then T 2 Rep,(T) and the functor » in Lemma is given by the morphism
/7*: Dy —T
(in the notation of Lemma corresponding to the morphism
p*: X*(T) = X*(Dy,) = Coind®(Z)
on character groups. Let
e Gm,% — T

be the cocharacter induced by the (graded fiber functor associated with the) filtered
fiber functor w and let

w: X*(T) = Z
be the induced morphism on characters. The assumption that the subcategory Ty
is equivalent to the category Vecy, of k-vector spaces implies that the kernel Ker(u*)
contains no non-trivial orbit under the Galois group

G := Gal(k/k).
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Indeed, if the orbit under some non-trivial xy € X*(7T") under G lies in ker(u*), then

the sum
> ax
g€G /Stabg (x)

defines a representation X € Rep,(T) = T of T over k such that gri(w(X)) =0
for ¢ # 0. In other words, X € 7p. But this is a contradiction as T acts by
assumption trivially on any object in 7g. Thus the kernel Ker(u*) does not contain
a non-trivial G-orbit. The kernel Ker(u*) contains the kernel Ker(u*). Moreover,

Ker(p*) is stable under G and hence trivial as it does not contain a non-trivial
G-orbit, as well. Hence, the morphism

X*(T) — Coind“(Z)

is injective and therefore the morphism Dy — T surjective (as a morphism of fppf-
sheaves). This implies that the functor r: T — Rep; (D) is fully faithful. The
character group
Coind®(Z) = lim Z[Homy (L, C)]
L/k
of Dy is generated (as a Galois module) by embeddings 7: E — C for finite field
extensions E/k (more precisely, by the canonical embedding L C C for L := 7(E)).
Let X € Tcm be an object with CM by (E, ®,). Then the reflex field Fg_ of the
CM-type (E,®,) is given by
Ee :=7(E)CkCC.
Moreover, the reflex norm
re,: By T E*
is induced by the inverse of 7: E 2 Eg_. Indeed, let H = Gal(k/Es,.) C G be the
stabilizer of ®,. Then the reflex norm Eg — E* corresponds to the G-invariant
morphism

Z[Homy,(E, C)] — Coind% (Z[Homy (E, C)]) 2= Coind$Z = Z[Homy(Es. , C))]
on character lattices and 7 € Homy (E, C) is sent to the canonical inclusion
Es_ CC.
In particular, we can conclude that X must be simple. Namely, its image
r(X) € Repy(Dy)

is given by the k-vector space E with Dy through its quotient Eg acting via
1 Ej_ — E*. In particular, r(X) and hence X are simple. As in the proof of
Lemma we see that T — E* surjects onto the torus E* and thus the functor

Rep,(E*) =T
is fully faithful. As the above morphism
Z[Homy(E,C)] = Z[Homy(Eg_, C))
is an isomorphism we see that
Z[Homy(Eg_,C)] C Coind“Z
lies in the image of X*(T'). As E/k was arbitrary, we can conclude that
X*(T) = Coind“Z
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which implies
T = Repy(Dy).
For the last statement it suffices to note, as was mentioned above, that the character

group
Coind“(Z) = lim Z[Homy(L,C)]
E/L/k
is generated by embeddings 7: L — C for L/k finite. (]

3. BREUIL-KISIN-FARGUES MODULES UP TO ISOGENY

We try to follow closely the notations in [16] and [3]. Fix a prime p. Let
C/Q, be a complete, non-archimedean, algebraically closed extension of Q,, e.g.,

C=C, = @ the completion of an algebraic closure of Q,. Let Oc C C be the
ring of integers in C' and let

We denote by
resp.

the canonical projections. Let
€= (la Cpa <p2a .. ) € (QCb

be a fixed system of p-power roots of unity in C® (the results of this paper will be
independent of the choice of ¢€). Define

Ainf = W(ch)
as the ring of Witt vectors for the (perfect) ring Op». We denote by
[—]I ch — W(ch)

the canonical Teichmiiller lift. When dealing with Aj s as a topological ring we
always equip it with the (p, [@])-adic topology for a pseudo-uniformizer w € C”
(this topology is independent of the choice of w). Let

o0 [e.]
@: Aint = Aing, Z[ﬂﬁi]pi — Z[ﬂcﬂpi
i=0 i=0
be the Frobenius on A;,s. We define the elements
wi=1le -1
p—1
§ = iy = L[]
£:=p(6) = H5

of A;ns. Let

oo

0: A — Og¢, Z[l‘i]pi = Z(l'i)#pi
1=0

=0



BREUIL-KISIN-FARGUES MODULES WITH COMPLEX MULTIPLICATION 15

be Fontaine’s map 0 and set
6:=60op L.
Then £ € Ayt is a generator of ker(f) and € € Ajyr a generator of ker(6). We define
as usual
Acrys

as the universal PD-thickening of 6 and BJ := Acrys[%]. Finally, Fontaine’s period

ring B(TR is defined to be the {-adic completion of Ainf[%]. In particular, the map
# induces a (surjective) morphism

6: By — C.

In fact, the ring BQFR is a complete discrete valuation ring with uniformiser £ and
residue field C. Its fraction field Bgg := B;R[%] is also called the field of p-adic
periods.

Having fixed this notation we can now define the notion of a Breuil-Kisin-Fargues
module which is a “perfectoid” analog of a Breuil-Kisin module. In his original
formulation (cf. [7, Definition 4.1.]) Fargues used a different definition of a Breuil-
Kisin-Fargues moduleﬂ The definition we will work with is taken from [3} Definition
4.22.].

Definition 3.1. A Breuil-Kisin-Fargues module is a finitely presented A;,s-module
M with an isomorphism

1

onr (w*M)[; = M @0 Auelg] = M

]

Il =

such that M|[=] is a finite projective Aj,¢[z]-module.

1 1

P 3

By [B, Corollary 4.12.] a finite projective Ainf[%]-module is automatically free,

hence in Definition the condition “finite projective” can be replaced by “finite
free”. We denote by

BKF
the category of Breuil-Kisin-Fargues modules (cf. [3, Remark 4.25]). It is (naturally)
an exact tensor category. However, it is not abelian, only pseudo-abelian.

Lemma 3.2. Let (M, ¢n) be a Breuil-Kisin-Fargues module and let e: M — M
be an idempotent endomorphism of (M, @), i.e., e commutes with ppr.  Then
ker(e) and coker(e) with their induced Frobenii are Breuwil-Kisin-Fargues modules.
In particular, the category BKF of Breuil-Kisin-Fargues modules is pseudo-abelian.

Proof. Clearly, the kernel and cokernel of e admit Frobenii. As direct summands of
finitely presented (resp. finite projective) modules are again finitely presented(resp.
finite projective) ker(e) and coker(e) satisfy all conditions in Definition ie.,
they are Breuil-Kisin-Fargues modules. [l

We give an easy example of a Breuil-Kisin-Fargues modules.

Example 3.3. For d € Z we set Aje{d} := pu~ %Ay ®z, Lp(1) with Frobenius
Paneayt € (Ane{d}) = o)™ Aine ®z, Zp(1) = Aine{d}, a— %

1He required ¢, to be defined on M, did not fix (£) and assumed M to be free.
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Definition 3.4. Let (M, pas) be a Breuil-Kisin-Fargues module such that M is
finite projective (equivalently, free) over Ajns. Then the dual (MY, @pv) of (M, o)
is defined by

MY :=Homa, (M, Aint)
with Frobenius

Lo _ \/1
Y=gl

where we used the notation (—)" = Homy, 1(~, Ainf[%]) again for duals of finite
€

oar <¢*MV>[;~

|= <so*M>[§1v i (v

projective Ainf[%]—modules.
We recall the following lemma about general A;,s-modules.

Lemma 3.5. Let M be a finitely presented Ajns-module such that M[}%] s finite
projective (equivalently, free) over Aine. Then there is a functorial (in M) exact
sequence

0 — My = M — Mo — M — 0
satisfying:
1) Mo, is finitely presented and perfect as an Aing-module, and killed by p™
for some n > 0.
i) Miwee is a finite free Ains-module.
iii) M is finitely presented and perfect as an Aj,c-module, and is supported at
the closed point of Spec(Aing).

Proof. See [3| Proposition 4.13]. O
In particular, a finitely presented Aj,;-module M such that M [%] is finite free
over Ainf[%] is perfect as an Ajs-module, i.e., admits a finite projective resolution

(cf. [3l Lemma 4.9.]).
Moreover, if the A;p-module M in Lemma [3.5]is a Breuil-Kisin-Fargues module,
i.e., equipped with a Frobenius

1 1
" (M)[=] =2 M[=],
v " (M)] 5] [ 5]
then the modules M,m, Mpeo and M carry a natural Frobenius as well and the exact
sequence in Lemma is an exact sequence of Breuil-Kisin-Fargues modules (note
that Mtor[%] = M[%] = 0 is free). In fact, the existence of this Frobenius is clear for
Mior. But Mgeo = HO(Spec(Aing), M/ Mior) (cf. the proof of [3| Proposition 4.13])
which yields the Frobenius on My, (and thus M as well).

We want to recall some equivalent descriptions of Breuil-Kisin-Fargues modules
whose underlying Aj,e-module is finite free (cf. [16, Proposition 20.1.1.]). For this
we need to recall that associated to the fixed complete and algebraically closed non-
archimedean field C/Q, there is associated a scheme Xpp over Q,, “the Fargues-
Fontaine curve”, together with a distinguished point co € Xgrp whose completed
stalk O;:oo = B(TR is isomorphic to Fontaine’s period ring B;{R associated with
C' (cf. [16, Definition 13.5.3.]). We also recall that the adic Fargues-Fontaine curve
Xad = Y/o? is uniformized by an adic space Y admitting an action of ¢ (cf. [16]
Definition 13.5.1]). The space Y is defined to be

Y := Spa(Ainr) \ V(p[w])
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where w € O¢» is a pseudo-uniformizer (cf. [I6l Proposition 13.1.1.] for a proof
that this is actually an honest adic space, i.e., the structure presheaf is a sheaf).
Additionally to Y the adic space Spa(Ains) \ V(p, [w]) contains two points, namely
® I given as the image of the p-adic valuation on W (k) along the canonical
projection Ajng — W (k) (this point is denoted xy, in [I6]).
® T¢tale given by the image of the valuation on Og» along the morphism
Aint — O¢» = Ajpg/p (this point is denoted z» in [I6]).
We set
B:= H"(Y,Oy)
and
BT = H(Spa(Awt) \ V(p), 0).
There exists a natural y-equivariant injection B* — Bf making Bf a B*-
algebra (cf. [8, Proposition 1.10.12.]).

Theorem 3.6. The category Bunx,, of vector bundles on the Fargues-Fontaine
curve is naturally equivalent to the category of w-modules over BL ., i.e., to finite

crys’?
projective B;ys—modules M together with an isomorphism @pr: "M = M.

Proof. This is proven in [§, Corollaire 11.1.14.]. The natural functor inducing the
equivalence is given by pulling back a vector bundle 7 € Buny,, = Bun xzd to Y,
extending it along the point zys and tensoring the global sections of this extension
(which form a ¢-module over BY) over BY with Bf . O
Theorem 3.7. The following categories are equivalent:
i) Finite free Breuil-Kisin-Fargues modules (M, @pr).
ii) Pairs (T,Z), where T is a finite free Zy-module, and = C T ®z, Bar 1is a
BCTR-lattice.
ili) Quadruples (F,F',3,T), where F and F' are vector bundles on the Fargues-
Fontaine curve Xyp, and (: -7'—|XFF\OO = ‘FI/XFF\OQ is an isomorphism, F is
trivial, and T C H°(Xpp, F) is a Ly -lattice.

Proof. The proof is given in [I6, Proposition 20.1.1.]. We shortly give descriptions
of the various functors involved. Let (M, ppr) be a finite free Breuil-Kisin-Fargues
module. Then the ¢,/-invariants

Ti= (M @ap W(C)P !
form a finite free Z,-module (by Artin-Schreier theory, cf. [I6] Theorem 12.3.4.]).
Note that £ is invertible in W (C”), hence the base extension M ® 4, , W (C”) actually
carries a Frobenius. Moreover, multiplication defines an isomorphism
T ®z, W(C”) 2 M ®a4,, W(C)
under which T ®z, Ang[2] C T ®z, W(C”) is mapped to M ®4

m inf
Lemma 4.26.]). Setting

inf

Ainf[%] (Cf [3,

E:=M ®ua,, Big C (M ®a,,, Ain|

inf inf

D) ®a12) Bar =T @z, Bar

==

defines the pair (7', Z) in ii) associated with (M, ). If 2 C T ®z, Bar is a BCTR—
lattice, where T is a finite free Z,-module, then (in order to pass to iii)) one can use
this lattice to modify the trivial bundle F := T'®z, Ox. at the distinguished point
oo € zpr on the Fargues-Fontaine curve to obtain a bundle ' with an isomorphism
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F --» F' away from oo (recall that Ox,, . = Bi). Clearly, T C H(Xpr, Oxyp)
defines a Z,-lattice as HY(Xpp, Oxpp) = T ®z, Qp. Moreover, this construction
can be reversed giving the equivalence between the categories in ii) and iii). Thus
in particular, the hard part of the theorem is the construction of a functor from the
category in ii) (or iii)) to Breuil-Kisin-Fargues modules. We shortly describe how
this is done. Let (F,F’,«, T) be given as in iii). Pulling back F and F’ to Y defines
two (-equivariant vector bundles £,&’ on Y. By triviality of F the vector bundle
£ extends (non-canonically) to the point zgtae- This extension is not unique, but
depends on the choice of a Z,-lattice in H*(X,F) = H'(Y, £)¢=!. In particular, the
data of T yiels a canonical extension of £ to xgia1e. Moreover, every g-equivariant
vector bundle on Y, thus in particular £’, extends uniquely to the point zeys. Using
the modification F --» F’ away from oo the bundles £ and £’ are (¢-equivariantly)
isomorphic when restricted to a small annulus omitting the points ¢™(o0),n € Z.
In particular, by glueing along such an annulus close to co € Y one obtains a vector
bundle £ on Spa(Aine) \ V(p, [w]) which restricts to the extension of £’ near zcrys
and to the extension of £ near x¢ae. Taking global sections of £ defines the finite
free Ajpr-module M which is then moreover equipped with a Frobenius ¢y, away
from V(é ), i.e., a finite free Breuil-Kisin-Fargues module. In particular, we see that
the ¢-module M ®4. . Bt . over BY. _ is canonically isomorphic to the p-module

inf U Crys crys

over Bctys associated with 7 as in Theorem (3.6 (]

For example, the Breuil-Kisin-Fargues modules A;,:{d} is sent to the pair
(Zy(d),E == £ UZy(d) ®2, Big) C Z,(d) ®z, Bar)
resp., for d > 0, to the modification

0 — Zp(d) @2, Oxpe — Oxprp(d) = 17 Ox 5 00/ Oxppro0 — 0

induced by the d-th power t¢ of Fontaine’s t = log([e]) € H°(X¢r, Oxpp (1)) =
(Bi,)? .

We want to stress that the categories in Theorem are not equivalent as ezxact
categories, i.e., the equivalences (or their inverses) are not exact. In fact, in the
construction of the finite free Breuil-Kisin-Fargues module one has to extend (by
taking global sections) a vector bundle on the punctured Spec(A;,¢) with the closed

point removed to the whole of Spec(A;,s) and this is not an exact operation.
Definition 3.8. We define the isogeny category of Breuil-Kisin-Fargues modules
BKF® as
BKF® := Q, ®z, BKF,
i.e., the category BKF® has the same objects as the category BKF, but for M, N €
BKF° the space of homomorphisms is given by
Hompgkpe (M, N) = Qp ®Zp Hompkr (M, N)

The category BKF® is still not abelian (for the same reason as BKF, cf. [3
Remark 4.25]), but rigid as we now show.

Lemma 3.9. The isogeny category BKF® of Breuil-Kisin-Fargues modules is a
rigid, exact tensor category.

Proof. 1t suffices to prove that every object admits a dual because the tensor prod-
uct and the exact structure are inherited from the category BKF. Let (M, ¢n) €
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BKF be a Breuil-Kisin-Kisin-Fargues module. We claim that, in the isogeny cat-
egory, (M, @) is isomorphic to a Breuil-Kisin-Fargues module (N, ¢x) such that
N is finite free over Ajn¢. Let Mior € M be the torsion submodule. Then ¢*(Mor)
resp. go*(Mtor)[%] is the torsion submodule of ¢*(M) resp. @*(M)[%] Therefore
it is stable by ¢5;. By Lemma the torsion submodule M., is actually killed
by p™ for n > 0, and thus zero in the isogeny category. Hence, we may assume
that M is actually torsion-free. Set N := Mpee as in Lemma @ which is finite

free over Ajn¢. Then cp*(N)[%] = @*(M)[%] and N[%] = M[%] because the cokernel

of M — N is killed by resp. €. In particular, the Frobenius war of M defines a
Breuil-Kisin-Fargues module (N, ¢,r) and we are finally allowed to replace M by
N, as (M, @) and (N, pp) are isomorphic in the isogeny category. This finishes
the proof as finite free Breuil-Kisin-Fargues modules clearly admit duals. O

In terms of pairs of a Z,-lattice and a B(J{R—lattice the category BKF° of Breuil-
Kisin-Fargues modules up to isogeny is equivalent to the category of pairs (V,Z)
where V' is a finite dimensional Q,-vector space and = C V ®q, Bar a BCJ{R—lattice.
Again, we can see that this category is not abelian: The canonical morphism

(Qp:¢Bdr) = (Qp, Big)

does not admit a cokernel. However, we see that it admits kernels. But we cau-
tion the reader that it is not clear how to describe the kernel of a morphism
f+ (M, onm) — (N,@n) of Breuil-Kisin-Fargues modules up to isogeny, because

it is not clear whether the kernel K := Ker(M i> N) is finitely presented over Aj,s
or satisfies the property that K [%] is finite projective over Ainf[%] (cf. the proof of
Theorem .

We are seeking for a Tannakian, and thus in particular abelian, category of
Breuil-Kisin-Fargues-modules up to isogeny. This is possible after adding a rigidi-
fication after base change to B, = Acrys[%] (cf. [B, Lemma 4.27.]). Let us recall
[B, Lemma 4.27.].

Lemma 3.10. Let (M, ¢ys) be a Breuil-Kisin-Fargues module. Then M = M ® 4, .
W (k) is a finitely generated W (k)-module equipped with a Frobenius automorphism
after inverting p. Fix a section k — O¢/p, which induces a section W (k) — Ajus.
Then there is a (noncanonical) p-equivariant isomorphism

M ® 4, Borys = M @w(r) By

crys

reducing to the identity over W(k:)[%}

Proof. See [3| Lemma 4.27.] which refers to [8, Corollaire 11.1.14]. O

We remark that £ is invertible in B (but £ is not), hence the Frobenius

crys

= 1

Ve @*M[%] — M[E] defines an isomorphism

M@ ('OBj—rys: @*(M ® A Bj;ys) — M & A Bj;ys'

We fix a section k — O¢/p of the projection O¢/p — k. This yields a section
W (k) — Ajns of the projection Aj,s — W(k).
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Definition 3.11. A rigidified Breuil-Kisin-Fargues module is a Breuil-Kisin-Fargues
module (M, pps) together with a ¢-equivariant isomorphism

such that o reduces to the identity over W(k)[}%], ie.,

1
W(k)[g] =y, wd)-

We call an isomorphism « as in Definition a rigidification of (M, ¢pr). We
denote by

a: M @4, By = (M ®2

inf inf

« Q©l3+

crys

BKF i

the category of rigidified Breuil-Kisin-Fargues modules, i.e., its objects are rigidified
Breuil-Kisin-Fargues modules and the morphisms are morphisms of Breuil-Kisin-
Fargues modules respecting the given rigidifications. We illustrate the effect of
imposing a rigidification in the case of Breuil-Kisin-Fargues modules of rank 1.

Lemma 3.12. Each finite free Breuil-Kisin-Fargues modules of rank 1 is isomor-
phic to the Breuil-Kisin-Fargues module Aine{d} for some d € Z. For d,d' € 7 we
have

Z ifd<d
Hompir(Am{d}, Awe{d'}) = { 7 T 451
0 otherwise
while
Z ifd=d
Homgxr,,, (Aint{d}, Aine{d'}) = 7 / .
0 otherwise

Proof. The first statement and the computation of Hompkp (Aine{d}, Aime{d’}) fol-
lows from Theorem (and the example following it). To prove

Hompkr,,, (Aint{d}, Ains{d'}) =0

if d # d’ it suffices to show that the isocrystal (Aje{d} ®a,,, W(k)[%], P Ae{ay ®1d)
has slope d because there are no morphisms between isocrystals of different slopes.
But the image of
- Pl =1
i [[ 1
-1
in W(k) is p because k does not contain non-trivial p-power roots of unity. Hence,
the isocrystal (Aint{d} ®a,,, W(k:)[%], © a1 {dy ®1d) is isomorphic to (W(k)[%Lpd(p)
which is of slope d. O

=14 [e+...+ [

The category BKF ;. of rigidified Breuil-Kisin-Fargues modules is again an exact
tensor category with the exact structure and tensor product inherited from BKF
(taking the tensor product of the rigidifications), but it is moreover abelian (cf.
Theorem contrary to the case of the category BKF of non-rigidified Breuil-
Kisin-Fargues modules.

To prove this we recall the following criterion for an Aj,r-module M to satisfy
that M[%] is finite projective over Ainf[%]. Recall the element p = [e] — 1 € Ajns
(cf. the notation in the beginning of Section .

Lemma 3.13. Let M be a finitely presented Ains-module. Assume

i) M[ﬁ] is finite projective over Ainf[ﬁ].
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ii) M ®a,, By is finite projective over BZ .
Then M[%] is finite free over Ainf[%].
Proof. See [3| Lemma 4.19.]. O

We record the following corollary in the case of Breuil-Kisin-Fargues modules.

Corollary 3.14. Let f: (M,pp) — (N,pn) be a morphism of Breuil-Kisin-

Fargues modules and let @ := Coker(M EN N) be the cokernel (of Ains-modules).
Then Q[ﬁ] is a finite free Ainf[ﬁ]—module,
Proof. By [3l, Lemma 4.26.] there is a canonical isomorphism

1 1
M @ Ajnr Ainf[*] =Ty Rz, Ainf[*]
H 2

with Ty == (M ®4,,, W(C”))¥»=! and similarly for N,

inf
1. 1

N @ Ajns Ainf[*} =Tn ®Zp Ainf[*]a
2 Hw

with Ty := (N ®4,,, W(C”))?~¥=1. In particular, we get

inf
®A;n inf - Q ® 1 inf
! pﬂ’ QP pﬂ

where Q' is the cokernel of the morphism Ty ®z, Q, — Tv ®z, Q, induced by f.

Thus we see that
1
Q ® 4, Aint[—]
b

is finite free. U

We remark that in general @ (with the induced Frobenius from (N, ¢pn)) will
not be a Breuil-Kisin-Fargues module, because Q[%] need not be a finite projective
(equivalently, free) Ainf[%]—module. The purpose of introducing the rigidifications
is exactly to ensure this freeness (cf. the remark after [3, Lemma 4.27.]).

Theorem 3.15. The category BKF i, of rigidified Breuil-Kisin-Fargues modules is
an abelian tensor category.

Proof. Tt suffices to prove that BKF. is abelian. Let (M, ¢, apr) and (N, pn, an)
be two rigidified Breuil-Kisin-Fargues modules with Frobenii ¢ resp. oy (after
inverting é) and rigidifications aps and ay. Let f: (M, oar, anr) = (N, on, an) be
a morphism of rigidified Breuil-Kisin-Fargues modules. Consider the exact sequence

0—>K—>Mi>N—>Q—>0

of Ajne-modules. We will show that the kernel K and the cokernel ) are finitely
presented over Ains and admit Frobenii g, ¢¢ (after inverting 13 ) and rigidifications
ak, ag induced from ¢pr, pn resp. an, an, such that (K, ¢k, ax) and (Q, vg, aq)
are rigidified Breuil-Kisin-Fargues modules. This will then imply that the category
BKF,;; is abelian. In particular, we have to prove that K [%}] and Q[%] are finite
free. As f commutes with ¢ys resp. ¢y it is clear that K and @) are canonically
equipped with Frobenii ¢k and ¢¢q. Clearly, the module @ is finitely presented.
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By Corollary the module Q[--] is finite projective over Aine[5;]. Moreover, as
f respects the rigidifications

an: M ® 4 BT ~2M®W(k)B+

inf crys crys
resp.
. + ~ N +
ay: N @ Ajs Bcrys =N ®VV(k) Bcrys7

where M := M ®4,,, W (k) resp. N := N ®a,,, W(k), we see that Q @4
isomorphic to the cokernel of

Bt . is

inf “Ccrys

M®W(k) B:’;‘ys — N®W(k) B+

crys?
which is free because the cokernel of M[%] — W[%] is free as W(k)[%} is a field.
By Lemma we can conclude that Q[%] is finite free over Ainf[%]. As moreover,
M[%] and N[;] are finite free over Ainf[%], we can conclude that K[%] is finite
projective (and hence finite free). Let C' be the two-term complex (concentrated in
degree 0 and 1)

...—>ML>N—>...

which is a perfect complex of Aj,s-modules satisfying that its cohomology if finite
free over Ainf[%]. By [3, Corollary 4.17.] we can conclude that H°(C) = K is
finitely presented. In other words, we have proven that (K, ¢x) and (Q,pq) are
Breuil-Kisin-Fargues modules and are left with showing that they admit canonical
rigidifications. By right exactness of tensor products this is clear for Q). But as
K, M, N, Q are free after inverting p we get a commutative diagram

Bt ——= M Qg Bt ———> N®qy BT

inf crys inf Fcrys inf Fcrys

iO‘K \Lal\/l iaN
0 HF@w(k) Bt HM@w(k) Bt HN@w(k) Bt

crys crys crys

0——=K®a

whose rows are exact. In particular, we also get a canonical rigidifications ax on
K. This finishes the proof of the theorem. [l

We are now ready to define a main player of this paper.

Definition 3.16. We define the isogeny category of rigidified Breuil-Kisin-Fargues
modules to be the category

BKF}, = Q, ®z, BKFjg.

In other words, the category BKFfig is the Serre quotient of the abelian cat-
egory BKF,i; by the full subcategory of rigidified Breuil-Kisin-Fargues modules
(M, pr, apr) such the underlying Ajne-module M is annihilated by p™, n > 0.
Proposition 3.17. The category BKFﬁig of rigidified Breuil-Kisin-Fargues modules
up to isogeny is equivalent to the category of triples (N, on,an) where

e N is a finite free Ainf[%]—module
e ON: @*Amf[%](N)[%] = N[%] is an isomorphism and
o an: N ® Al 4] Bi,, = N@W(k)[%] B is a rigidification reducing to the

identity over W(k)[}%] with N :== N ® Agpe[L] W (k)[L]

p
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such that there exists a finitely presented Apng-submodule N' C N satisfying N’[%] =
N which is stable under ¢y .

o

Proof. The natural functor sending an object (M, par, anr) € BKEY,
extension (M ®4, , Ainf[%], OM @ a1 am) to Ainf[%] is essential surjective by

to its base

the last condition on the existence of N’. It is moreover fully faithful as inverting
p commutes with Hom for finitely presented modules. ([l

The condition on the existence of a p-stable Ajy¢-lattice N C N ensures that
for a triple (N, ¢pn,an) as in Proposition the “etale realization” (cf. Defini-

tion [3.22])
(N ®a,, W(C?))P~ =
is a Qp-vector space of dimension the rank of N. Otherwise, the isocrystal N ® 4

W(C") (over C”) need not be isoclinic of slope 0.
We can now record the main theorem of this section.

inf

inf

Theorem 3.18. The category BKFfig of rigidified Breuil-Kisin-Fargues modules
up to isogeny is Tannakian.

Proof. Theorem implies that also the isogeny category BKF;’ig of rigidified
Breuil-Kisin-Fargues modules is abelian, namely it identifies with the Serre quotient
of the category BKF.j; by the full subcategory of rigidified Breuil-Kisin-Fargues
modules which are p-power torsion. By (the proof of) Lemma each object
(M, ppr) € BKF® is isomorphic (in the isogeny category) to some (N, o) with N
a finite free A e-module. If

ay: M @ A Bctys = (M XA W(k)) ®I/V(k) Bctys

is a rigidification for (M, ppr), then oy also defines a rigidification of (N, ¢n)
because M ® 4, B = N®a,,, By resp. (M @a,,, W(k)) @w () Barys = (N®a

inf 7 Crys inf
W (k)) @w (k) Bebys- In particular, we see that every object in BKFy, admits a dual
and therefore the category of BKFfig is rigid. To prove that BKFfig is Tannakian we
have to prove the existence of a fiber functor. This can be done by either applying

Deligne’s abstract criterion using that A" M vanishes for every M € BKF}, and
n > 0 (cf. [B, Théoreme 7.1.] or one constructs at least one concrete fiber functor.

For BKFy,, we will write down several fiber functors in Lemma O

inf

inf

We continue by giving an alternative description of rigidified Breuil-Kisin-Fargues
modules in terms of modifications of vector bundles on the Fargues-Fontaine curve.
We recall that the Fargues-Fontaine curve admits an Harder-Narasimhan formal-
ism, namely, for every vector bundle F on Xgr there exists a canonical (decreasing)
filtration indexed by A € Q
HNA(F) ¢ F
such that the associated graded pieces
gt (HN(F))
are semistable of slope A.

Theorem 3.19. The category BKFI?ig of rigidified Breuil-Kisin-Fargues modules is
equivalent to the category of quadruples (F,F', 8, ) where F, F' are vector bundles

on the Fargues-Fontaine curve Xyg, F is trivial, B: Fxpp\foo} = ]:I/XFF\{oo} 18
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an isomorphism, and o: F' = @ gr*(HN(F")) is an isomorphism inducing the
AEQ

identity on all graded pieces of the Harder-Narasimhan filtration.

Proof. By Theorem (and Lemma the category BKF® of Breuil-Kisin-Fargues
modules up to isogeny is equivalent to the category of triples

(F, 7., B)

satisfying the same condition as in the statement of this theorem. Thus we are
left with showing that the rigidifications can be identified under the equivalence in
Theorem Let (M, ppr) be a finite free Breuil-Kisin-Fargues module with corre-
sponding quadruple (F,F’, 3,T) as in Theorem Let N be the ¢-module over
Bctys associated with 7’ in Theorem As was shown in the proof of Theorem
there exists a canonical isomorphism

M ®Ainf B(jrys = N.
Recall that we have fixed a splitting k — O¢/p of the projection O¢/p — k. Let
E(-): meodW(k)[%] — Bunx,,

be the exact tensor functor associated with this splitting (cf. [, Proposition 8.2.6.]).
Then for the vector bundle F’ there is a canonical isomorphism

P e EN(F) = E(N @5 W(R)E)
A€Q p

and we see (writing M := M ®a,,, W(k)[2] 2 N ® 5+ W(k)[2]) that the set of

1 1
inf P crys P
isomorphisms
crys

anr: M @, By = @y o1 BE

is in bijection with the set of isomorphisms

a: F @gr)‘(HN(}"’)).
A€Q

Clearly, the condition on apy resp. « to reduce to the identity over W(k)[%] resp.
the graded pieces of the Harder-Narasimhan filtration is preserved. This finishes
the proof. Il

We note that we actually proved that for a finite free Breuil-Kisin-Fargues mod-
ule (M, @pr) with corresponding modification

(Fo F o Fixpe\ (oo} = Flxpe\ oo T H°(Xpp, F))
as in Theorem [3.7] there is a bijection

{rigidifications M ®4,_, B;_ys = (M @4, W(K)) @wx) B'jr_rys}
= [rigidifications 7’ = @ gr*(HN(F'))}
AeQ

where we call an isomorphism F’' = @@ gr*(HN(F')) reducing to the identity on
AEQ
the graded pieces of the Harder-Narasimhan filtration a rigidification of the data

(F,F',a,T) or just of F'. In particular, if 7/ happens to be semistable there exists

a unique rigidification on (M, @), namely the one given by the identity on F.
Using Theorem [3:19] it is possible to give an alternative proof of Theorem [3.18

Namely, the category of semistable vector bundles of a fixed slope is abelian and
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therefore the cokernel of a morphism between vector bundles on the Fargues-
Fontaine curve which respects fixed splittings of the respective Harder-Narasimhan
filtrations is again a vector bundle. This proves (using Theorem that the
category BKFfig is abelian. Moreover, as it is a rigid tensor category, the existence
of a fiber functor (cf. Lemma or Deligne’s criterion proves that it is moreover
Tannakian.

Theorem @l also proves that the category BKF;’ig of rigidified Breuil-Kisin-
Fargues modules up to isogeny does not depend (up to canonical isomorphism) on
the choice of the section k — O¢/p.

We do not know how to describe the category of rigidified Breuil-Kisin-Fargues
modules up to isogeny only in terms of pairs (V,E) where V is a finite-dimensional
Qp-vector space and = C V ®q, Bqr a Bg‘R-lattice. However, we can record the
following.

Lemma 3.20. Let f: (M,om,am) — (M, oumr,anr) € BKFLg be a morphism
of finite free rigidified Breuil-Kisin-Fargues modules. Let g : (T,E) — (T',Z') be
the associated morphism between pairs of a Z,- and B(TR—lattice as in Theorem ,
Then the cokernel of the morphism

/

(1]

EN

(1]

is free over Bd+R.

Proof. By construction of (T, Z) resp. (T7,Z') the morphism g: 2 — Z’ is given by
fold: M @4, Bix.

W (k) resp. N := N @4

B&FR%N@)A

inf

Set M := M ®4,,, .. W(k). By assumption the diagram

fold

M ® A BchrR N @ At BchrR
J/GMQ@BIR an®Biy

- fold —

M ®a,,, B(;FR —— N Q®u4,., B(;FR.

with both vertical morphisms isomorphisms commutes. In particular, the cokernel
of g is free. O

Let us list some fiber functors, i.e., “realizations”, of the Tannakian category
BKFy,-

We recall the following lemma which is a direct corollary of the classification of
vector bundles on the Fargues-Fontaine curve (cf. [8, Théoreme 8.2.10.]).

Lemma 3.21. The category of p-modules over W(k)[%], i.e., the category of
isocrystals over k, is equivalent to the category of Q-graded vector bundles € =

P & such that E* is semistable of slope ).
A€Q

Proof. Cf. [2, Lemma 3.6.]. O

Definition 3.22. Let (M, ¢pr) be a Breuil-Kisin-Fargues module. We define
e its “étale realization” T := (M ®a,, W(C”))?=1  a Z,-module.
e its “crystalline realization” D := M ®4, , W(k), a W(k)-module equipped
with the ¢-semilinear isomorphism ¢p := cpM®W(k)[%] Lt (D[%]) &= D[%]
after inverting p.

inf
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e and its “de Rham realization” V := M ®4. . ¢ Oc, a Oc-module.

inf,

Lemma 3.23. The realizations from Definition [3.23 define fiber functors

o wy: BKF}, — Vecg,
® Werys: BKFL, — o—Modyy 1)1
® W(R: BKFSig — Vece

o]

on the Tannakian category BKF,,, of rigidified Breuil-Kisin-Fargues modules up to
isogeny. In particular, the Tannakian category BKFfig 18 neutral as we is a fiber
Junctor over Qp.

Proof. The functors are defined by sending a Breuil-Kisin-Fargues module to the
respective realizations (with p inverted). As each Breuil-Kisin-Fargues modules is
isogenous to a finite free Breuil-Kisin-Fargues module all three functors are exact.
The functors given by crystalline and de Rham realization are clearly tensor func-
tors. To prove that also the étale realization wg; defines a tensor functor we remark
that it factors canonically into the tensor functor

W(C")%], oar @ 1),

inf

BKF?  — (p—MOdW(Cb)[%], (M, (pM) — (M ®a

rig
to isocrystals over C” and the tensor functor
(p—MOdW(Cb)[%] — VGCQP
sending an isocrystal to its isoclinic part of slope 0. O

Actually, the étale realization w¢ ®q, C, base changed to C, underlies a filtered
fiber functor (cf. [I5] and [21]) on the category BKFy,. This nicely parallels the
case of rational Hodge structures.

Definition 3.24. Let (M, ¢pr) be a finite free Breuil-Kisin-Fargues modules with
associated étale realization

T := (M ®a,, W(C"))#¥="!

inf

and BérR—lattice

E:=M ®a,, Bz €T @z, Bar = M @4, Bar-

inf inf

Then we define the decreasing filtration Fil? (T ®z, C),j € Z, on
T Rz, cC=T ®z, B(TR (T ®z, §B(J{R)
by
Fil'(T @z, C) :=Im(&ENT &z, Bjg = T ®z, C)
with j € Z.

Written in a suitable basis ey,...,e, of T ®z, B(‘IR (over B:{R) there exist
AL,. .y An € Z satisfying Ay > ... > A, such that the lattice = C T ®z, Bar
is generated by the ¢*ey, ..., ¢ e,. Then the filtration Fil’ (T ®z, C) is given by
the image of

(e, . e Me,) NT ®z, Bin

in T'®z, C, i.e., the C-subspace generated by the residue classes e; of the e; such
that \; + 7 <0.
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Lemma 3.25. The fiber functor
wet ®q, C: BKF;’ig — Vece
admits a canonical filtration induced by the filtration in Definition |3.24), i.e., the
functor
w: BKFy, — FilVece, M — (we ®q, C, Fil* (wet (M) ®q, C))
s exact.

Proof. Writing down adapted bases as was done following Definition one sees
that w is a tensor functor. As symmetric powers and exterior powers are kernels of
projectors (in characteristic 0) and the category FilVecq of filtered vector spaces
is pseudo-abelian we see that w commutes with symmetric and exterior powers.
Moreover, w commutes with duals. Let 0 - M — N — @ — 0 be an exact
sequence in BKF,;,. We have to proof that the sequence

0 — gr(w(M)) — gr(w(N)) = gr(w(@)) =0

is exact. Considering dimensions and taking duals it suffices to prove that the left
arrow gr(w(M)) — gr(w(NV)) is injective. This is equivalent to the statement that

A" (gr(w(M))) = A" (gr(w(N)))

is non-zero where r := rk(M). As w commutes with exterior powers we may replace
the morphism M — N by A"M — A"N and assume that r = 1. Let (V,Z) resp.
(V',E’) be the associated pairs of a Q,- and a BérR—lattice. We identify V,Z with
their images in V’ resp. Z/. Tensoring with the dual of (V,E) we can assume that
E =V ®q, Bjg. Pick a generator v € V. Then the element v ® 1 is an element
in Z' and moreover, it is part of a basis of =/ by Lemma [3.20] Therefore we can,
cf. the description following Definition find an adapted basis v :=eq,..., e,
of V! ® B containing v such that =’ = (e,&es, ..., e,). From the concrete
description given after Deﬁnitionit follows that the image of v in gr®(V’ ®q, C)
is non-zero. This finishes the proof. (I

We remark that sending a finite free Breuil-Kisin-Fargues modules M € BKF®
(without fixing a rigidification) to the filtered vector space wei (M) ®q, C' is not an
exact operation. An counterexample is provided by the morphism

(Qp, €Bir) — (Qp, Big)-

Definition 3.26. Let w7 € {wet, Werys, war } be one of the fiber functors in Lemma
Then we set

G = Aut®(w?)

as the group of tensor automorphisms of w-.

We do not know how to describe the affine group schemes G, Gerys or Gar
apart from their maximal torus quotients corresponding to the full subcategory
of rigidified Breuil-Kisin-Fargues modules admitting complex multiplication. We
record the following general result about these group schemes.

Lemma 3.27. The band of the Tannakian category BKFY, is connected. In par-
ticular, the group schemes Gei, Gerys and Gar are connected.
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Proof. Tt suffices to show that every object M € BKRy,, such that the smallest
abelian subcategory (M), i.e., the full subcategory of subquotients of a finite direct
sum P M, is closed under the tensor product is a direct sum of the unit object.

Assume that there exists an object like this. Set

_q.1
Vi=we(M) = (M ®a,, W(Cb))”"l[;l
Then the filtration of Lemma on the étale realization we; (M) ®q, C =V ®q, C
must be trivial. Set Z:= M ®a4,,, B(TR C V ®q, Bar- In a suitable basis e, ..., e,

of V ®q, BS_R we can write = = (£Meq, ..., e,) with Aq,..., A, € Z. Then for
JjEZ

= C Vg, By
is generated by the @@t i+i0ke,  As the filtration on V/ ®q, C is trivial we can
conclude that

A <0
and
Ai+1>0
for all 4. In other words, A\; = 0 for all 4, i.e., 2 =V ®q, B:{R, which proves that
M is a direct sum of the unit object of BKFy,. O

We now calculate the Ext-groups
EXtIIBKFf_’ig (Aint{d}, Aine{d'})

for d,d’ € Z. In particular, as they will turn out to be non-zero we will be able to
conclude that the category BKF, of Breuil-Kisin-Fargues modules is not semisim-
ple (and thus the group schemes G¢t, Gerys, Gar are not reductive).

We recall one more period ring, namely B.. By definition,

B, := H°(Xpp, Ox,,.) = B£ZL.

crys
Moreover, there exists the “fundamental sequence of p-adic Hodge theory” involving
B.:
0 — Qp — Be = Bar/Bjz — 0
(cf. this follows from [8, Exemple 6.4.2.]).
Lemma 3.28. Letd € Z. Then
ExtlngF?ig (Aint, Aint{d}) = Bar/t*Bn.

Proof. We use Theorem and will classify triples (F, F’, ) fitting into a com-
mutative diagramm with exact rows (where a dotted arrow means an isomorphism
outside 0o € Xpp)

0 Oxpp F Oxpp 0
| |
| ¢ | B J(_
A \

0—— OXFF (d) F' OXFF 0

and isomorphisms
a: F = gr*(HN(F))
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inducing the canonical rigidifications on Ox,(d) resp. Oxg.. First we note that
this last requirement actually implies that

Fl = OXFF (d) ® OXFF'

Moreover,
F= OXFF @ OXFF'
In other words, an extension of A by Aine{d} is thus determined by an automor-
phism, preserving the factor Ox,(d),
OXFF (d) D OXFF
restricting to the identity on both factors, i.e., by an element in
—d
HomXFF (OXFF ) OXFF (d)) = (B;ys)tp—P )

and an isomorphism

B: (OXFF S5 OXFF)leF\{OO} = (OXFF (d) S5 OXFF)leF\{OO}

on Xpr \ {oo} (which again must preserve the filtration and associated gradeds).
We thus obtain a canonical surjection (of Q,-vector spaces)
T: B.t'a (B )= — Exthirs (A, At {d})

crys

by sending (a,b) € B.t? @ (B, )‘/’:pd to the quadruple

crys

t4 a L b
(OXFF®OXFF’OXFF(d)@OXFF7ﬁ:(O 1>’a:<0 1>>

Assume that a pair (a,b) defines a trivial extension. Then there exists
c € Q= H*(Xpr, Oxpr)

and )
de (B+ )go:p = HO(XFF7OXFF (d))

EA6 - D Y
Foliy

b=—c

such that

In other words,

and
ct?+a=¢ =—b.
For b € (Bg;ys)‘p:Pd the element % lies in B.. Therefore the pair
(t%td, b) € Ker(T)
lies in the kernel of I'. In particular, we see that the morphism
Dyt Bet! — Extpgps (A, Aint{d})
is still surjective. Moreover, its kernel is given by Q,t? because I'(a,0) is trivial if

and only if a € thd. The fundamental exact sequence implies therefore

Extpyrs (A, Aine{d}) = Bet?/Qpt? = Bar/t*Bi.
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Let
K = Ker(Exthkpo (Aint, Aint{d}) = Ext, . (Oxpp: Oxpe (d)))

be the kernel of the natural map (in terms of modifications it sends (F, F’, 3) to
F'). Analyzing the proof of Lemma we see that

~ d + =p?
K - Bet /(Bcrys)so P :
Thus imposing the condition of a rigidification enlarges this group to
Bt /Qut" = Byr /t*Bi;.

For more general Ext-groups we can prove the following result (which implies
Lemma [3.28]). For simplicity, we denote by

Xpp := Xpr \ {c0} = Spec(B.)
the punctured Fargues-Fontaine curve.

Lemma 3.29. Let (My, on, ), (Ma, o) € BKF?ig(Ml,Mg) be rigidified Breuil-
Kisin-Fargues modules up to isogeny with associated modifications
(]:ia]:i/aﬁivai)7i = 1727

of vector bundles on the Fargues-Fontaine curve as in Theorem |3.19. Then there
exist a natural surjection

0 1
H(XEp, Filxs, ®0xs, Faxg,) = Extpires (M, My).

If F,i = 1,2, are semistable, then the kernel of this surjection is naturally isomor-
phic to
H(Xpr, FY ®0y,, F2)-
Proof. We first construct a natural morphism
o 1
L HO(XFFv}_{YXgF QOye fé|X§F) - EXtBKFSig(M17M2)'
Let
be HO(XIS:F"FI\/‘XgF ®OX§‘F ]:é‘XI?‘F) = Hong‘F(fl‘XlgF’fé‘Xg‘F)
be an element. Then we set I'(b) to be the extension
0——F ——FdF —=F —0
| | |
| B2 ! (602 b ) | 61
Y \i ﬂl Y
0—F) —FeF, —=F ——0

with rigidification

(ng Of’) PPy @ F = g (HN(F © F1)) = r* (HN(F3)) © gr® (HN(F7)).

We claim that I' is surjective with kernel, if Fj, 7} are semistable, given by
HO(Xprp, FY ®oy,, F2) = Homx, (F1, Fa),
embedded into HO(XI?F,flv‘XEF ®0xg ]:é‘XIC:)‘F) via ¢ — By 0 ¢/xg . Let
(F,F',B,a)
be an extension of (Fiy, Fy, f1, 1) by (Fa, Fy, B2, az). Then
F2F o F
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because H'(Xrr, Ox,,) = 0. Moreover, as the extension must be compatible with
the rigidification the extension

0= Fy—=F —=F —0

splits, i.e., F' = F| @ F5. We moreover see that the rigidification oz must be given

by a matrix
[ Q2 a
= (5 )

with @ € Homx,,. (F], gr(HN(F3))). Moreover, ¢ must map to zero on the associ-
ated graded of the Harder-Narasimhan filtration

gr(a): gr(HN(F])) — gr(HN(F3))

as a must reduce to the identity on these graded pieces. Therefore there exists an
a’ € Homx,, (F7, F3) such that

azoa =gr(a')oa; +a.

Then the extension

(‘F7 “F/7ﬁ7 a)

=7 1) (G )

and thus this extension lies in the image of I'. Now assume that for

0
be H°(Xgp, Fijxe, Qo Foixe,)

is isomorphic to

the extension
L'(b)

is trivial. This means that there exists two isomorphisms

1
<0 Cf) 1@ F = F @ F,

with ¢; € Homx,,. (F1, F2), and

((1) Cf) L Fy @ Fy = Fl @ F},

with ¢o € Homy,, (F],F3) inducing zero on the graded pieces of the Harder-
Narasimhan filtration, such that

(a6 =696 5)
0 Bi/)\0 1 0 1 0 Bi/)°
If 7/,i = 1,2, are semistable, then c; = 0 must be zero and thus
b+ B20c =0,
i.e., b = —f5 o ¢;. This implies therefore the last statement in the lemma. O

We want to deduce that the category BKFfig of rigidified Breuil-Kisin-Fargues
modules up to isogeny is of homological dimension 1.
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Lemma 3.30. The category BKFfig of rigidified Breuil-Kisin-Fargues modules up
to isogeny is of homological dimension 1, i.e., for every (M, ¢ur), (N, on) € BKFL,
the Ext-group (in the sense of Yoneda or equivalently as spaces of homomorphisms

in the derived category) vanishes for i > 2, i.e.,

EXtEKFSiT (M7 N) =0.

Proof. Lemma 3.29] implies that the functor ExtéKFo_ (M, —) preserves surjections
| rig
of rigidified Breuil-Kisin-Fargues modules. Namely, for a surjection

(N1, on,) = (N2, o)
of rigidified Breuil-Kisin-Fargues modules the associated surjection
Fl 7

of vector bundles on the Fargues-Fontaine curve must be split due to the preserva-
tion of the given rigidifications. For an abelian category with enough injectives (or
projectives) this would finish the proof by embedding an object into an injective
object and using the associated long exact sequence. However, the category BKF;’ig
does not contain enough injectives (or projectives), hence we have to work a bit
more. For this let A be an essentially smalﬂ abelian category such that

EthA(A, —)
preserves surjections for every A € A. Consider the (fully faithful and exact)
embedding

A — Ind(A)
of A into the category Ind(A) of its Ind-objects. The category Ind(.A) need not
have to have enough injectives in general ([I2, Corollary 15.1.3.]), but it has if A

is essentially small which we assumed (in fact it is then Grothendieck abelian, cf.
[12, Theorem 8.6.5.(vi)]). Hence, we can conclude that (cf. [I2 Corollary 15.3.9.])
li_n;l EXt.]i\(A7 A/) = EXtiCnd(.A) (A’ B)
A'—B
for A € A, B € Ind(A) where the colimit is running over all A’ € A with a morphism
to B. Now let f: B’ — B’ be a surjection of Ind-objects. Then f can be written
as a filtered colimit of surjections A’ — A” with A, A” € A (cf. [12 Proposition

8.6.6.]). Using the above formular for the Ext-groups and our assumption on A we
can conclude that for A € A the functor

Extiy,a(a) (4, —)

preserves surjections. Using embeddings into injectives (of which there are enough
in Ind(A) by our assumption on essential smallness) we can conclude that

EXt%nd(.A(Av -)=0

for A € A and 7 > 2. Using again the above formula for the Ext-groups we can
conclude

Ext’q (A4, A") =0
for A,A’ € Aand i > 2.

2This means that the isomorphism classes in A form a set.



BREUIL-KISIN-FARGUES MODULES WITH COMPLEX MULTIPLICATION 33

Applying these considerations to the category A = BKFfig proves the lemma, if
we can show that the category BKFfig is essentially small. But by definition Breuil-
Kisin-Fargues modules are finitely presented and the isomorphism classes of finitely
presented Aj,s-modules form a set. As the possibilities for adding a Frobenius or
a rigidification form a set, we can conclude that the isomorphism classes of Breuil-

Kisin-Fargues modules form a set as required. O

4. CM BREUIL-KISIN-FARGUES MODULES

In this section we want to apply the formal CM theory of Section [2| to the case
T := BKF}

rig
of rigidified Breuil-Kisin-Fargues modules up to isogeny (cf. Definition .
Using Fargues’ theorem Theorem [3.7]the classification of CM Breuil-Kisin-Fargues
modules, i.e., CM objects in the Tannakian category 7 (cf. Definition [2.1)), is ac-
tually very simple - they are uniquely determined by their CM type (E,®) (cf.
Lemma and Lemma .
Actually, we can prove a stronger integral statement. For this let E/Q, be a
commutative semisimple algebra and let O be an order in E.

Definition 4.1. A finite free Breuil-Kisin-Fargues module with CM by O will
mean a finite free Breuil-Kisin-Fargues module (M, ) together with an injection
O — EndBKF((M, QDM)), such that I‘k(M) = I‘kZP(O).

Lemma 4.2. Let E be a commutative, semisimple, finite-dimensional algebra over
Qp and let O C E be an order in E. Then there is a natural equivalence of categories
between finite free Breuil-Kisin-Fargues module with CM by O and pairs (T, D)
where T is a faithful O-module, finite free over Z, of rank rkz, (O), and functions
®: Homg, (E,C) — Z. In particular, if O = O is the mazximal order, then there
is a bijection of finite free Breuil-Kisin-Fargues modules with CM by Op (up to
isomorphism) and “types” ®: Homg, (E£,C) — Z.

Proof. By Theorem [3.7] finite free Breuil-Kisin-Fargues modules with CM by O

are equivalent to pairs (T,Z) with T as in the statement of this lemma and = C
T ®z, Bar a BCTR—sublattice, stable under O @z, B(TR. But B;{R contains Q,,, hence

O @z, Bar = (E ®q, Q) ®g, Bar = H Bar
Homg,, (E,@p)

and a O @z, Bg‘R—stable sublattice will be uniquely determined by the valuation in
each factor, i.e., by a function

®: Homg, (F,Q,) = Homg, (E,C) — Z.

If O = O is the maximal order, then moreover every faithful Og-module T" which
is finite free of rank d over Z,, must be isomorphic to Og. This finishes the proof. [

We remark that in general there are non-trivial examples of O-modules T satis-
fying the hypothesis in Lemma We thank Bhargav Bhatt and Sebastian Posur
for discussions about this point. In general, one can take O # Og and T := Op.
But there exist also less pathological examples. For example, let F = Qp(pl/ 4
and set O := Z,[p?/*,p*/4]. Then O/p = T, [t?,t3]/t* = F,[z,y]/ (22, zy,y?) is not
Gorenstein. In particular, O is not Gorenstein as well (the dualizing complex com-
mutes with (derived) base change). However, it is still Cohen-Macaulay. Hence,
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the dualizing module T' := wp = Homg, (0, Z,) (cf. [18, Tag 0ATB, Tag 0AWS])
for O yields an example. It is finite free over Z,, of rank rkz O and Endp(wo) = O.
As O is not Gorenstein, wp # O.

We now analyse rigidifications of Breuil-Kisin-Fargues modules with CM.

Lemma 4.3. Let E be a commutative semisimple algebra over Q, of dimension d.
Let (M, @) be a finite free Breuil-Kisin-Farques module of rank rk(M) = d with
an injection E — Endpkre (M, ¢nr)). Then there exists a unique rigidification

a: M @4, By = (M ®ains W(k)) @w(r) Blys
which is preserved by E, i.e., E-linear.

Proof. We use Theorem (respectively the remark following it) to argue with the
modification (F, F’, 8) of vector bundles on the Fargues-Fontaine curve associated
with (M, par). The algebra E acts by assumption on the vector bundle F’ of rank
d and we must produce a unique E-linear isomorphism

F = gr* (HN(F)).

Decomposing E (and then F’ accordingly) into factors reduces to the case that
E is a field. Then we claim that F’' must be semistable. Indeed, each subbundle
E* C F' in the Harder-Narasimhan filtration of 7/ must be stable under E. Let K
be the function field of Xpp. Then F ®q, K is again a field (because Xrr ®q, E is
again integral, cf. [8] Théoréme 6.5.2.2.)]) and passing to the generic point € Xgp
yields a F ®q, K-stable flag in the 1-dimensional F ®q, K-vector space .7-",’]. Hence,
this flag is trivial and thus F’ semistable. This implies finally that there exists a
unique E-linear rigidification for F’, namely the identity of F’. O

In other words, we can write down all rigidified Breuil-Kisin-Fargues modules up
to isogeny with CM by a finite-dimensional commutative, semisimple Q,-algebra
E in terms of pairs (V,E). Namely, V must be isomorphic (as an E-module) to E
and Z C F ®q, Bqr can be constructed explicitly from the type

®: Homg, (E,C) — Z.

We now want to write down the Breuil-Kisin-Fargues modules (M, @) correspond-
ing to a pair (F, ®). This will require more work.

We note that for a finite free Breuil-Kisin-Fargues module (M, ¢y, ) as in Lemmal[4.2]
the function ®: Homg, (E,C) — Z in Lemma is precisely the type of the rigid-
ified Breuil-Kisin-Fargues modules up to isogeny (Q, ®z, M, v, ) € BKFy, with
respect to the filtered fiber functor

wet ¥Q, C: BKF;g — Veco

(cf. Lemma and Definition [2.9). Namely, this follows from the concrete de-
scription of the filtration on we; ®q, C (cf. the discussion after Definition and
the proof of Theorem |4.9)).

In general a Breuil-Kisin-Fargues module with CM by a commutative semisimple
Qp-algebra E will decompose according to the factors of E. In particular, we may
focus on the case where E is a field. Hence, we fix a finite extension £ of Q,
and denote by Ey C FE its maximal unramified subextension. We fix a uniformizer
mekE.



BREUIL-KISIN-FARGUES MODULES WITH COMPLEX MULTIPLICATION 35

Let F, C k be the algebraic closure of F,. By formal étaleness of F,, over F,
there exists a unique lifting F,, < O¢/p of the embedding F,, — k. Concretely,

Fp = U (OC/p)wn:1-
n>0
Taking the inverse limit over Frobenius yields a canonical embedding
F, < OL.
The algebraic closure of Q, in Q, ®z, Ajur is contained in
Qp = Q, ®z, W(Fp) € Q, @2z, Aint

where Qp denotes the completion of the maximal unramified extension Q" of Q,.
In particular, the algebraic closure of Q, in Q, ®z, Ainf is given by Qp". For an
embedding of ¢: Ey — Q" we define

Aint,0p,. = Op ®og, i Aint,

the ring of “ramified Witt vectors” (cf. [8, Section 1.2.]). Its elements are formal
power series

with z; € Obc. We set
At = Qp ®z, Ainf,05,. = E ®0p Ainf,05,.-

Lemma 4.4. Let 7: E — C be an embedding and let 7o: Ey — C' be its restriction
to Eg. Then the kernel of the homomorphism

0r: Op ®z, Aint = C, e®@x — 7(e)f(x)
is principal, generated by a non-zero divisor &-. In the decomposition
Of ®z,, Aint = Op ®op, (OF, ®z, Ainf) = H Aint, 0.0
v: Bg—C
the element &, can be chosen to be
(1,...,m—[r(x)’],...,1)
with ™ — [7(n)"] placed in the component 7o. Here 7(n)’ = (7(m), 7(7)'/P,...)
denotes a p-power compatible systems of p-power roots of T(w) € C.

Proof. The morphism 6. : Spec(C) — Spec(E ®z, Ainf) must factor through one
component and this component must be the one corresponding to the factor Aint, g ~,

because 6, factors over Ains g -,. Then the statement is well-known (cf. [8, Lemme
2.1.9.)). O

Being a non-zero divisor the element &, in Lemma [4.4] is unique up to a unit.

Moreover,
H 57' = uf

T€Homg, (E,C)

with u € O ®z, Ajnr a unit. Indeed, tensoring the exact sequence

0— Ainf i) Ainf i) OC —0
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with Op yields the sequence

0,
0— Op ®z, Ainf£>OE ®z, Aian—> H Oc =2 0gp®z,0c —0

7: Op—0¢
which implies that the vanishing locus £ and [] &, generate the same ideal. As both

-
elements are non-zero divisors, they differ by a unit.

Definition 4.5. Let ®: Homg, (E,C) — Z be a type. Then we define the finite
free Breuil-Kisin-Fargues module with CM by Op as Mg = Op ®z, A with
Frobenius

where

g@ = H 90(57)@(7)

T€Homg, (E,C)

with &; as in Lemma 4 and ¢ = 1d ® ¢a,,,: O @z, Aint — Op @z, Aint-

inf °

First observe that

&= w(&r)

is a generator of the morphism
0.: Op ®z, Aint = C, e®@ T T(e)é(x)

which extends the morphism 0: Ains — C with kernel 5 . Hence every fT is a unit
in Op ®z, Ainf[%] and thus

oMy w*(M<1>)[i:] - Mcp[g]

is indeed an isomorphism of Aj,¢[1]-modules. Moreover, the multiplication by Op
induces a multiplication on Mg and thus Mg is a finite free Breuil-Kisin-Fargues
modules with CM by Og. To determine the isomorphism class of Mg it thus suffices
(cf. Lemma[4.2) to compute the type of Mg (which of course will turn out to be ®).
We check independently of Lemma that the (isomorphism class) of the module
(Mg, @, ) is independent of the choice of the elements &, .

We recall the following lemma. If d is degree of Ey over Qp, then we set

PE, ‘= Qod'
o0 .
Lemma 4.6. Fiz . € Homg, (Eo,C). Then for every x = ) [x5]n" € Aint, 05, with
i>0

xo # 0 the Og-module

P, :={y € Aint.0p.| ¥E,(y) = Y}

is free of rank 1. Furthermore, if * € Aint, 04, 15 a unit, then a generator of Py is
a unit in Aing.0g,.-

Proof. After tensoring with @Q, the first assertion is proven in the proof of [8]
Proposition 6.2.10.]. But P, is w-torsion free and hence free over O of rank 1.
The second part follows from the proof of [8, Proposition 6.2.10.]. (]
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For example, if &' = Q, and z = §~ , then y = u spans the space Pg as

[eP] — 1 -
=[P]-1= el —1) =¢&p.
e(p) =[] [6]_1([ J—1)=¢&pu
In this case, the space P: does not contain a unit in Aj,s.
We strengthen Lemma a bit to handle the non-connected ring Og ®z, Aine
as well.

Lemma 4.7. Let x € Op ®z, Aint such that x maps to a unit in Op/p ®F, c’.
Then the space

Py :={y € Op ®z, Ains | ¢(y) = vy}
is free of rank 1 over Op. Here ¢ denotes the Frobenius Ido, ®pa,,, on Op®z, Aint-
If x is already a unit in Op @z, A, then P, contains a unit in Op, ®z, Aint.

Proof. Write

Of ®z, At = H Ainf,0p,
t€Homg,, (Eo,C)

and thus the element x = ('TL)LEHOI’HQP( Eo,c) accordingly. The assumption on x
implies that each x, satisfies the assumption in Lemma If x € Op ®z, At
is a unit, then as well each z, is a unit. Moreover, the Frobenius ¢ permutes the
factors cyclically. The power

d
¥ = P0Og,
fixes every factor and induces, for a fixed ¢, the morphism YOp, ON Aint, 05, Fix
some ¢o and let yo € Aint 0, be a generating solution of

POgp (yO) = Ty, Y0

(yo is a unit if = is a unit). As ¢ permutes the factors, it is clear that we get a
generating solution y € Ajnt 0, (Which is a unit if x is a unit) for the equation

o(y) = zy.

Moreover, this ¥y must be unique up to multipliciation by Oj. [l

Lemma 4.8. The Breuil-Kisin-Fargues module (Mg, ©nr,) in Definition 18 up
to isomorphism independent of the choice of the elements &, in Lemma[].4)

Proof. A different choice of the elements £, yields the Breuil-Kisin-Fargues module
(Mg, oary,) = (Op @z, A, uéotp)
with u € (Op ®z, Aint)* a unit. By Lemmawe can find a unit
y € (Op ®z, Aint)”
such that

o(y) = uy.
Then multiplication by y will define an (Og-linear) isomorphism

(Mt/bv QPJV]&,) - (M<1>7 @M@)'

We can now describe all (rigidified) Breuil-Kisin-Fargues modules with CM.



38 JOHANNES ANSCHUTZ

Theorem 4.9. Let ®: Homg, (E,C) — 7Z be a type. Then the finite free Breuil-
Kisin-Fargues modules

(Mg, on,)

from Definition [{.5 has type ®. Moreover, every finite free Breuil-Kisin-Fargues
modules with CM by O with type ® is isomorphic to (Mg, g )-

Proof. If we can show that (Mg, ¢ar, ) has type @, then the last assertion follows
from Lemma Fix as in Lemma [£.4] elements

§r € Op ®z, Aint

generating the kernel of
0r: Op ®z, Aint = Oc

with 7 running over all embeddings 7: E — C. For simplicity we may (after
multiplying one &, by a unit in Op ®z, Aiyr) assume that

§= H &r
(cf. the discussion after Lemma [4.4). Set

ET = (P(g‘r) € OE ®Z,, Ainf
and let u, € Op ®z, A;nr be as in Lemma, the unique (up to multiplication by
O}) generator for elements satisfying the equation
QD(:MT) = ETMT

(it £ = Qp and 7: Q, — C is the unique inclusion, then &, can be taken to be
¢, which implies 1 = p (up to a unit)). Note that p, is a unit in £ ®z, Ainf[i].
Indeed, the product
vo= L

satisfies
p(v) =¢&v
as we assumed & = [[&,. Hence, by Lemma v and g differ by a scalar in E.
Applying ¢! to the defining equation of p, yields
Hr = 57‘?71(#7)

and we see that ¢ ~!(u,) is a unit in (E ®z, Aint) @A B;R because the same is
true for ¢! (u) (one checks 6(o (1)) = (, — 1 # 0). We note that the type of Mg
depends only on the Breuil-Kisin-Fargues modules up to isogeny E ®¢, M. Set

V.= (M@ XA

inf

1 _
W(CP) ])Pre
p
Then we know that V is a one-dimensional E-vector space. Recall that

Py = Eop

G = 180

with
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We can explicitly find a generator of V', namely the element

1
Ko = Hu;‘b(‘f') (= E@Zp Ainf[;}'

T

Indeed,

pua) = &' a,
which implies

Py (o) = -

By definition, the Breuil-Kisin-Fargues modules (up to isogeny) (E ®o, Ma, s )
corresponds to the pair

(V;2:= Mo ®4
in (the isogeny version) of Theorem Now, the E ®q, Biy-lattice

inf B(TR g V ®Qp BdR)
14 ®QP B;_R cVv ®Qp Bagr = F ®Qp Bar

is generated by pue. But uge equals, up to a unit in F ®q, B(‘IR, the inverse f;l of
the element

o =[] =07 (Ca)

in E ®g, Bjy while the E ®q, Bis-lattice Z is generated by 1 € F ®q, Biy. In
other words, we find that

E =& (V ®q, Bir)
which implies that (Mg, ¢ar, ) has type ® by looking at the explicit decomposition

E ®q, Bar = H Bar
T€Homg, (E,C)

under which £ maps to the element (£2(7),. O

We want to finish this chapter with a concrete description of the automorphisms
Aut® (wer,om)
of the fiber functor, “the étale realization”,
wer,om s BKFY, oy — Vecg,

on Breuil-Kisin-Fargues modules with CM.
Recall the pro-torus
Dq, = hg L
Q,/L/Qp
which was introduced before Lemma 2111
Proposition 4.10. The reflex norm (with respect to the “étale realization”)
T BKFlc‘)ig,CM — Repr (DQP)

is an isomorphism. In particular,

Aut® (we'tycM) &~ DQP'
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Proof. We want to use Corollary 2.13] In Lemma [3.27) with have proven that every
rigidified Breuil-Kisin-Fargues modules (up to isogeny) with trivial filtration on its
étale realization is actually trivial, i.e., a direct sum of the unit object. This implies
that the functor = is fully faithful by Corollary and then Theorem [.9] implies,
using again Corollary [2.13] that r is essential surjective. This finishes the proof. [0

We remark that Corollary implies that the category BKF[, « of rigidified
Breuil-Kisin-Fargues modules up to isogeny admitting CM is generated by Breuil-
Kisin-Fargues modules (M, ¢)r) whose associated B;'R—lattice E C T ®z, Bar is
minuscule, i.e.,

g(T ®Zp B;{_R) < E < T ®Z7) B(TR
By [16, Proposition 20.1.1.] these Breuil-Kisin-Fargues modules are associated to
p-divisible groups over O¢. In particular, we see that the category BKF:ig,CM of
CM Breuil-Kisin-Fargues modules is generated (as a tensor category) by Breuil-
Kisin-Fargues modules associated with p-divisible groups admitting CM. This is

analogous to the case of rational Hodge structures admitting CM (cf. [1]).
Fix a field E/Q, and an embedding 7: £ — C over Q. Let

D, Home(E,C) — 7

be the function sending 7 to 1 and all other elements to 0. In this case one can
make the Breuil-Kisin-Fargues module (M, p,r) with CM by O and type @, more
explicit using Lubin-Tate theory for E. Given Theorem [£.9] this amounts to write
down a concrete element &, which generates the kernel of the morphism

0:: Op ®z, Aint — C, e@x +— 7(e)0(x).
This is what we will do in the following. The morphism 6, factors over a morphism
9;_: Or ®(9E0 A — Oc¢.

This morphism is the counit for the adjunction from [9, Proposition 2.1.7.]. Strictly
speaking we have to take a choice of @ in loc. cit. e.g. @ = X7 which by [9,
Proposition 2.1.7.] does not affect 6 in the end. However, fix a uniformizer 7 € Og
and a polynomial Q € Og[X] such that Q = X9 mod 7 and Q = 71X mod X2.
Then the twisted tilt
0¢? = lim Oc
z—=Q(z)
is canonically isomorphic to the usual tilt
0% = lim O¢
zﬁq
(cf. [9 Section 2.1.1.]). Let
G = Spf(Og([X]])
be the Lubin-Tate formal Og-module such that multiplication by 7 on G is defined
by @. Then the O¢-valued points
TxG(Oc) = lim  G(Oc)
z[r](z)
of the m-adic Tate module of G embed naturally into the @Q-twisted tilt OEQ (as
the elements of first coordinate 0). If

e €T,G(0Oc) = O
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is a generator, then we obtain its twisted Teichmiiller lift (cf. [8, Proposition 1.2.7.])

el = lim Q"([z" "]) € Op @0y, Aint-
n—oo
The element
£ = ele
P
is then defined (cf. [8, Lemma 2.3.5.]) and a (rather) concrete generator of 6..
Indeed,

0-([ele) =0,
while
0([e"/"q) # 0,
which implies that 6/.(&;) = 0. As &, is primitive of degree 1 by [0, Lemma 2.3.5.]
it must therefore be a generator of ker(6.).
IfE=Q, Q= (1+X)?—1 and ¢ is a generator as above, then as in [9, Example
2.3.7.] the element &, constructed is

[o] 1 - 1/p p—1/p
where o = € + 1. Note that up to a change of coordinate this agrees with the
classical formula for a generator of § by Fontaine.

&=

5. RELATIONS TO p-ADIC GALOIS REPRESENTATIONS

In this section we want to relate the category BKF},, of rigidified Breuil-Kisin-
Fargues modules up to isogeny (cf. Deﬁnition to p-adic Galois representations.
Tannakian categories associated to p-adic Galois representations have been investi-
gated by Fontaine (cf. [T0]), Serre (cf. [I7]) and, most seriously, by Wintenbergelﬂ
(ctf. [20], [19]).

Fix a complete, discretely valued extension K/Q, with some chosen algebraic
closure K. Let

Gk = Gal(K/K)
be the absolute Galois group of K. We assume moreover that the residue field x of
K is perfect. Let

C:= %
be the completion of K. In [I7, Théoréme 4] Serre prove that the abelianization
Hab
Ser

of the Tannakian group Hge, (with respect to the canonical fiber functor) of the
Tannakian category

Repg (Gx) = Repg, (Hser)
of Hodge-Tate representations of G is isomorphic to

G2 x lim Resg/q, (Gm)
ECK

3His results on semistable Galois representations are equivalently, by [4, Théoréme A], phrased
in terms of weakly admissible filtered (¢, N)-modules.
4assuming K to be algebraically closed
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where I/ runs through all finite extensions of @, contained in K and the transi-
tion morphisms are induced by the norm (this resembles Proposition for the
category BKFy, ).

We denote by Ky C K the maximal unramified (over Q,) subextension of K
(thus Ko = W(k)[1/p])) and let

MF (¢, N)

be the category of weakly admissible filtered (o, N)-modules over K. By the the-
orem “weakly admissible implies admissible” of Colmez-Fontaine (cf. [4, Théoréme
A]) the category M%(@, N) is equivalent to the category

sst
Repg, (Gk)
of semistable p-adic Galois representations of G . Let

Hwin

sst

be the Tannaka group of Repp, (Gk) for the canonical fiber functor over Q, (or

equivalently the Tannaka group of ml}i (¢, N) for a non-obvious fiber functor over
Q,). If s is algebraically closed, Wintenberger proved in [20], building on [10], that

Hwin
is connected (cf. [20, Section 1.4.]), that similarly to Hge,

H%\l/)in = @ ReSE/Qp(Gm)
ECK
(cf. |20, Section 1.5.]) and that the quotient of Hwi, by its unipotent radical is
simply connected (cf. [20, Théoréme 3.1.1]).
Let

Gt
be the Tannaka group of the category BKF[, of rigidified Breuil-Kisin-Fargues
modules (with respect to the étale realization of Lemma [3.23)). By Lemma [3.27] the
affine group scheme Gg¢; is connected and in Propositio we computed G&P.
It is a natural question whether results on GG¢; can be used to reprove the results
of Wintenberger on Hwy, or whether Gg; modulo its unipotent radical is simply
connected. We will not pursue these questions here and content ourselves with the
construction of a natural morphism

I+ Ge — Hwin
(covering the canonical projection

o~ o~

GZE = l&n ReSE/Qp (Gm) — H{ai\lf)in = l&n ReSE/Qp (Gm)
ECK ECK
if x is algebraically closed). We remark that if x is not assumed to be algebraically
closed the affine group scheme Hwyi, is not connected.
To construct f we will define an exact tensor functor
n: Reprfz (Gr) — BKFy,
from semistable Gi-representations to rididfied Breuil-Kisin-Fargues modules up
to isogeny (this functor will eventually extend to all potentially semistable, equiv-
alently de Rham, representations, cf. Lemma [5.2)).
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Let V be a de Rham p-adic representation of G and set
Dar(V) = (V ®Q, BdR)GK.
Then
Dar(V) ®k Bl
is a lattice in V ®q, Bar and thus, by (the isogeny version of) Theorem asso-
ciated to V there exists a natural Breuil-Kisin-Fargues module up to isogeny
(MV7 © My )
and a natural modification away from the point co € Xpp (the one determined by
C)
fv -=> .7:‘//
of vector bundles on the Fargues-Fontaine curve. By construction,
Fv=V ®q, Oxpr

and we want to describe F{, more explicitly. For this assume that V is even
semistable. Recall that there is a natural functor

E(-): (¢, N) — Modg, — Bunx,,

from (¢, N)-modules over Ky to vector bundlesﬂ on the Fargues-Fontaine curve (cf.
[9, Proposition 10.3.3.]). The functor £(—) is concretely given by the formula

_nd N
(D, 0, N) = (EP(D @k, Biog)?=" N =0).
d>0

Here, Bjog denotes a slight variant of Fontaine’s ring By of semistable p-adic periods

(cf. [9 Définition 10.3.1.]) and (—) denotes the sheaf on

Xrr = Proj(D B#~")
d>0

associated to a graded module over €@ Be=r",
d>0

Lemma 5.1. There is a canonical isomorphism
T = E(Diog(V), 0, N)
of vector bundles on Xyp, where
(Diog(V), 0, N)
is the (¢, N)-module associated with V.

Proof. The vector bundle F7, is constructed from Fr, =2V ®q, Ox;, by modifying
it according to the BJR—lattice

Dar (V) @k Big
at co € Xpp, i.e., the B—pairﬁ associated with F7, is
(V ®Qp Be, Dar QK BIR)

Seven to G K-equivariant vector bundles

SWe use this terminology also for vector bundles with Galois action.
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where B, = H°(Xpr \ {00}, Ox,p). By[9, Corollaire 10.3.17.] and [9, Proposition
10.3.18.] the B-pair associated with

E(Diog(V), 0, N)
is
((Drog(V) ®k, Blog[l/ﬂ)SD:l’N:Oa Diog(V) ®@ o BS'R)
where ¢t € B¥=P is an element with vanishing locus co. By definition

Diog(V) := (V ®q, Biog[1/])*
and thus by Fontaine’s formalism
(Diog(V) @Ko Buog[1/]) 7= =0 2 (V @q, Biog[1/t])*~1 =" 2 V @q, Be.

As
Diog (V) @k, K = Dar(V)
this finishes the proof. O

We remark that, after choosing an element 2 in C” of (additive) valuation 1
and forgetting the natural Gg-actions, there is a (functorial) isomorphism (cf. [9]
Proposition 10.3.3.])

E(D,p,N) = E(D, )
for any (¢, N)-module (D, ¢, N).
By Lemma we can conclude that there exists a naturaﬂ isomorphism

Fi = @ er*(HN(F))
AEQ
of F{, to the associated graded of its Harder-Narasimhan filtration. Thus the Breuil-
Kisin-Fargues module (My, @arn, ) associated to V' has a natural rigidification by
Theorem [3.19] Using this rigidification we have constructed a natural tensor functor
(depending on )

n: Rep(sQf;(GK) — BKFy,,
which is exact (by exactness of the functor V — (V ®g, Biog)“*) and compatible
with the natural fiber functors to Vecg,. Passing to Tannaka duals yields the
desired morphism

[+ Ge = Hwin
of affine group schemes over Q,,.

We finish with the remark that the functor n naturally extends to all de Rham
representations. In the following we will write i instead 7 if we want to stress the
dependence of  on K.

Lemma 5.2. The functor n = ng: Repg’; (Gr) — BKFy,, estends naturally to the
category Rep?@]‘:(GK) of all de Rham representations of G .
Proof. For a finite extensions K" O K’ of K the diagram

Rep! (G ) ““— BKFY,

rig
restr.l /
K’

Rep?Qif (Ggr)

It only depends on the choice of z € C” of valuation 1.
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commutes up to natural isomorphism. Indeed, the choice of z € C” works for all
K andif V' € Rep?Q?; (Gk/), then

le’g(V/) ®K6 KN = Dlog(‘/\GK,,)

which implies that the rigidifications match. Thus, by passing to the colimit over
all finite extensions K’ over K, one obtains a natural tensor functor.

2~ lim Repg), (Gr') — BKFy,
K'/K
Composing this with the natural functor

Repg, (Gx) — 2 — lim Repy(Gxr)
K'|K

(de Rham representations are potentially semistable) yields the desired extension.
O
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