TALK FF IV: THE ALGEBRAIC FARGUES-FONTAINE CURVE

JOHANNES ANSCHUTZ

1. COLLECTION OF PREVIOUS RESULTS

These notes are a detailed exposition of a talk I have given at a workshop in
Neckarbischofsheim about the Galois group of Q, as a geometric fundamental group
https://www.mathi.uni-heidelberg.de/~gqgpaspilgeom/.
We will, building on the work of previous talks, introduce the algebraic Fargues-
Fontaine curve Xg p. For its construction we have to choose two fields ¥ and F'.
We fix E/Q, a finite extension with residue field F, and an algebraically closed
non-archimedean extension F/F,. In particular, F' is perfectoid. We also fix a
uniformizer w € E.
Let

Y = Y3% = lim Spa(B;)

1C]0,1[

be the adic space associated with E and F, which was constructed in talk FF II,
also see [Far Definition 2.5.].

Fact 1.1 (talk FF II). Y24 has global sections H*(Y?!, Oyaa) = B and B is an
integral domain. |Far, Definition 2.5.]

The Frobenius ¢ : F — F : x + 2% induces an automorphism
p: Y -y

such that ¢? acts properly discontinously on Y24, In fact, for w € F* with
|oo|F < 1 there exists a continous map

log [7(y)]
log |z (y)]

satisfying d(¢(y)) = d(y)'/9 for y € Y24, where § denotes the maximal general-
ization of the point y in Y24 (compare with [Weil Proposition 3.3.5.]). We can
conclude that the quotient space

x2d .= X%‘}F = Yad/goZ

§:Y* 500,00 1y

is naturally provided with a structure sheaf making X4 an adic space, the so-called
adic Fargues-Fontaine curve X4 = X %dF We denote by

pr: yad _y xad

the natural morphism of adic spaces.

It is a formal consequence of the properly discontinous action of ¢? on Y24 that
the pullback pr* induces an equivalence of the category of Oyaa-modules with
the category of p-modules over Oyaa, i.e. Oyaa-modules carrying a @”-equivariant
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action. For example, the structure sheaf O yaa corresponds to the ¢-module Oyaa
with its canonical isomorphism o, : ¢*Oyaa = Oyaa. More generally, for d € Z
we denote by Oxaa(d) or just O(d) the line bundle on X! corresponding to the
w-module Oya(d) consisting of the sheaf Oy.a with the twisted ¢-action

PO, wa(@)(f) =7 %00, . (f)
for f € Oyaa. The global sections Py := H?(X? Ox.a(d)) are thus given by

=1 _.d
Py = B¥Oyaa@T" — pe=m"

For example, Py = E and P; = 0 for d < 0 ([EFDl Corollary 1.15]).
Elements in P, = B¥=™ can be constructed explicitly. Namely, let G be the formal

group over O associated to a Lubin-Tate law LT over Og. Then G comes equipped
with a logarithm log,+(—) € T'- E[[T]] and a twisted Teichmiiller lift

[<lo:6(0F) — G(Wo,(OF))
€ — nlLH;O[Wn]LT([gq_nD,

([EFDL Proposition 2.11)) where [7]z7(—) denotes multiplication with respect to
the Lubin-Tate law.

Fact 1.2. The map
G(Op) = (mp,+c7) — P1=DB*"T"
€ = loger([ele)
is an isomorphism of E-vector spaces ([EED, Theorem 4.6.]).

We will however just use the existence of the map G(Or) — B¥=". Up to conver-
gence issues (see [FED, Remark 4.8]) its well-definedness can be deduced as follows

e(log 7 ([elq)) =log 7 ([e%]q) =log 7 ([r]cr([elQ)) = mlog .7 ([elq)-
By definition, a point y € Y24 is called classical, if its support

supp(y) :={f € B[ f(y) =0} C B

is a maximal ideal. Similarly, define classical points in the open sets Spa(B;) C Y4,
I CJ0, 1[ with extremities in |F*|p C Rs, as the points whose support is a maximal
ideal. Let de C Y24 be the subset of classical points of Y24, By [FFb, Theorem
3.9.] Y3d = Iéi]ronl[Spa(BI)d. We want to point out, that for a classical point
y € Y34 the valuation on k(y) is of rank one, i.e. y is the only point in Y24 with
support supp(y). In fact, by [FFD, Theorem 4.3.] and [FFb, Corollary 3.11] each
closed maximal ideal of B is generated by a primitive element of degree 1. Then by
[FFD, Theorem 2.4.] the image of Wo, (Or) € HO(Y?d, Oyaa ™) in k(y) is already
a valuation ring of rank one, and hence Spa(k(y), k(y)™) = {y}. In particular, we
obtain a bijection

yad Ll {m C B closed maximal ideal}.

cl

Fact 1.3 (talks FF I, FF III). Ify € Y24 is classical, then the residue field k(y) is
perfectoid with a canonical identification k(y)® = F of its tilt with the field F ([FFD,
Theorem 2.4.]). In particular, k(y) is algebraically closed. Moreover, the local ring
Oyaa y is a discrete valuation ring whose mya , -adic completion is Fontaine’s ring
B;{Rﬂ associated to the perfectoid field k(y). (JFED, Theorem 3.9.] and [FED,
Definition 3.1])
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Let Div(Y2d) be the group of divisors on Y24, i.e. locally finite sums of classical
points in Y24,

Fact 1.4 (talk FF III). The map

{a C B non-zero closed ideal} — Div'(Y?d)
a — V(a)

is an isomorphism ([FFb, Theorem 3.8.]).
The fact[T.4] was used to analyse the multiplicative structure of the graded E-algebra

P:=Pp, = é Py = é Be=".
d=0 d=0

Define the set of classical points in X4 as X234 := pr(Y;3d) C X2 and let Div(X?d)
be the group of divisors on X4, i.e. locally finite sums of classical points on X2, As
Xad is quasi-compact, being the image of the quasi-compact set Spa(B;) for some
compact interval I C]0,1[, divisors on X?®! are actually finite sums of classical
points on X?!. By definition, divisors on X1 are in bijection with ¢-invariant
divisors on Y24

Div(X?24) = Div(y?ad)#=!
as pr (X = Vg
Fact 1.5 (talk FF III). The algebra P is graded factorial with irreducible elements
of degree 1, i.e. every non-zero homogenous element can be written uniquely (up
to the units E* = Py ) as the product of homogenous elements of degree 1. More
precisely, the divisor map

div: (U Ps\{0})/E* — Divt(xad)
d>0
f - ()
is an isomorphism ([EFb, Theorem 4.3]). In particular, there is a bijection

div: (P, \ {0})/E* b xad,

2. THE ALGEBRAIC FARGUES-FONTAINE CURVE
We now define the algebraic Fargues-Fontaine curve.

Definition 2.1. The algebraic Fargues-Fontaine curve (for given E, F and ) is
defined as the E-scheme

X = XE,F = PI“Oj(P),
with P = Pg pr = @ Be="". Note, the ring B depends on E and F, but not on
d=0
.

The curve Xg r is independent of 7 in the sense that the choice of another uni-
formizer 7’ yields a curve X’ canonically isomorphic to X as the following lemma
shows. (see also [EFal, Section 7.1.4.])

Lemma 2.2. Let w1, m9 € E be uniformizers with corresponding algebras

P, =P B

d>0
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fori=1,2. Then
Proj(Pr,) = Proj(Pr, ),

canonically and Pr, = P, non-canonically.

Proof. The field F is algebraically closed, hence the closure L := F, C O lies in
F. As the ring Wo, (L) is henselian with algebraically closed residue field there
exists u € Wo, (L)* with

e(u)  m

u Up)
Note that Wo, (L) C B. In particular, the multiplications

B¥=m3 _y RBw=Ti
fooom o ulf
for d € Z combine to an isomorphism a,, : Pr, = Pr,. The element u is unique
up to invertible elements v € Wo, (L)?=! = Op. For v € O the isomorphisms
a = ay and B := quy, satisfy
vla(f) = B(f)

for f € Py, q homogenous of degree d. It is easy to see that two morphisms
a,f: A= A

between non-negatively graded algebras, satisfying the above equation for some
unit v € Ay and every d > 0 induce the same morphism on Proj. This proves the
lemma. (|

We will see that X is indeed a “curve”, i.e. one-dimensional. In some respect, X
behaves like the curve PL, over the field E although X is not of finite type over E.
As X is defined via the Proj construction there are natural line bundles on X
obtained by the shifted graded P-modules P[d] for d € Z. Let

O(d) := Ox(d) := P[d].
Then the O(d) are line bundles on X as P is generated by P;. The global sections
of O(d) can be computed, using that P is graded factorial as

Py, = H°(X,0x(d)).

In fact, P; injects into H°(X,Ox(d)) as P is an integral domain. Let conversly,
a € H°(X,0x(d)) be a global section. For t € P; there exists d; > 0 and g; € P,
with a|p+) = % . We may assume that g; is not divisible by ¢ as P is graded
factorial. Choose some t' ¢ E Xlﬂ. Then restricting to the intersection DT (¢) N
D (t') = D¥(t-t') yields & = t,gj;, as P is an integral domain. As P is graded
factorial and ¢, ¢’ are relatively prime, we can conclude dy = dy = 0 and hence
g := g = gy so that a is induced by the section g € P; as t was arbitrary.

For completeness we introduce a proof of the following lemma. To proof it we will
use the adjunction

Hom(Z, Spec(A)) = Hom(A,I'(Z,0z))
for a ring A and an arbitrary locally ringed space Z ([GDT1l, Proposition 1.6.3])-

11f such a t’ does not exists, the claim is trivial, as then P = E[t]. But actually such a t’ exists:
by the E-vector space P; is infinite dimensional.
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Lemma 2.3. Let S = Spec(R) be an affine scheme and

A:@Ad

d>0

be a graded R-algebra, generated by Ay. Let h : Proj(A) — S be the canonical
morphism. Then for any locally ringed space g : Z — S the map

n : Homg(Z,Proj(4)) — {(£ € Pic(Z),v: g*A — Do L% surjective} | =
f = (f*O(1), f*(Yean))

is a bijection, where O(1) € Proj(A) denotes the canonical line bundle O(1) = Zl[vl]
and Yean : h*(A) = @ O(d) the canonical surjection.
d>0
Proof. We first proof that the morphism 7can, which is induced by the canonical
morphism
A — H(Proj(A), P O(d)),
d>0
is indeed surjective. As the open sets DT (t) for t € A; cover Proj(A4) and the
question is local, we may restrict to DT (t) for some ¢t € A;. Then the morphism
Yean 18 given by the multiplication

All/tlo@r A — EP Al1/t]a,
d>0
which is easily seen to be surjective. We denote by F(Z) the target of n. Then
F is a sheaf with respect to local isomorphisms. We define for ¢t € A; \ {0} the
subfunctor
F(Z):={(L,v) € F(Z) | v(t) generates L}
of F. The inclusion F; — F' is represented by open immersions. Indeed, for a
morphism (L£,7) : Z — F the fiber product Z xp F; is represented by the open
subset
D(~(t)) :=={z € Z | v(t) generates L,}.
We claim that Fy is represented by the scheme Spec(A[1/t]y) by sending a morphism
f+Z — Spec(A[1/t]o) corresponding to the morphism f : A[l/t]o — I'(Z,0z) to
the pair
(0z,7: Az = P O2)
d>0
where v maps a local section represented by a € Ag to f(%) € Oz. As (1) =1

a

s
for d > 0 the morphism ~ is surjective. Let conversely, (£,v) € Fi(Z) be given.
Define f(a/t?) € T(Z,0z) for a € Aq by the formula

y(a) = fla/th ()T € L2(Z).
Then f: A[1/t]o = I'(Z,0yz) is well-defined and a homomorphism of rings. It can
be checked that these morphisms Spec(A[1/t]y) — F; and F; — Spec(A[1/t]y) are
mutually inverse. Moreover, the I} for t € Ay cover F' as A is generated by A; and
v :g*A; — L surjective. We can conclude that 7 is an isomorphism of functors as
for every t € A; the pullback
Spec(A[1/t]y) = DT (t) = Proj(A) xr Fy — F}

is an isomorphism. [
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As HO(X24, dG>90 O(d)) = P we obtain by [2.3| a morphism
a: X 5 X
of locally ringed spaces satisfying a*(Ox(d)) = Oxaa(d). More precisely, it has to
be checked, that the open sets
D(t) := {x € X*| t generates Oxaa(1)}
for t € P cover X?4. We first show that for ¢ € P; \ {0} the vanishing locus
V(t):={z e X*|t(z) =0}

consists of classical points. This property can be checked on Y and because
yad = lim Spa(Bj), we may restrict to U := Spa(By) C Y24 for some interval
1€jo]
I CJ0,1[ whose extremities lie in |F'*|. By |[FFb, Theorem 3.9.] the ring By is a
principal ideal domain. Assume y € V (t) for t € P, C By. If t # 0, then ¢ does not
vanish at the generic point of U, and hence V' (¢) consists of points, whose support
is maximal. In other words, V(t) C X?! consists of classical points. By 1.5 there
is the bijection
div : (P \ {0})/E* 25 X3
For t,t' € Py \ {0} with ¢’ ¢ E*t (such ¢,¢ exist as P, is infinite-dimensional over
E, see we therefore get
Vi)ynv) =0,

which was our claim.

3. THE FUNDAMENTAL EXACT SEQUENCE
In order to understand X we need the fundamental exact sequence. Fix an effective
divisor
n
D= Z a;y; € Divt(y?d)
i=1

of degree d := Z a;. Assume that y; ¢ {y;}¢ for i # j and let z; := pr(y;) € X9,

=

By . we know that {x;} = V(t;) for some t; € P, \ {0} = H°(X?*! Oyaa(1)),
which is unique up to multiplication by E* = Pj. Let ¢t := [] ¢*. Then the

i=1

n
divisor of t € HO(X?! O x.a(d)) is precisly > a;z;.
i=1

Theorem 3.1 (Fundamental exact sequence). For r > 0 the sequence

0——= HO(X* O(r)) — HY(X*, O(d + 1)) — H Oxad 5, /Mm%

i=1
n

+
I1 BdRy /myad v BdR,y, >0
=1

Xad g, 0

IR
IR

0 P,

Pd+r

is exact, where u is the canonical evaluation morphism

Pyt € B=H(Y*™ Oyua) = Oyaa, jmia, = Big /0P Big .-
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Proof. We first show ker(u) = tP,. Let f € Py, be an element with u(f) = 0. We
consider f as a function on Y and look at its divisor div(f) € Divt(Y2d). As

u(f) =0 we get
div(f) = Zaiyi-
i=1

But div(f) is @-invariant because ¢(f) = 7¢f, and hence

div(f >Za1290 (y;) = div(t

i=1 ne”Z

where t is considered as a function on Y24, Hence, by fact H
f=gt

for some g € B. We get o(g)m% = 79" gt and thus g € P, as B is an integral
domain.
Factoring t = ¢; - t' and considering for 7 > 0 the diagram

t1
Pr > Pr+1

-

t
PTHPT%*d

reduces the proof for surjectivity to the case d = 1 and t = ¢;. Furthermore, we
may assume r = 0. In fact, if a € O := k(y;) and u(t) = a/"*! for some t € Py,
then u(t"*!) = a. We thus have to show that the map

u: BY™T = C =k(y)

is surjective. By[L.3|C is perfectoid and algebraically closed with tilt F'. In particu-
lar, O¢ /7 = Op /7° for some 7° € F with |7°|p = |7|c. We will use the description
g (OF) B#=™ from fact [1.2] . We get the sequence of maps

L L g Oc/ﬂ' NL OF/W Lg OF )
[mleT [mleT

We used that F' is perfectoid to conclude

mG(Op/7") = lm G(Or) = G(Or).

Putting things together we get the map
v 1&1 G(Oc) — C

[mleT
(2n)n —  log,7(20)

More precisely, take (z,,), € Jim G(O¢ /m) with reduction (Z, ), € lim G(O¢/m)
[rler (rleT

and ¢ € G(O) with /9" =z, € Op/n” = O¢/ for all n. Then
— n 1/q™ T n _
[l = lim [7"]e7([/4]) = lim [7"]c7(20) = 20,

showing that
U((2n)n) =log 7 ([elq) = logrr(20).
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The map V¥ is surjective as C' is algebraically closed and we can conclude. Indeed,
the formula

log o7 ([m]e7(2)) = mlogr(2)
for x € G(O¢) and the surjectivity of [7]z7 : me — me (C is algebraically closed)
shows that the image of log,+ : mc — C contains elements of arbitrary large
absolute value. But then the logarithm log,+ has to be surjective as it has the
Artin-Hasse-exponential as a local inverse near 0. (]

Theorem yields the following corollary.

Corollary 3.2. Let t € Py \ {0} with vanishing locus V(t) = {x} C X3 and
y € Y24 a classical point over x. Then for C = k(y) the map
0:P/tP — {geC[T]]g(0)€ E}
> fa = > fa(y)T?

d>0 d>0

is an isomorphism of graded algebras. In particular, Proj(P/tP) = {(0)} has one
element.

Proof. Tt is clear that 6 is a morphism of graded algebras. Moreover, it is an
isomorphism in degrees d > 1 by and trivially for d = 0. Finally, let p # 0 be
an homogenous prime ideal of the right hand side {g € C[T] | g(0) € E}. Then
cT? € p for some d > 1 and ¢ € C*. Multiplying by ¢~ T yields 79! € p such
that p = (T), a contradiction. O

4. PROPERTIES OF THE ALGEBRAIC FARGUES-FONTAINE CURVE
Now we are ready to prove the main theorem of this talk.

Theorem 4.1. The scheme X is noetherian, integral and regular of Krull dimen-
sion one. More precisely, for t € P, \ {0}
e DT (t) = Spec(By) with By := P[1/t]o = B[1/t]*=! a principal ideal do-
main.
o VT(t) = {oo;} with ooy € X the closed point given by the homogenous
prime ideal generated by t, so ooy = (t) C P.

The map
div: (PL\{0})/E* — |X|:={x € X closed}
t — o0

1 bijectivfﬂ
Proof. As B is an integral domain, the curve X is integral. Pick ¢ € P;\ {0}. Then
V7T (t) = Proj(P/tP) = {tP}

by showing one claim. The description of B, is clear and we can conclude that
B; is factorial as P is graded factorial. Moreover, the irreducible elements in By
are exactly the fractions '/t with ¢’ € P; not lying in E*¢. We now want to prove
that the ideal (¢'/t) C B; is maximal. For this we use the exact sequence

0%t’~PT%PT+1$k(x’)%O

2 1
as for Py,
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coming from Here, ' € X34 denotes the unique point on X3¢ with /(') = 0
(1.5). As 0(t) # 0, by the morphism 6 factors over

Pi[1/t] = k(z")
showing that B;/(t'/t) — k(') is surjective. Assume f € B; satisfies 0(f) =
f(@") = 0. Then there exists d > 1 with

g
f:tid

for some g € P, and g automatically satisfies g(z’) = 0. Hence g € t'P;_; by the
fundamental exact sequence [3.1] showing

B /(t']t) = k(2).
We can conclude that B, is a principal ideal domain as it is factorial with every
irreducible element generating a maximal ideal. Covering X by two sets of the form
D™ (t) with t € P; shows that X is noetherian and regular of Krull dimension one.
. eval
Because t generates the ideal ker(P — k(oo¢)[T]) C P by resp. and P has
units £ the map
div: (P \ {0})/E* — |X|:={x € X closed}
t — o0

is injective. But for some ¢t € P; \ {0} every irreducible element in B is of the form
t'/t for some t’ € P; and hence div is surjective as B; is a PID. O

For x € | X| we define

deg : Div(X) > Z: Z NLx — Z Ng.
ze|X| ze|X|
In other words, deg(z) := 1 for € |X|. Then for every f € k(X)* in the function
field £(X) of X we have
deg(div(f)) =0,

which can be reinterpreted as the statement that the curve X is “complete”. Indeed,
as P is graded factorial the case for general f € k(X)* is reduced to the case f = t/t/
with ¢,¢' € Py \ {0}, where it follows from namely div(f) = oo — cop. All in
all, we can conclude, as X \ {oo:} = Spec(B;) with B; a principal ideal domain,
that similar to the case for PL, the degree map yields an isomorphism

Pic(X) = C1(X) X4 7

sending the line bundle Ox(d) to d € Z.
But not everything for X is similar to the projective line PL. For example, if
x € |X]| is a closed point, then the sequence

0—-0(-1) >0 —=k(z)—=0

is exact showing that the non-zero E-vector space k(z)/FE embeds into the space
HY(X,0(-1)), which is therefore in particular not zero contrary to the case for
PL. But still H1(X,0x(d)) =0 for d > 0 (see [FFD, Proposition 6.5.]).

We can now compare the algebraic curve X with the adic curve X4, Recall that

by [2.3| the identity P = H?(X?, @ Oxaa(d)) corresponds to a morphism
d>0

a: x5 X
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of locally ringed spaces such that a*(Ox(d)) & Oxaa(d).

Theorem 4.2. The morphism o : X — X induces bijections

a: X3 =S | X
—_— g —
(672 OXJ — OXad)wad

for x4 € X34 with x := a(z°?) € X. In particular, for x € |X| the residue field
k(x) is algebraically closed and perfectoid with tilt k(z)” = F canonically up to a
power of the Frobenius ¢ : F' — F.

Proof. By and sendig a section t € P, = H°(X,Ox (1)) = H°(X?!, O xaa)
to its vanishing set V(¢) C X resp. V(t) € X3! induces bijections of | X| resp. X34
with the set (P, \ {0})/E*. In the proof of we have seen that a induces an
isomorphism

a:k(z) — k(z*)
for 224 € X3, Moreover, if {z} = V(¢) with t € P, then ¢ is a uniformizer in Oy ,
and Oxaa 4.0 showing that the completions

—_— —
OX,a: = OXad7xad

are isomorphic. ([
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