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We consider a continuous space which models the set of all phylogenetic trees
having a fixed set of leaves. This space has a natural metric of nonpositive curvature,
giving a way of measuring distance between phylogenetic trees and providing some
procedures for averaging or combining several trees whose leaves are identical. This
geometry also shows which trees appear within a fixed distance of a given tree and
enables construction of convex hulls of a set of trees. This geometric model of tree
space provides a setting in which questions that have been posed by biologists and
statisticians over the last decade can be approached in a systematic fashion. For
example, it provides a justification for disregarding portions of a collection of trees
that agree, thus simplifying the space in which comparisons are to be made.  2001
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MOTIVATION

Trees have been used extensively in biology and other fields to graphically
represent various types of hierarchical relationships, including evolutionary
relationships between species, divergent patterns between subpopulations,
and evolutionary relationships between genes. These trees are generally
rooted and semi-labeled; i.e., they descend from a single node called the
root, bifurcate at lower nodes and end at terminal nodes, called tips or
leaves. The leaves are labeled by the names of the species, subpopulations,
or genes being studied. In biological studies the latter are called operational
taxonomic units (OTUs).
Traditionally, trees were inferred from morphological similarities among

the OTUs. To build an evolutionary species tree, or phylogenetic tree, two
species which shared the most characteristics were classified as “siblings”
and assumed to share a common ancestor which is not the ancestor of any
other species. Such “siblings” are said to be homologous, and it is this basic
homology which has been of interest to biologists for a very long time.
In Fig. 1 we reproduce a tree from [22] which represents an attempt at
depicting the relationships between all living organisms.
Over the last few decades, biologists have been building trees based on

DNA sequences from certain parts of the genome. This has led to remark-
able advances in the study of homology. Examples of the kinds of issues
on which new light has been shed include the origin of diseases such as
AIDS [27] and the most deadly form of malaria [17], and connections
between tribal groups such as those raised by the African tribe whose oral
tradition holds that the tribe is descended from Jewish priests (DNA anal-
ysis does indicate such a relation).
In spite of the successes of DNA analysis, a great deal of uncertainty

remains about precise relationships between the tips or leaves of the tree.
Uncertainty about which branching order is the correct one is sometimes
represented by filling out the tree as in Fig. 2 to cover several possible
binary trees and exclude others which biologists are sure are impossible.
For example Fig. 2 from [31] implicitly rules out the possibility of Sino-

hippus and Protohippus being homologous; however, it also allows for inde-
termination of the branching order of Neohipparion, Pseudohipparion, and
Cormohipparion. In this paper we propose a geometric model which param-
eterizes the set of trees with a fixed set of OTUs; in this model, uncertainty
can be represented by coloring in the portions of the space corresponding
to possible trees.
One reason for uncertainty about the true phylogenetic tree is that dif-

ferent choices for DNA sequences (usually the choice of a single gene or
coding region) often point to different trees, each of which is called a “gene-
tree” [14]. Finding the best way of combining the information contained in
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FIG. 1. Haeckel’s tree with three branches.

numerous different gene-trees for the same set of species remains an open
problem in contemporary biology. Several methods have been proposed to
solve this combination problem. One proposal is to treat the data from dif-
ferent genes as if they came from a single gene. For example, Brooks [7] has
suggested building all the different trees and then coding the tree data into
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FIG. 2. Equus tree from [31].

binary columns, combining them, and finding the best tree for the combined
columns. Other proposed methods use some specified set of combination
rules such as majority rule, strict consensus, or Bayesian combination. A
difficulty with combining data from different genes into a single, larger
data set arises from differences in the mutation rates in different genes.
Another interesting effect is that in simulation studies, where the true tree
topology is known in advance, investigators have observed that a more accu-
rate tree is obtained by subdividing the data into many different sequences
and then averaging by some method rather than by agglomerating all of the
sequences and then building a single tree with the merged data. Perturbing
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the simulated data by bootstrap resampling and then averaging also pro-
duces a tree which is closer to the known original tree [2]. This points to
the importance of understanding the rules used to average trees. None of
the proposed consensus rules has previously been studied in a geometric
context. Details of their comparison in the geometric context introduced in
this paper will be explained in [4].
Uncertainty about the true phylogenetic tree arises also from problems of

statistical stability. The classical tree-building algorithms attempt to find a
single tree consistent with the data. The question of how sure one is that the
tree is correct is thus also a statistical one: the tree becomes an unknown
parameter that the various procedures are trying to estimate. Would a small
change in the data resulting from a sequencing or an alignment error result
in a change of choice of the resulting tree? This is currently studied by using
bootstrapping as a perturbation tool [18], but in fact this can be interpreted
as a problem in the estimation process. This problem has inspired certain
authors (see Efron et al. [16] and Zharkikh and Li [45]) to imagine parti-
tioning a space of trees into regions, each labeled by a different binary tree.
When a data set is associated to a point in this space, the question of the
resulting tree’s stability can be translated into a question about how close
the point is to the boundary between different regions. The question was
raised in [45] as to how many regions are within a certain range of a given
point. The current paper attempts to give the intuitive arguments presented
in the above cited papers a rigorous geometric interpretation. In particular,
since our space of trees has a metric, this allows a “Voronoi” decomposi-
tion into nearest-neighbor regions, that is, regions consisting of those trees
closest to each of a fixed finite set of trees (see [15]).
One more reason for uncertainty about the true phylogenetic tree

involves the tree-building process. The first problem encountered by tax-
onomists who build phylogenetic trees using any of the several methods
available is the complexity of the underlying optimization problem. There
are

�2n − 3�!! = �2n − 3� × �2n − 5� × · · · × 3 = �2n − 2�!
2n−1�n − 1�!

rooted binary semi-labeled trees with n leaves [34]. The problem of com-
puting the best tree for a certain data set is NP complete for two of the
most common methods, the maximum likelihood method and the parsi-
mony method [20]. As a consequence biologists have to use approximate
optimization algorithms that use random starting points and certain random
moves between trees. The resulting trees thus vary from run to run. The
geometric model we introduce in this paper allows one to compare these
trees in a quantitative way. Such comparisons could be useful in contexts
such as those discussed in Lin and Gerstein [29].
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Biologists use a range of methods to construct trees from DNA
sequences, each of which results in a tree with branch lengths. At one end
of the spectrum lie the parametric models, such as the maximum likeli-
hood method. In this method, a probability is given for each possible base
change in a DNA sequence, and the tree that maximizes the likelihood
under this model is the one chosen as the best estimate. Many biologists
believe that as more data become available the mutation rates will be
known with better accuracy and parametric models will be better justified.
The geometric model of tree space presented in this paper enables one
to represent the maximum likelihood tree as a point in a space of trees
with branch lengths; it should then be possible to define isocontour regions
around the estimated tree to build the desired confidence regions.
In a parametric model, the data are approximated by points in a very

low-dimensional manifold, thereby losing much of the information con-
tained in the original data. The Jukes–Cantor model, for instance, uses an
n-dimensional parameterization of the data corresponding to trees with n
leaves. To get a rough idea of this, imagine asserting that the data points lie
on an ellipse and then choosing the two parameters of the ellipse so as to
minimize the sum of the distances from the points to the ellipse. The ellipse
is parameterized by two numbers and represents the parametric model that
biologists will try to fit the data to.
At the other end of the spectrum of tree-building methods lie the non-

parametric models, such as the parsimony representation. A nonparametric
approach could simply interpolate between points; as the number of points
increases the number of descriptive parameters increases. A more sophis-
ticated nonparametric approach would propose a smooth curve minimizing
the distance to the points. Thus nonparametric methods are also said to
be infinite dimensional. For instance, in the parsimony model, the tree is
defined to be the minimal Steiner tree compatible with the observed dis-
tances between the OTUs; the branch lengths then represent numbers of
mutation events.
In between these two extremes lie the distance-based methods, which are

semi-parametric models, in which the mutation model is parametric with
very few parameters (usually between one and four) and the tree building
procedure is non-parametric. See [24] for a detailed comparison of these
three estimation paradigms.
Each method of producing trees from data results in trees with branch

lengths, but these branch lengths have different meanings in different meth-
ods. The choice of which procedure is used to produce trees will not affect
the geometric representation of the space of trees as we propose it here,
but only the interpretation of points in the space.
A brief summary of the paper follows. In Section 1, we describe two pre-

liminary attempts to obtain a geometric setting for the study of trees, each
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closely related to a convex polytope (the matching polytope and the asso-
ciahedron). In Section 2 we give an explicit construction of the space of
trees � n, and in Section 3 we give some of its basic combinatorial proper-
ties. While � n is not a manifold, the underlying combinatorial properties of
trees help expose some of its structure. In Section 4 we study the geometric
properties of � n such as curvature (the CAT(0) property), geodesics, and
centroids. We also discuss ways to introduce probability measures on this
space in order to find a geometric setting for the statistical study of tree
data. We conclude in Section 5 with a discussion of some of the questions
that arise when considering such data.

1. TWO PRELIMINARY ATTEMPTS

In [13], trees were coded as “matchings” on a complete graph. These
matchings allow trees to be identified with the vertices of a convex polytope,
called the matching polytope (see [30]). A shortcoming of this matching
representation is that a small move on the matching polytope may have
either a very small or a very large effect on the tree, as it interchanges two
nodes which may be either far from or close to the root. This asymmetry in
the matching representation is not present in the geometric representation
presented in this paper.
There is another convex polytope, called the associahedron (see [28, 39])

whose vertices can be identified with the set of planar rooted binary trees
with n leaves in a fixed order or, equivalently, with the set of triangula-
tions of an �n + 1�-gon. The associahedron for n = 4 is a pentagon and
is illustrated in Fig. 3; the triangulations are indicated by dotted lines and
the corresponding binary trees are drawn with solid lines. Two vertices of
the associahedron are adjacent if the corresponding triangulations differ by
“rotating” a single interior edge e, i.e., removing e to form a quadrilateral
in the interior of the �n+ 1�-gon and then replacing e by the opposite diag-
onal of the quadrilateral. The corresponding trees are also said to be linked
by rotation (see Fig. 15).
By “gluing” associahedra together, one can construct a space of pla-

nar labeled trees with n leaves, where each associahedron corresponds
to a different ordering of the labels. This space has appeared in several
different contexts [10, 11, 26] and is denoted �M0�n+1. The space �M0�5 is
tiled with 12 pentagons, corresponding to all possible permutations of the
leaves up to complete reversal. Each space M0�n+1 has a dual tiling by
�n − 3�-dimensional cubes. The dual tiling of �M0�5, by squares, is illustrated
in Fig. 4; in the dual tiling, the 12 pentagons become 12 vertices of degree
5. The shaded region shows a single tile of the tiling by associahedra.
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FIG. 3. Associahedron in the case n = 4.

A problem with the above representation is that we are interested in the
abstract combinatorial information contained in the tree, which does not
depend on how the tree is embedded in the plane. The space of trees as
described in this paper is in fact a quotient of �M0�n+1, but a direct construc-
tion seems easier to visualize. One should be able to view this space as the
subset of the cone of all metrics on a fixed finite set consisting of those
metrics that are derived from trees. See, for example, [5] for the relation
between trees and metrics.

2. CONSTRUCTION OF THE SPACE OF TREES

In this section, we describe a geometric model for tree space, in which
each point represents a rooted semi-labeled tree with n leaves and positive
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FIG. 4. Cubical tiling of �M0�5, where the arrows indicate oriented identifications.

branch lengths on all interior edges. In general one moves around in the
space by varying the branch lengths of the trees, but when a branch length
reaches 0 some degeneration or uncertainty occurs which can be resolved
in one of several ways, each of which leads to a new tree.
We now proceed to formally define the space. The term n-tree will mean

a tree (i.e., a connected graph with no circuits), with a distinguished vertex,
called the root, and n vertices of degree 1, called leaves, that are labeled
from 1 to n. Although we are primarily interested in binary trees (i.e., trees
in which the root has degree 2 and all other vertices have degree 1 or 3);
in order to interpolate between these we will also need to consider trees
whose vertices have larger degree. Perversely, mathematicians usually put
the root at the top when drawing a picture of a tree, so that the tree “grows
downward” from its root (see Fig. 5).
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FIG. 5. A semi-labeled binary tree.

For technical reasons, it will often be convenient to “hang each tree up
by its root,” i.e., to place an edge directly above the root of every tree, with
the corresponding leaf labeled with 0. Note that there are several ways of
drawing a diagram of the same tree, depending on how it is embedded in
the plane. For example, the three pictures in Fig. 6 represent the same tree.
On the other hand, two trees that have exactly the same combinatorial

structure but whose leaves are labeled differently are considered different
(see Fig. 7). The number of different binary trees on n leaves is equal to
�2n− 3�!!. In contrast, the number of different unlabeled trees with n leaves
is the Catalan number Cn−1 = 1

n

(2�n−1�
n−1

)
. For example, there are 15 different

binary trees with four leaves. If we do not restrict ourselves to binary trees,
the enumeration can be done through an exponential generating function
[38, p. 14].
The problem of enumerating labeled trees is Schröder’s fourth problem

[34]. Stanley [38, p. 14] finds that there is no analytical formula. The solu-
tion to Exercise 5.40 (p. 133) in [38] gives references and a discussion.
A metric n-tree is an n-tree with lengths greater than 0 on all of its interior

edges. (An edge of an n-tree is called interior if it is not connected to a leaf.)
In what follows, the term “tree” will mean a metric n-tree, unless otherwise
specified.

1 42 3

0

1 32 4

0

2 14 3

0

FIG. 6. Three pictures of the same tree.
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FIG. 7. Different trees.

One could also consider trees with positive lengths on all edges, including
those leading to leaves. However, the effect of this on tree space is simply to
take the product with an n-dimensional Euclidean space. Since this does not
significantly affect the geometry of the space, we will ignore this, knowing
that it is possible to add this information at any later point that we wish.
Now consider a tree T , with interior edges e1� � � � � er of lengths l1� � � � � lr

respectively. If T is binary, then r = n − 2; otherwise r < n − 2. The vector
�l1� � � � � lr� specifies a point in the positive open orthant �0�∞�r . To each
other point in this orthant, we associate the unique metric n-tree which is
combinatorially the same as T but has different edge lengths, specified by
the coordinates of that point. Points on the boundary of the orthant, i.e.,
length vectors with at least one coordinate equal to zero, correspond to
metric n-trees which are obtained from T by shrinking some interior edges
of T to 0; thus each point in the orthant 
0�∞�r corresponds to a unique
metric n-tree (see Fig. 8).
An n-tree has the maximal possible number of interior edges (namely

n− 2) and thus determines the largest possible dimensional orthant, when it
is a binary tree; in this case the orthant is �n− 2�-dimensional. The orthant
corresponding to each tree which is not binary appears as a boundary face
of the orthants corresponding to at least three binary trees; in particular
the origin of each orthant corresponds to the (unique) tree with no interior
edges. We construct the space �n by taking one �n− 2�-dimensional orthant
for each of the �2n − 3�!! = �2n − 3� · �2n − 5� · · · 5 · 3 · 1 possible binary
trees, and gluing them together along their common faces.
For n = 3 there are three binary trees, each with 1 interior edge. Each

tree thus determines a 1-dimensional “orthant,” i.e., a ray from the origin.
The three rays are identified at their origins (see Fig. 9).
For n = 4 there are 15 binary trees, so that the space �4 consists of 15

2-dimensional quadrants which all share a common origin. Each bound-
ary ray appears in exactly three of the quadrants as in Fig. 10. Note that
a horizontal slice of this figure forms a copy of � 3 embedded in � 4. In
general, � n contains many embedded copies of �k for k < n.
All 15 quadrants for n = 4 share the same origin. If we take the diagonal

line segment x + y = 1 in each quadrant, we obtain a graph with an edge
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FIG. 8. The 2-dimensional quadrant corresponding to a metric 4-tree.

for each quadrant and a trivalent vertex for each boundary ray (see Fig. 11).
This graph is called the link of the origin.
Figure 12 shows another portion of the link which forms a pentagon

embedded in its ambient quadrants.
The entire link of the origin is shown in Fig. 13, without the ambient

quadrants. The entire space �4 is an infinite cone on this graph, with cone
point the origin. It is interesting to note that the link of the origin in this
case is a well-known graph, called the Peterson graph. The Peterson graph
has no planar embedding, and the space �4 cannot be embedded in 3-
dimensional space.
One can visualize � 4 as being obtained from the space pictured in Fig. 14

by gluing together edges with the same label. We note that the figure does
not look metrically correct, since each triangle should be a right triangle
with right angle at the origin; also, each triangle should extend forever in
the direction away from the origin.

3. COMBINATORICS OF THE SPACE OF TREES

In this section we consider certain combinatorial aspects of the space
of trees, and in particular relations to combinatorial structures which have
been studied in other contexts. The combinatorial properties of the link of
the origin of this space will be useful in the study of its geometry in the
following section.
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FIG. 9. �3.

3.1. Relation to the Associahedron and Moduli Spaces

We observe that the link of the origin in the space �4 is a graph whose
shortest circuit has length 5.
Figure 12 above showed a length 5 circuit in this graph, embedded in

the appropriate quadrants of �4. This pentagon is easily identified with the
boundary of the dual polytope of the associahedron on four letters (see
Fig. 3). This is a general phenomenon.
The link of the origin Ln is defined for all values of n as the union of the

sets of points in each orthant with coordinate sum equal to 1. Since the set
of such points in a single orthant forms a simplex, Ln has the structure of
a simplicial complex of dimension n − 3, with one k-simplex for every tree
with k + 1 interior edges.

Proposition 3.1. Link of edges in �n correspond to the dual of the asso-
ciahedron on n letters.

Proof. The associahedron parameterizes the set of planar rooted trees
with n leaves in a fixed order.

If we restrict the branch lengths to be bounded by some constant C > 0,
then the resulting subspace of � n is a quotient of the manifold �M0�n+1
defined in Section 1. Points of �M0�n+1 can be interpreted as rooted planar
trees with branch lengths between 0 and C, modulo a certain equivalence
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FIG. 10. Three quadrants sharing a common boundary ray in �4.

relation, given as follows: a rooted planar tree has a natural left-to-right
ordering on the edges descending from each vertex; if the edge above a
vertex P has length C, then reversing all orderings at P and at all ver-
tices below P produces an equivalent tree. The manifold �M0�n+1 has been
studied by mathematicians in a variety of different guises (moduli space
of stable �n + 1�-pointed curves, minimal blow-up of the projective braid
arrangement, cyclic operad of mosaics). See for example [10, 11, 26]; the
latter especially gives some background references.

3.2. Combinatorics of the Link of the Origin

An alternate description of the link Ln can be given in terms of partitions
of the set �0� 1� � � � � n� of leaves (recall that we have attached a leaf labeled
0 to the root). The correspondence between partitions and trees hinges on
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(1,0)
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FIG. 11. Constructing the link of the origin in �4.

the observation that each interior edge of a tree partitions the leaves into
two sets, each with at least two elements (such a partition is called thick).
Different edges of the same tree give compatible partitions, where two
partitions �X� Y� and �X ′� Y ′� of �0� 1� � � � � n� are defined to be compatible
if one of the subsets

X ∩ X ′ X ∩ Y ′ X ′ ∩ Y Y ∩ Y ′

is empty. The link Ln can now be identified with the simplicial complex
whose k-simplices are sets of k + 1 pairwise compatible thick partitions of
�0� 1� � � � � n�. In this guise, Ln is studied in [43], where it is shown that
Ln has the homotopy type of a wedge of �n − 1�! spheres of dimension
�n− 3� (in fact, Ln is Cohen–Macaulay; see also [33]). Each of these spheres
corresponds to the boundary of an associahedron embedded in � n.



748 billera, holmes, and vogtmann

1 2 3 4
1

2
3

4

1 2 3 41 2 3 4

1 2 3 4

0 0

0

0

0

FIG. 12. A pentagon in the link.

3.3. Tree Rotations

Combinatorialists sometimes measure the distance between binary trees
by counting the number of rotations needed to change one tree to another.
Here a rotation is a move which collapses an interior edge to zero and
then expands the resulting degree 4 vertex into an edge and two degree 3
vertices in a new way (see Fig. 15). This move is known to the biologists as
a nearest neighbor interchange (NNI) [44].
In the link Ln as we have defined it, each maximal simplex corresponds

to a binary tree, and two maximal simplices share a codimension 1 face if
and only if the corresponding trees differ by a rotation move. In [37] it is

FIG. 13. Link of the origin in �4.
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FIG. 14. �4.

shown that the maximal rotation distance between two trees on n leaves is
O�n log n�, while the maximal rotation distance between two trees contained
in the same associahedron is exactly 2n − 6 (see [36]). These results give
an indication of the size of our space of trees.

4. GEOMETRY OF THE SPACE OF TREES

By the geometry of the space we mean its metric, as opposed to com-
binatorial, properties. The space of trees comes equipped with a natural
distance function, due to the fact that it is made up of standard Euclidean
orthants. The distance between any two points in the same orthant is sim-
ply the usual Euclidean distance. If two points are in different orthants, we
can join them by a sequence of straight segments, with each segment lying
in a single orthant; we can then measure the length of the path by adding
up the lengths of the segments. We define the distance between the two
points to be the minimum of the lengths of such “segmented” paths join-
ing the two points. A segmented path giving the smallest distance between
two points is called a geodesic.

0 0 0

1       2      3       4 1       2      3       4 1       2      3      4 

FIG. 15. Rotation.
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FIG. 16. Comparison triangle.

4.1. Non-positive Curvature

A metric space X is said to have non-positive curvature if triangles in X
are “at least as thin” as Euclidean triangles (see Fig. 16). More precisely,
X is said to be CAT(0) if the following is true: given any three points a� b,
and c in X, with distances d1 = d�b� c�� d2 = d�a� c�, and d3 = d�a� b�,
form a “comparison triangle” in the Euclidean plane with vertices a′� b′,
and c′ with side lengths d1 = d�b′� c′�� d2 = d�a′� c′�, and d3 = d�a′� b′�. If
x is a point on the geodesic from a to b, at distance d from a, find the
corresponding point x′ on the straight line from a′ to b′ at distance d from
a′. Then d�x� c� ≤ d�x′� c′�.
The following lemma shows that the natural metric on �n has non-

positive curvature. This key property of �n has many important conse-
quences, including uniqueness of geodesic paths and existence and unique-
ness of various types of centroids.

Lemma 4.1. � n is a CAT(0) space.

Proof. We first subdivide each orthant into the unit cubes having inte-
gral vertices. The space � n is then a cubical complex. A theorem of Gromov
[21] states that a cubical complex is CAT(0) if and only if the link of every
vertex is a flag complex, i.e., a simplicial complex in which a simplex belongs
to the complex if and only if its entire 1-skeleton does. (In particular, if all
the edges of a triangle are in the complex then so is the triangle; if all
edges of a tetrahedron are in the complex, then so is the tetrahedron, and
so on.) Note that the link Ln of the origin, defined in the previous section,
is such a complex, since simplices are defined by pairwise compatibility of
partitions.
Let v be an arbitrary vertex of the cube complex, which lies in the inte-

rior of a (unique) orthant of dimension k. This orthant corresponds to a
tree with k interior edges, and thus to a set S of k pairwise compatible
partitions of �0� � � � � n�. If k is maximal, i.e., k = n − 2, the link of v is
a triangulated sphere, which we think of as the k-fold suspension of the
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empty set. In general, the link of v is the k-fold suspension of the subcom-
plex of Ln spanned by all partitions compatible with S. Since this itself is a
flag complex, and since the suspension of a flag complex is again flag, this
completes the proof.

Alternatively, � n is the 0-cone on the link Ln (for definition, see [6, I.5]).
Since Ln is a flag complex, it is CAT(1) by Gromov’s theorem [6, 5.18,
p. 211]. A theorem of Berestowski [6, 3.14, p. 188] then implies that � n is
CAT(0).
In the case n = 4, the flag condition says that the links of all vertices

are graphs with no triangles; note that, for example, the smallest circuit in
the link of the origin has length 5. The fact that the set of unlabeled trees
forms a flag complex was noted in [3].

4.2. Geodesics

Since the tree space � n is CAT(0), it follows by [21] that there is a unique
shortest path connecting any two points of � n, called the geodesic. In this
section we characterize geodesics and show how to find them. Once the
geodesic is found, its length gives the distance between the two trees.
There is an obvious path between any two trees T and T ′ in � n, obtained

by connecting T to the origin by a straight line segment, then connecting
the origin to T ′ by another straight line segment; we will call this path the
cone path from T to T ′. The cone path may or may not be a geodesic,
depending on the “angle” it makes at the origin T0. One makes this precise
as follows.
We have described the link of the origin in � n as the union of “flat” sim-

plices, consisting of all points in each orthant with coordinate sum equal
to one. We could just as well have considered each simplex as the intersec-
tion of the unit sphere with the appropriate orthant, i.e., the set of points
such that the sum of the squares of the coordinates is equal to one. This
new metric on simplices extends to a natural metric on the entire link Ln,
in which each simplex is a right-angled spherical simplex with all edges of
length π/2. Each tree T of � n lies on a unique ray from the origin. The
intersection of this ray with Ln is called the projection of T onto Ln and is
denoted t�T �. The angle between T and T ′, denoted ��T� T ′�, is defined to
be the distance between t�T � and t�T ′� in the spherical metric on Ln.
Standard CAT(0) theory (see [6, 5.6–5.10]) tells us that the cone path

is a geodesic if and only if the angle between T and T ′ is at least π. If
��T� T ′� < π, the geodesic g from T to T ′ projects to the unique geodesic
γ from t�T � to t�T ′� in Ln; furthermore, if we know γ, we can reconstruct g.
Another standard notion we will need in this section is that of the devel-

opment of a geodesic in a spherical complex (see [6, p. 104], where the
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FIG. 17. Development of γ on S2.

development of a geodesic is more generally defined). Let v be a vertex of
Ln, and let γ be a geodesic in Ln starting at a point t in the interior of a
simplex in the star of v. If γ intersects a simplex σ in an arc of positive
length, we say that γ traverses σ . Let σ1� σ2� � � � be the sequence of sim-
plices which γ traverses. For each i, γ intersects the common face σi ∩ σi+1
in a single point, which we will call ti. If t1 �= v, take the totally geodesic
surface in σ1 containing t� v, and t1; this surface is a spherical triangle τ1,
with the distance of v to the other vertices equal to π/2 (if we think of
σ1 as lying in the unit sphere in a Euclidean orthant, this surface is the
intersection of σ1 with the 3-dimensional subspace containing these three
points). We embed this triangle as a triangle τ̄1 in S2 with the image v̄ of v
at the north pole (see Fig. 17).
If γ exits σ1 via a face with a vertex at v, we next take the totally geodesic

surface in σ2 containing v, t1, and t2; again this is a spherical triangle τ2
which we embed in S2 as a triangle τ̄2 adjacent to τ̄1, with the image of
v at the north pole. We continue to lay out triangles in S2 as long as the
“exit faces” of γ have v as a vertex. The image γ̄ of γ in S2 is called
the development of γ near v and is isometric to its preimage in γ. Recall
from Section 3 that each interior edge of a tree T partitions the leaves of
T into two sets, each with at least two elements. Edges of T and T ′ are
said to be the same, if they determine the same partition of the leaf-labels,
and compatible, if the corresponding partitions are compatible. A set of
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partitions corresponds to the set of interior edges of a tree if and only if
the partitions are pairwise compatible.

Proposition 4.1. If the cone path from T to T ′ is not a geodesic, then
there are non-empty sets E1 ⊃ E2 ⊃ · · · ⊃ Ek of the edges E�T � of T , and
F1 ⊂ F2 ⊂ · · · ⊂ Fk of the edges E�T ′� of T ′ such that

(i) each element of Ei is compatible with each element of Fi, so that
Ei ∪ Fi form the vertices of a simplex σi of Ln;

(ii) the geodesic in Ln from t�T � to t�T ′� traverses each simplex in the
sequence σ1� � � � � σk.

Proof. Since the cone path is not a geodesic, the geodesic γ realizing
the distance between t�T � and t�T ′� has length less than π.
Let σ be the simplex of Ln spanned by the edges E�T �. We first con-

sider the case that γ traverses σ . If γ is contained in the closure of σ , the
proposition is trivial. If not, γ leaves σ via a face corresponding to a sub-
set of E�T �, which we define to be E1; this face is also a face of the next
simplex σ1 which γ traverses.
Fix any vertex v in σ1 which is not in E1, and develop γ near v. Since γ

has length less than π, the development γ̄ remains in the northern hemi-
sphere; this translates to the fact all simplices encountered by γ must have
v as a vertex, including the simplex containing t�T ′�; i.e., v corresponds to
an edge of T ′. Since v was an arbitrary vertex of σ1 not in E1, the set of
vertices of σ1 consists of E1 plus a subset F1 of edges of T ′.
We now continue following the simplices traversed by γ and repeat the

argument to find vertex sets Ei and Fi as in the statement of the proposition
until we arrive at the simplex containing t�T ′�.
If γ does not traverse σ , we set E1 = E�T �, and let σ1 be the first simplex

traversed by γ. We take any vertex v of σ1 which is not in the face spanned
by E1 and develop γ near v. We conclude that every simplex encountered
by γ has v as a vertex, including the simplex containing t�T ′�. Thus all
vertices of σ1 which are not in E1 are in E�T ′�, and we can set F1 to be
the vertices of σ1 not in E1. We now continue as before until we arrive at
t�T ′�.

Corollary 4.1. If no edge of T is compatible with any edge of T ′, then
the cone path is a geodesic.

Proof. If the cone path is not a geodesic, any element of F1 is compatible
with any element of E1, by the proposition.

Example. The cone path may be a geodesic, even if T and T ′ do have
some compatible edges. For example, let T be the tree on four leaves with
edges e1 = �2� 3 � 0� 1� 4� and e2 = �1� 2� 3 � 0� 4�. Let T ′ be the tree with
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FIG. 18. Cone path may or may not be geodesic.

edges f1 = �0� 1 � 2� 3� 4� and f2 = �0� 1� 2 � 3� 4�. Then e1 and f1 are com-
patible. If the lengths of e1 and f1 are relatively large, then the geodesic
from T to T ′ passes through trees with edges �e1� f1�. However, if the
lengths of e1 and f1 are small, the cone path will be a geodesic (see Fig. 18).

Proposition 4.1 allows us to give an effective procedure for finding the
geodesic between binary trees T and T ′. We realize the orthants of T and T ′

as the totally negative and totally positive orthants of �n − 2�-dimensional
Euclidean space Rn−2. We find all possible chains Ei and Fi as in the state-
ment of the proposition, find a candidate geodesic for each chain, and
compare their lengths. We carry out this procedure in [4].
Suppose Ei has ni elements and Fi has mi elements. We order the edges

of T in such a way that edges in Ei correspond to the first ni coordinates of
Rn−2 and edges in Fi correspond to the last mi coordinates. Our candidate
for the geodesic from T to T ′ is then a union of straight line segments in
Rn−2, constrained by the fact that each line segment must lie in one of the
orthants whose first ni coordinates are negative, whose last mi coordinates
are positive, and whose remaining coordinates are zero. We illustrate this
with the following special case:
Let T ∈ � n be a tree, and let e be an interior edge of T . We denote by

�e�T the branch length of e in T .

Proposition 4.2. Let T and T ′ be binary trees with no edges in common.
Suppose the edges �ei� of T and �fi� of T ′ can be ordered in such a way
that Ei = �e1� � � � � ei� and Fi = �fi+1� � � � � fn−2� are compatible for all k =
1� � � � � n − 3. If for all i < j we have �ei�T �ej�T ′ − �ej�T �ei�T ′ > 0, then the
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geodesic from T to T ′ contains trees with edge sets Ei ∪ Fi for all i, and the
distance from T to T ′ is the length of the vector ��e1�T + �e′1�T ′� � � � � �en−2�T +
�e′n−2�T ′ �.
Proof. The compatibility conditions say that the orthants correspond-

ing to the trees Ti and Ti+1 share a codimension 1 face; in fact we may
arrange that the orthant for Ti is the orthant whose first n − 2 − i coor-
dinates are negative and whose last i coordinates are positive. The tree
T corresponds to the point �−�e1�T � � � � �−�en−2�T � and T ′ to the point
��e′1�T ′� � � � � �e′n−2�T ′ �; the inequalities ensure that the straight line between
these two points is contained in the union of the orthants corresponding to
the Ti, which is therefore the geodesic from T to T ′.

The following corollary says that we can basically ignore edges of T and
T ′ which are the same when we are computing the geodesic from T to T ′:

Corollary 4.2. Let e be an edge of T which is also an edge of T ′. Then
every tree on the geodesic from T to T ′ has e as an edge.

Proof. The geometric meaning of this statement is that the union X�e�
of the orthants containing the ray R�e� corresponding to e is convex in � n.
Since R�e� is an edge of the orthant containing T , the angle between R�e�

and T is less than π/2. Since the orthants containing T and T ′ intersect in
R�e�, the angle between T and T ′ is less than π, so that the cone path is
not a geodesic. Consider the geodesic γ in the link Ln from t�T � to t�T ′�.
By Proposition 4.1, every edge in every simplex traversed by γ is compatible
with e; i.e., γ stays in the closed star of the vertex v�e� corresponding to
e. If we develop γ near v�e�, it begins and ends in the open northern
hemisphere and so remains in the open northern hemisphere at all times.
This translates to the fact that every simplex encountered by γ in fact has
v�e� as a vertex, as we wished to show.

For any edge e, the union X�e� of quadrants containing the ray R�e� is
a product 
0�∞� × C�e�, where C�e� is a cone on the flag complex of all
sets of partitions which are compatible with e. The cone C�e� is thus also
a CAT(0) complex, consisting of a union of orthants sharing a common
origin. The geodesic from T to T ′ projects to a geodesic in C�e�; in fact, if
we know the geodesic from the projections of T and T ′ onto C�e�, we can
recover the geodesic from T to T ′ by following this geodesic while rescaling
the length of e linearly from �e�T to �e�T ′ .
We conclude this section with an easily checked criterion which is suffi-

cient to show that the cone path is not a geodesic:

Notation. Let T ∈ � n be a tree, and let e be an interior edge of T . The
norm �T� is the Euclidean length of the vector of branch lengths of edges
of T , (i.e., the square root of the sum of the squares of the branch lengths).
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FIG. 19. The cone path from T to T ′.

Let E = �e1� � � � � ek� be a set of edges of T ; we denote by T �E� the tree
with edge set exactly E, with branch lengths inherited from T . We may also
think of T �E� as obtained from T by collapsing every edge not in E. We
denote by T/E the tree obtained from T by collapsing every edge in E.

Proposition 4.3. Suppose that T and T ′ have no edges in common, but
that a set of edges E = �e1� � � � � ek� of T is compatible with a set of edges
F = �f1� � � � � fl� of T ′, and that �T �E���T ′�F�� − �T/E��T ′/F� > 0. Then
the cone path is not a geodesic.

Proof. Informally, the inequality ensures that we can produce a shorter
path than the cone path by “cutting across” the orthant corresponding to
the tree with edge set exactly E ∪ F . Formally, we show that ��T� T ′� is
less than π, and hence that the cone path is not a geodesic by Gromov’s
criterion [21].
Since T and T �E� are in the same quadrant, the angle α = ��T� T �E�� is

at most π/2; similarly, β = ��T ′� T ′�F�� ≤ π/2. Since E and F are disjoint
but compatible, ��T �E�� T ′�F�� = π/2 (see Fig. 19).
The angle between T and T ′ is at most α + π/2 + β. Therefore

��T� T ′� < π if α + β < π/2, i.e., if cos�α + β� > 0. We have

cos�α + β� = cos�α� cos�β� − sin�α� sin�β�

= �T �E��
�T�

�T ′�F��
�T ′� − �T/E�

�T�
�T ′/F�
�T ′� �

which is positive if and only if �T �E���T ′�F�� − �T/E��T ′/F� > 0.
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4.3. Centroids

There are several ways of defining the center of a finite scatter of points
X in a CAT(0) metric space, including the center of mass, the circumcenter,
and the points of maximum depth. The center of mass, defined for any
probability distribution over the space, is the unique point that minimizes
the expected squared distance from points in the space (see Section 3.2
in [25]). To define the center of mass of a finite point set, we take the
uniform distribution over X. A clear account of this type of mean value
and its properties can be found in [40, 41]. Another type of center, the
circumcenter, is the center of the smallest ball enclosing the points of X
(see, e.g., [8]). The points of maximum depth [42] are defined by forming
the convex hull of X (i.e., the smallest set containing X and containing all
geodesic paths between pairs of its points), removing the extreme points
(the minimal subset of X having the same convex hull), and repeating until
the set becomes empty.
In this section we introduce another notion of center, which we call

the centroid. The centroid of a set of n > 2 points is defined by iterat-
ing the operation of taking centroids of each subset of n − 1 points, where
the centroid of 2 points is defined to be the midpoint of the geodesic path
that joins them. We note that for n = 3, our construction gives the same
centroid as that defined in [9, pp. 63–64].
It should be noted that to compute any of these notions of center for a

finite set of points in a CAT(0) space X, one needs to be able to compute
the geodesic paths between pairs of points, as discussed in the previous
section for the space � n.
For x� y ∈ X, let c��x� y�� denote the midpoint of the (unique) geodesic

joining x to y. Suppose Y ⊂ X is a set with n > 2 elements (some of which
may be repeated), and suppose we have defined c�W � for all W ⊂ X with
�W � < n. Then let c1�Y � denote the set �c�W � �W ⊂ Y� �W � = n − 1�,
and for k > 1, ck�Y � = c1�ck−1�Y ��. Note that the sets ck�Y � all have n
elements (some possibly repeated).
We begin by observing that for Euclidean spaces, the sets ck�Y � can be

used to find the usual centroid c�Y � = 1
�Y �

∑
y∈Y y of any finite set Y . It is

straightforward to check in this case that c�Y � = c�c1�Y ��, and if �Y � = n,
diam c1�Y � = 1

n−1 diam c�Y �. From this the following is immediate.

Proposition 4.4. If X is a subset of a Euclidean space and c�W � denotes
the centroid of W , then for any finite subset Y ⊂ X, the elements in ck�Y �
converge to the point c�Y � ∈ X as k → ∞.

Our goal is to prove that the convergence in Proposition 4.4 continues
to hold in an arbitrary CAT(0) space; the resulting limit point c�Y � will
be defined to be the centroid of the set Y . To do this we need to prove a
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general form of the convexity property that essentially defines these spaces.
Suppose centroids exist for all n-element subsets of a CAT(0) space X. We
say the centroid function c�Y � is convex if whenever Y = �y1� � � � � yn� and
Y ′ = �y ′

1� � � � � y ′
n�, then d�c�Y �� c�Y ′�� ≤ 1

n

∑
d�yi� y ′

i�.
Theorem 4.1. In any CAT(0) space X,

1. centroids exist for any finite set Y ⊂ X, and

2. the centroid function is convex.

Proof. The proof is by induction on n = �Y �. The case n = 2 is Propo-
sition II.2.2 in [6].
Suppose n ≥ 3 and we have a convex centroid function c�W � for �W � =

n − 1. Let Y = �y1� � � � � yn� and Yi = Y \ �yi�. Suppose Y has diameter D.
Then by convexity for �n − 1�-sets, d�c�Yi�� c�Yj�� ≤ 1

n−1d�yi� yj� ≤ 1
n−1D,

and so diam c1�Y � ≤ 1
n−1D. Thus the diameter of ck�Y � is bounded above

by � 1
n−1�kD and so goes to zero.

To show convergence, let Dk denote the diameter of ck�Y �, and consider
the sequence zk ∈ ck�Y �, where z0 = y1, z1 = c�Y1�, z2 = c��c�Yi� � i �=
1��, etc. It follows by convexity for �n − 1�-sets that d�zk� zk+1� ≤ 1

n−1Dk.
Thus for l ≥ k,

d�zk� zl� ≤ Dk + 1
n − 1

Dk +
(

1
n − 1

)2

Dk + · · · = n − 1
n − 2

Dk�

showing that �zk� is a Cauchy sequence. Thus, centroids exist for n-sets.
To show convexity of c�Y �, �Y � = n, suppose Y = �y1� � � � � yn� and Y ′ =

�y ′
1� � � � � y ′

n�. If Yi = Y \ �yi� and Y ′
i = Y ′ \ �y ′

i�, then by convexity for
�n − 1�-sets,

d
(
c�Yi�� c�Y ′

i �
) ≤ 1

n − 1
∑
j �=i

d�yj� y ′
j� (1)

for each i. Let δi = d�yi� y ′
i� and d0 = �δ1� � � � � δn�. Then if dk is the cor-

responding vector of distances between elements of ck�Y � and ck�Y ′�, it
follows from (1) that dk ≤ Bk

nd0, where Bn = 1
n−1�Jn − In�, Jn is the n × n

matrix of 1’s and In is the n× n identity matrix. Since Bk
n → 1

n
J as k → ∞,

it follows that d�c�Y �� c�Y ′�� ≤ 1
n

∑
d�yi� y ′

i� as desired.
Since � n is a CAT(0) space, any finite set of points has a unique centroid.

If the points are all in the same orthant, i.e., correspond to trees with the
same combinatorial structure but possibly different branch lengths, then the
centroid is the usual Euclidean centroid of the points; i.e., it corresponds
to the tree with the given combinatorial structure and the average of the
branch lengths (see Proposition 4.4).
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FIG. 20. Three trees.

If two trees have all branch lengths equal to 1 but have no combinatorial
structure in common, the centroid will be the origin, i.e., the tree with all
branch lengths equal to 0. In a large set which contains one tree which is
markedly different from the others, the effect of this tree on the centroid
will be negligible. An interesting effect occurs when there are duplicate
trees in the set. We illustrate this by the following example: Let T1� T2, and
T3 be the trees illustrated in Fig. 20.
The centroid of �T1� T2� T3� is the left tree in Fig. 21, while the centroid

of �T1� T1� T2� T2� T3� T3� is the tree on the right; this shows a non-linear
property of this definition of centroid.
This method of taking centroids provides a coherent mathematical way of

forming the consensus of a set of trees. The convexity property of centroids
says that given two sets �T1� � � � � Tk� and �T ′

1� � � � � T ′
k� of trees, the dis-

tance between the centroids will be less than or equal to the average of the
distances from Ti to T ′

i . Thus taking centroids of the two sets creates two
trees which agree at least as well as the average pairwise agreement.

1 32 4
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1

1/3

1 32 4

0

1

2/5

FIG. 21. Two different centroids.
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4.4. Probability Measures on Tree Space

Aldous [1] has described several possible constructions for probability
measures on combinatorial trees without branch lengths. One of the param-
eters he proposes to use is the height of the tree, which is defined as the
largest number of interior edges between a leaf and the root.
There are several natural routes to complementing our geometric con-

struction with a probability measure. They are all simplified by imposing a
bound on the interior branch lengths. This has the effect of truncating each
orthant to a cube.
In this section we assume the branch lengths are renormalized, to obtain

unit cubes. The extension to more general compact subsets of tree space is
straightforward. Here are some natural measures:

• The base measure called dτ puts a probability of 1/�2n − 3�!! on
each cube, while within the cube the distribution is considered uniform.
Note that balls of the same radius centered at different points may have
different probabilities. It is clear that for τ far from any of the boundary
regions (i.e., equivalently all the edges of τ sufficiently large), dτ will be
proportional to the volume of a small cube around τ. In this case dτ denotes
the local Lebesgue measure in the cube.
If τ is a metric binary tree with exactly one small edge, then its neigh-

borhood will meet three cubes. If the number of small edges is k there will
be at most �2k + 1�!! neighboring cubes for τ.
For trees with n leaves, the maximum volume attained is at the origin,

which is contained in 2�n − 3�!! cubes.
• If one wants to describe the simple case of a distribution concen-

trated around a center, then a probability distribution can be defined using
the notion of distance we have developed above. This follows a Mallows’
type model as developed for the symmetric group in [12, 32] or for decision
trees in [35]. In this model the central tree τ0 together with an exponential
family produces a probability for any branching pattern τ, defined by

f �τ� = Ke−λd�τ�τ0� dτ�

The term K is a normalizing constant and λ is a concentration param-
eter; for λ = 0 the distribution is the base measure, and as λ increases the
measure will be more concentrated around τ0. This is a distribution con-
centrated around the central element τ0, which we can choose to be the
centroid that we defined in Section 4.3.

• Non-uniform probabilities can be constructed to agree with some
information about the data; for example if one wants to be nearly sure
to have a binary tree, without knowing which tree, each orthant could be
given measure 1/�2n − 3�!!, but the distribution on each cube could be
concentrated at the point with all branch lengths equal to 1.
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FIG. 22. A hot plot of a possible probability.

Remarks. (1) In the case when the parametric maximum likelihood
method has been used to determine the optimal tree, there is a natu-
ral measure on � n that will result in likelihood-based confidence regions.
This supposes a parametric mutation model; an example of this is provided
in [4].

(2) Eventually our aim is to be able to map a probability on to the
space so we can create isocontours determining confidence regions. Maybe
a good intuitive picture is that found in Fig. 22.

5. REAL DATA EXAMPLE

In this section we illustrate how the questions of averaging trees and
building confidence regions in tree space come about, by examining a real
data set. This data set consists of 12 mitochondrial DNA sequences, each of
length 898 bases, from 12 species of primates. These data are published in
[23]. We will use the program dnapars, from Felsenstein’s Phylip package
(available on his website [19]) to find the most parsimonious trees for these
DNA sequences.
The following list shows the species names, in quotes, together with the

first 80 characters of our DNA data. Data are collected by reading the
DNA sequences for a specific gene occurring in all of the species. These
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sequences are written in rows, and the rows undergo a multiple alignment
so that they have the greatest possible agreement in the columns. Here is
part of the data:

’Lemur_catta’ AAGCTTCATAGGAGCAACCATTCTAATAATCGCACATGGCCTTACATCATCCA...
’Tarsius_syrichta’AAGTTTCATTGGAGCCACCACTCTTATAATTGCCCATGGCCTCACCTCCTCCC...
’Saimiri_sciureus’AAGCTTCACCGGCGCAATGATCCTAATAATCGCTCACGGGTTTACTTCGTCTA...
’Macaca_sylvanus’ AAGCTTCTCCGGTGCAACTATCCTTATAGTTGCCCATGGACTCACCTCTTCCA...
’Macaca_fascicul.’AAGCTTCTCCGGCGCAACCACCCTTATAATCGCCCACGGGCTCACCTCTTCCA...
’Macaca_mulatta’ AAGCTTTTCTGGCGCAACCATCCTCATGATTGCTCACGGACTCACCTCTTCCA...
’Macaca_fuscata’ AAGCTTTTCCGGCGCAACCATCCTTATGATCGCTCACGGACTCACCTCTTCCA...
’Hylobates’ AAGCTTTACAGGTGCAACCGTCCTCATAATCGCCCACGGACTAACCTCTTCCC...
’Pongo’ AAGCTTCACCGGCGCAACCACCCTCATGATTGCCCATGGACTCACATCCTCCC...
’Gorilla’ AAGCTTCACCGGCGCAGTTGTTCTTATAATTGCCCACGGACTTACATCATCAT...
’Pan’ AAGCTTCACCGGCGCAATTATCCTCATAATCGCCCACGGACTTACATCCTCAT...
’Homo_sapiens’ AAGCTTCACCGGCGCAGTCATTCTCATAATCGCCCACGGGCTTACATCCTCAT...

The program dnapars found two different trees, each with total branch
length 1163, meaning that 1163 mutations are needed to explain the DNA
sequences in each tree (see Fig. 23 and 24). We note that the situation of
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Hylobates

Macaca_fus

Macaca_mul

Macaca_fas

Macaca_syl
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Tarsius_sy

Lemur_catt

FIG. 23. First tree.
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FIG. 24. Second tree.

the root is unspecified a priori; however, it is known in this case to be at the
Lemur branch as depicted. Simple inspection of the two trees shows that
only one of its aspects seems subject to be in doubt, namely the branching
between Pan, Gorilla, and Homo sapiens.
Thus the relevant confidence statement says that we are “sure” of all

parts of the tree except for the relationship between Homosapiens, Pan,
and Gorilla. Either the first two are together or the latter two are together.
Only two of the three possible subtrees with three branches are equally
likely; thus a confidence region assigning equal probabilities to each of
these two in a continuous way would be reasonable if no other information
were available.
The fact that two different trees were produced is a result of conflicts in

the data. Biologists often translate such contradictions by saying that the
tree has an unresolved node and using a triple branch at this node, with
homo sapiens, gorilla, and pan all descended from a single ancestor, with
no chosen two-some apparent among them. Note that the centroid of the
two trees in the sense of Section 4.3 in tree space is on the boundary line
represented by the same unresolved tree. Thus here our notion of centroid
gives a triple branch at the disputed node with homo sapiens, gorilla,
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2.5

FIG. 25. Two subtrees and their centroid.

and pan all coming from a common ancestor, which is the same as the
representation of uncertainty that the biologists use.
If the proportions were not 50–50 we would get a binary tree with non-

zero edge lengths. For instance if we assigned a biological meaning to the
edge lengths, such as the number of mutations along that branch, then
the respective lengths given by dnapars on the relevant subtrees would be
those shown on the left in Fig. 25. If we used the method from Section 4.3
the resulting centroid tree would have the subtree on the right.
Biologists would explore the proximity to the boundary by using boot-

strapping to simulate small plausible perturbations in the data. To illustrate
this, we perturb the data with Phylip’s seqboot program, thereby obtain-
ing 100 data sets of exactly the same dimensions (12 × 898). Each of these
data matrices will give one or several trees.
When these trees are combined by using a majority rule consensus (i.e.,

which concludes that a partition is present if it is present in a majority of
the trees, and labels that edge of the tree with the percentage of trees that
had that particular partition), the edges are assigned a number correspond-
ing to the frequency with which a particular partition occurred. These are
interpreted by biologists as surrogate “confidence levels” for the partitions.
If a number is close to 50% this indicates a doubt as to whether the edge
exists.
Such an edge-weighted tree is unsatisfactory as a summary of the per-

turbation analysis. A multidimensional representation would be more
informative. The embedding property of the tree space will often make
such a representation feasible in practice, at least approximately. In the
case of Fig. 26 the only notable differences that occur are on three edges.
We can project all the trees onto a complex of 3-dimensional cubes. Look-
ing at the data this way, it is possible to further simplify since for instance
the cube with the edge corresponding to the grouping of homo sapiens
and gorilla does not exist. A more detailed analysis of such examples can
be found in [4].
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FIG. 26. Tree with confidence levels.
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