Ninth exercise sheet Advanced Algebra II.

Problem 1 (2 points). Let R be a convex subring of a real closed field K and $\Gamma = K^{\times}/R^{\times}$ the target of the valuation defined by R. Show that Γ is a Q-vector space!

Problem 2 (2 points). Let R be a ring and A an integral R-algebra. Show that Sper A is R-proper!

Problem 3 (6 points). Let A be a PID, $\mathfrak{p} \in \operatorname{Spec} A$ a real prime ideal, $\mathfrak{p} = \pi A$ with $\pi \in A$ and $\overline{r} = r \mod \mathfrak{p}$. Fix an ordering of A/\mathfrak{p} and let $\mathfrak{P}_o = \{r \in r \mid \overline{r} \geq 0\} \in \operatorname{Sper} A$. Show that there are precisely two elements $\mathfrak{P}_{\pm} \in \operatorname{Sper} A$ contained in \mathfrak{p}_o with $\operatorname{supp} \mathfrak{P}_{\pm} = \{0\}$, one with $\pi \in \mathfrak{P}_+$ and one with $-\pi \in \mathfrak{P}_-$.

Problem 4 (4 points). In the situation of the previous problem, let \mathfrak{P} be one of \mathfrak{P}_{\pm} , K the quotient field of A ordered by \mathfrak{P} and R the convex hull of A in K. Show that $R = A_{\mathfrak{p}}$, the localization of A at \mathfrak{p} .

In particular, R is a DVR.

Problem 5 (2 points). In the situation of the previous two problems, let $\mathcal{R}_{A,\mathfrak{P}}$ be the convex hull of A in the real closure $\mathfrak{K}(\mathfrak{P})$ of K. Show that the valuation group of $\mathcal{R}_{A,\mathfrak{P}}$ is isomorphic to \mathbb{Q} !

In particular, $\mathcal{R}_{A,\mathfrak{P}}$ has rank one and the map

$$(2.3.1) \qquad \qquad \operatorname{Spec}_{\mathcal{R}_{A,\mathfrak{B}}} \to \{\mathfrak{P}\}$$

discussed in Proposition 2.3.4 from the lecture is bijective in this case. In the situation of Problem 8, for a non-zero polynomial

$$P = \sum_{\alpha \in \mathbb{N}^m} p_{\alpha} X^{\alpha} \in A = R[X_1, \dots, X_m]$$

let $\operatorname{lse}_{\leq}(P)$ (resp. $\operatorname{mse}_{\leq}(P)$) be the \leq -minimum (resp. maximum) of the set of $\alpha \in \mathbb{N}^m$ with $p_{\alpha} \neq 0$ and let

$$lsc_{\underline{\lhd}}(P) = p_{lse_{\underline{\lhd}}(P)}$$
$$msc_{\underline{\lhd}}(P) = p_{mse_{\underline{\lhd}}(P)}.$$

In the following we apply this with R = K a real closed field.

Problem 6 (4 points). Show that

$$\mathfrak{P}^{(0)}_{\trianglelefteq} = \left\{ f \in A \mid f = 0 \text{ or } \mathrm{lsc}_{\trianglelefteq}(f) > 0 \right\}$$

is a prime cone in A!

Problem 7 (4 points). Show that

$$\mathfrak{P}_{\trianglelefteq}^{(\infty)} = \left\{ f \in A \mid f = 0 \text{ } or \operatorname{msc}_{\trianglelefteq}(f) > 0 \right\}$$

is a prime cone in A!

Four of the 24 points from this sheet are bonus points. Solutions should be submitted in the lecture Friday, June 21.