Eighth exercise sheet Advanced Algebra II. In the following it can be taken for granted that a subgroup Θ of an ordered abelian group Γ is convex if and only if $[0, \theta]_{\Gamma} \subseteq \Theta$ for all $\theta \in \Theta$. It can also be taken for granted that the convex hull of a subring of an ordered field is a subring of that field.

Problem 1 (6 points). Let K be a field, Γ an ordered abelian group and $K^{\times} \xrightarrow{v} \Gamma$ a surjective group homomorphism defining a valuation of K and $R = \{k \in K \mid v(k) \ge 0\}$ the valuation ring defined by v. Show that we have a bijection between SpecR and the set of convex subgroups $\Theta \subseteq \Gamma$, sending $\mathfrak{p} \in \text{SpecR}$ to $\Theta = v^{-1}R_{\mathfrak{p}}^{\times}$ and Θ to $\mathfrak{p} = \{r \in R \mid v(r) \notin \Theta\}$.

Problem 2 (2 points). In the situation of the previous problem, describe the topological space SpecR in terms of the ordered abelian group Θ !

Problem 3 (2 points). In the situation of the first problem, let $(k_i)_{i=1}^n \in K^n$ with $n \ge 2$ such that $\sum_{i=1}^n k_i = 0$. Show that $\min_{1 \le i \le n} v(a_i)$ is attained at least twice!

Problem 4 (2 points). In the situation of the first problem, let $K_o \subseteq K$ be a subfield over which K is algebraic. For all $k \in K^{\times}$, show that there exists a positive integer n such that $nv(k) \in v(L^{\times})!$

Problem 5 (2 points). In the situation of the previous problem, let $R_o = R \cap K_o$. Show that $\operatorname{Spec} R_o \to \operatorname{Spec} R$ is bijective!

Problem 6 (2 points). In the situation of the previous problem, show that $\operatorname{Spec} R \to \operatorname{Spec} R_o$ is in fact a homeomorphism!

Problem 7 (6 points). Let K_o be an ordered field and K its real closure. Show that we have a bijection between the sets of convex subrings $R \subseteq K_o$ and $S \subseteq K$, sending R to its convex hull in K and S to $S \cap K_o$.

Let $m \in \mathbb{N}$ and \leq the partial ordering of \mathbb{N}^m by $\alpha \leq \beta$ iff $\alpha_i \leq \beta_i$ for $1 \leq i \leq m$.

Problem 8 (6 points). Let \trianglelefteq be a linear order on \mathbb{N}^n which is translation invariant in the sense that $\alpha \trianglelefteq \beta$ implies $\alpha + \gamma \trianglelefteq \beta + \gamma$ for all $\gamma \in \mathbb{N}^n$. Show that the following conditions are equivalent:

- \leq extends \leq .
- \trianglelefteq is a well-ordering of \mathbb{N}^n .
- \mathbb{N}^n has a \trianglelefteq -smallest element.
- 0 is the \trianglelefteq -smallest element of \mathbb{N}^n .

Eight of the 28 points for this sheet are bonus points. Solutions should be submitted in the lecture Friday, June 14.