Fifth exercise sheet Advanced Algebra II.

Problem 1 (7 points). Let $X \xrightarrow{f} Y$ be a continuous map and $y \in Y$ such that the following assumptions hold:

- The fibre F of f at y is finite: $f^{-1}{y} = {x_1, ..., x_m} =: F$.
- For $1 \leq i < j \leq m$, x_i and x_j have disjoint injective object of \mathcal{A} belongs to \mathcal{X} .
- If $A \subseteq X$ is closed and $A \cap F = \emptyset$ then $y \notin f(A)$ where the closure is taken in Y.

For a sheaf \mathcal{G} of sets on X, show that we have an isomorphism

$$(f_*\mathcal{G})_y \xrightarrow{\cong} \prod_{i=1}^m \mathcal{G}_{x_i}$$

given by the collection of the morphisms (1.4.2) from the lecture!

Problem 2 (2 points). Let \mathcal{A} and \mathcal{B} be abelian categories, where \mathcal{A} has sufficiently many injective objects. Let $0 \to F' \to F \to F'' \to 0$ be a sequence of functors from \mathcal{A} to \mathcal{B} such that $0 \to F'X \to FX \to F''X$ is exact for arbitrary objects X of A, and such that $FX \to F''X$ is an epimorphism when X is injective. Construct a long exact sequence

$$0 \to F'X \to FX \to F''X \to R^1F'X \to \dots$$
$$\dots \to R^{p-1}F''X \to R^pF'X \to R^pFX \to R^pF''X \to R^{p+1}F'X \to \dots$$

Problem 3 (3 points). Let X be an arbitrary topological space which the union of its open subsets U and V. Construct an exact sequence

$$0 \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to H^0(U \cap V, \mathcal{F}) \to \dots$$
$$\to H^{p-1}(U \cap V, \mathcal{F}) \to H^p(X, \mathcal{F}) \to H^p(U, \mathcal{F}) \oplus H^p(V, \mathcal{F}) \to H^p(U \cap V, \mathcal{F}) \to \dots$$

A point x of a spectral space X will be called constructible if $\{x\}$ is a constructible subset of X.

Problem 4 (8 points). Let X be a spectral space and \mathfrak{B}_o a topology base on X and \mathfrak{B}_c a subset of

$$\mathfrak{B}_{c} = \left\{ \{x\} \mid x \text{ is a construcible closed point of } X. \right\}$$

such that the elements of \mathfrak{B}_o are quasi-compact, the intersection of two elements of \mathfrak{B}_o is a (possibly empty) disjoint union of elements of \mathfrak{B}_o and such that for $\Omega \in \mathfrak{B}_o$, $X \setminus \Omega$ is a (possibly empty) finite disjoint union of elements of \mathfrak{B} , where $\mathfrak{B} = \mathfrak{B}_o \cup \mathfrak{B}_c$.

Show the following:

• \mathfrak{B} is a topology base of X^{con} .

- Every open covering of a clopen subset of X^{con} can be refined to a finite disjoint decomposition into elements of \mathfrak{B}_c .
- For every constructible closed point $x \in X$ we have $\{x\} \in \mathfrak{B}$.
- If x ≠ y and x is a specialization of y, then x is a constructible closed point of X.
- The Krull dimension of X is at most one.

Solutions should be submitted in the lecture Friday, May 17.

 $\mathbf{2}$