Fourth exercise sheet Advanced Algebra II. We consider the following two conditions on a class \mathcal{X} of objects of an abelian category \mathcal{A} :

A: Every direct summand of an element of \mathcal{X} belongs to \mathcal{X} . In particular, every object isomorphic to an element of \mathcal{X} belongs to \mathcal{X} .

B: For every object A of \mathcal{A} there is a monomorphism $A \to X$ with $X \in \mathcal{X}$.

Problem 1 (3 points). If assumptions A and B hold, show that every injective object of \mathcal{A} belongs to \mathcal{X} .

If $\mathcal{A} \xrightarrow{F} \mathcal{B}$ is a right exact functor to an abelian category \mathcal{B} , we consider the following assumption:

C: If $0 \to X' \to X \to X'' \to 0$ is a short exact sequence in \mathcal{A} with $X' \in \mathcal{X}$ and $X \in \mathcal{X}$, then $X'' \in \mathcal{X}$ and

 $0 \to FX' \to FX \to FX'' \to 0$

is exact.

Problem 2 (4 points). Assume that F and \mathcal{X} are as above, that assumptions A, B and C hold and in addition that \mathcal{A} has sufficiently many injective objects. Show that the elements $X \in \mathcal{X}$ are F-acyclic in the sense that $R^p F X = 0$ when p > 0.

Problem 3 (5 points). Let \mathcal{A} be the category of sheaves of abelian groups on the topological space X, let \mathcal{X} be the class of objects \mathcal{F} of \mathcal{A} such that the restriction map

 $\mathcal{F}(X) \to \mathcal{F}(U)$

is surjective for arbitrary open $U \subseteq X$, and let F be the functor of sections on an open subset U. Verify the above conditions A, B and C!

Problem 4 (3 points). Use the previous results for alternative proofs of Remark 1.4.1 (that $\mathcal{F} \to H^*(U, \mathcal{F}|_U)$ is the derived functor of $\mathcal{F} \to \mathcal{F}(U)$) and Remark 1.4.3 (the Leray spectral sequences).

Problem 5 (5 points). Let $X \xrightarrow{f} Y$ be continuous and \mathcal{F} a sheaf of abelian groups on X. Derive an exact sequence

 $0 \to H^1(Y, f_*\mathcal{F}) \to H^1(X, \mathcal{F}) \to H^0(Y, R^1f_*\mathcal{F}) \to H^2(Y, f_*\mathcal{F}) \to H^2(Y, \mathcal{F})$ from the Leary spectral sequence.

Solutions should be submitted in the lecture Friday, May 10.