Second exercise sheet Advanced Algebra II.

Problem 1 (4 points). Let $\mathcal{F} \xrightarrow{f} \mathcal{G}$ be a morphism of presheaves of sets on the topological space X, where \mathcal{F} is separated. Show that the map between stalks $\mathcal{F}_x \to \mathcal{G}_x$ induced by f is injective for all $x \in X$ if and only if the map $\mathcal{F}(U) \xrightarrow{f} \mathcal{G}(U)$ is injective for all open subsets $U \subseteq X$.

Problem 2 (4 points). Let $\mathcal{F} \xrightarrow{f} \mathcal{G}$ be a morphism of sheaves of sets on the topological space X. Show that the map between stalks $\mathcal{F}_x \to \mathcal{G}_x$ induced by f is bijective for all $x \in X$ if and only if the map $\mathcal{F}(U) \xrightarrow{f} \mathcal{G}(U)$ is bijective for all open subsets $U \subseteq X$.

Let \mathcal{F} be a presheaf of sets on X and $(\text{Sheaf}(\mathcal{F}))(U)$ the set of all $(f_x)_{x \in U} \in \prod_{x \in U} \mathcal{F}_x$ such that the open subsets $V \subseteq U$ with the property that there is $\phi \in \mathcal{F}(V)$ such that

 $f_x = (\text{image of } \phi \text{ under } \mathcal{F}(V) \to \mathcal{F}_x)$

holds for all $x \in V$ cover X. With the obvious maps of restriction to smaller open subsets, this is a presheaf of sets of X, and we have a morphism

(1)
$$\mathcal{F} \xrightarrow{l_{\mathcal{F}}} \operatorname{Sheaf}(\mathcal{F})$$

defined by

$$\iota_{\mathcal{F}}(\phi) = (\text{image of } \phi \text{ under } \mathcal{F}(U) \to \mathcal{F}_x)_{x \in U}$$

for $\phi \in \mathcal{F}(U)$.

Problem 3 (3 points). Show that the presheaf $\text{Sheaf}(\mathcal{F})$ is a sheaf.

It is easy to see that we have a well-defined morphism

(2)
$$\operatorname{Sheaf}(\mathcal{F})_{\xi} \xrightarrow{\kappa_{\mathcal{F}}, \xi} \mathcal{F}_{\xi} \mathcal{F}_{\xi}$$

sending, for arbitrary open neighbourhoods U of ξ , the image in Sheaf $(\mathcal{F})_{\xi}$ of $(f_x)_{x \in U} \in \text{Sheaf}(\mathcal{F}(U))$ to f_{ξ} .

Problem 4 (4 points). For an arbitrary presheaf of sets \mathcal{F} , show that $\kappa_{\mathcal{F},\xi}$ and the morphism induced by $\iota_{\mathcal{F}}$ on stalks at ξ are inverse to each other bijections $\mathcal{F}_{\xi} \cong \text{Sheaf}(\mathcal{F})_{\xi}$.

Problem 5 (2 points). Let \mathcal{F} be a presheaf of sets on the topological space X. Then the morphism $\mathcal{F} \to \text{Sheaf}(\mathcal{F})$ is an isomorphism if and only if \mathcal{F} is a sheaf.

Let $(\mathcal{F}_{\lambda})_{\lambda \in \Lambda}$ be a family of sheaves of abelian groups on X. Let $(\coprod_{\lambda \in \Lambda} \mathcal{F}_{\lambda})(U)$ be the set of all $(f_{\lambda})_{\lambda \in \Lambda} \mathcal{F}_{\lambda}(U)$ such that the open subsets $V \subseteq U$ with the property that there are only finitely many $\lambda \in \Lambda$ with $f_{\lambda}|_{V} \neq 0$.

Problem 6 (3 points). Show that this a coproduct of the \mathcal{F}_{λ} in the category of sheaves, and calculate its stalk!

Solutions should be submitted in the lecture Friday, April 26.

 $\mathbf{2}$