Problem 1 (6 points). Let X be a spectral space. Show that X is Noetherian if and only if for every spectral space Y, every continuous map $X \xrightarrow{f} Y$ is spectral!

Problem 2 (2 points). Let \mathfrak{P} be a prime cone of the ring R and $\mathfrak{p} = \operatorname{supp} \mathfrak{P}$. Show that every \mathfrak{P} -convex ideal of R contains \mathfrak{p} .

Problem 3 (12 points). Let \mathfrak{P} and \mathfrak{p} be as in the previous exercise. Show that the following defines a bijection between the set of prime cones \mathfrak{Q} of R with $\mathfrak{Q} \supseteq \mathfrak{P}$ and the set of \mathfrak{P} -convex prime ideals \mathfrak{q} of R:

- A prime cone \mathfrak{Q} containing \mathfrak{P} is sent to $\mathfrak{q} = \operatorname{supp} \mathfrak{Q}$.
- A \mathfrak{P} -convex prime ideal \mathfrak{q} is sent to $\mathfrak{Q} = \mathfrak{q} \cup \mathfrak{P}$.

Solutions should be submitted in the lecture Friday, April 19.