Characterization of weak boundary values of L^p -functions by approximation

JEAN RUPPENTHAL (UNIVERSITÄT BONN)

Let $D \subset \mathbb{C}^n$ be bounded with C^1 -boundary and $1 \leq p < \infty$. Then $f \in L^p(D)$ with $df \in L^p_1(D)$ has boundary values $f_b \in L^p(\partial D)$ such that Stokes Theorem is valid. If we just know $\overline{\partial} f \in L^p_{0,1}(D)$ we say that f has boundary values $f_b \in L^p(\partial D)$ if the Stokes Formula

$$\int_{\partial D} f_b \varphi|_{\partial D} = \int_D \overline{\partial} f \wedge \varphi + \int_D f \overline{\partial} \varphi \tag{1}$$

holds for all $\varphi \in C^{\infty}(\overline{D})$. Such boundary values play a decisive role in the study of the boundary regularity of the $\overline{\partial}$ -equation or the complex Green operator. In this talk we show that the space of functions with such L^p -boundary values is exactly the completion of $C^{\infty}(\overline{D})$ under the norm

$$||f||_* = ||f||_{L^p(D)} + ||\overline{\partial}f||_{L^p_{0,1}(D)} + ||f|_{\partial D}||_{L^p(\partial D)}.$$

Similar results are true for forms of higher degree. As applications, we show that $f \in L^1_{loc}(D)$ with $\overline{\partial} f = 0$ in the sense of distributions is C^{∞} -smooth and that Stokes Formula (1) holds for $f \in C^0(\overline{D})$ with $\overline{\partial} f \in L^1_{0,1}(D)$ (in that case $f_b = f|_{\partial D}$).

Setting

 $D \subset \subset \mathbb{C}^n$, ∂D C^1 -smooth, $\iota : \partial D \hookrightarrow \mathbb{C}^n$, $1 \leq p < \infty$.

Definition

Let $f \in L^p(D)$ with $\overline{\partial} f \in L^p_{0.1}(D)$.

Then f has got boundary values $f_b \in L^p(\partial D)$ if

$$\int_{bD} f_b \cdot \iota^*(\varphi) = \int_D \overline{\partial} f \wedge \varphi + \int_D f \cdot \overline{\partial} \varphi \tag{2}$$

for all $\varphi \in C^{\infty}_{n,n-1}(\overline{D})$. Let $B^p(D)$ be the space of all such functions.

Where do such boundary values appear?

Example:

Theorem (Harvey/Polking 1984)

Let r be the strictly plurisubharmonic defining boundary function of a strictly pseudoconvex domain $D \subset\subset \mathbb{C}^n$ and $f\in L^1_{0,1}(D)$ with $\overline{\partial} f=0$ and

$$|r|^{-1/2}\overline{\partial}r\wedge f\in L^1_{0,2}(D).$$

Then there exists $u \in B^1(D)$ such that

$$\overline{\partial}u=f.$$

Denote the completion of

$$C^{\infty}(\overline{D})$$

under the norm

$$||f||_{*,p} = ||f||_{L^p(D)} + ||\overline{\partial}f||_{L^p_{0,1}(D)} + ||f|_{\partial D}||_{L^p(\partial D)}$$

by

$$\widehat{C_p^\infty}(D) = \big(C^\infty(\widehat{\overline{D}), \|\cdot\|_{*,p}}\big).$$

Then our result (in the case of functions) is:

Theorem (R., 2006)

Let $1 \le p < \infty$. Then:

$$\widehat{C_p^{\infty}}(D) = B^p(D).$$

<u>Proof:</u> The main idea is: convolution with a carefully choosen Dirac-sequence. \Box

Similar results are true for forms of higher degree.

Remark on continous boundary values

Let $f \in C^0(\overline{D}), \ \overline{\partial} f \in L^1_{0,1}(D)$. Then:

$$f^j|_{\partial D} \to f|_{\partial D}$$
 in $L^{\infty}(\partial D)$

 $\Rightarrow f \in B^1(D)$ with $f_b = f|_{\partial D}$.

Applications:

I. Bochner-Martinelli-Koppelman-Formula (for L^p -functions)

Let $f \in C^1(\overline{D})$. Then

$$f(z) = \int_{\partial D} f|_{\partial D}(\zeta) K_0(\zeta, z) - \int_{D} \overline{\partial}_{\zeta} f(\zeta) \wedge K_0(\zeta, z) \quad (3)$$

with

$$K_0(\zeta, z) = \frac{1}{(2\pi i)^n} \beta^{-n} \partial \beta \wedge (\overline{\partial} \partial \beta)^{n-1}, \ \beta = \|\zeta - z\|^2.$$

Remarks:

1.
$$K_0 \in C^{\infty}(\mathbb{C}^n \times \mathbb{C}^n \setminus \{\zeta = z\})$$

2.
$$g \mapsto \int_{\partial D} g K_0$$
 is continous $L^1(\partial D) \to L^1(D)$

3.
$$g \mapsto \int_D g \wedge K_0$$
 is cont. $L^1_{0,1}(D) \to L^1(D)$

$$\Rightarrow$$
 (3) is valid in $L^1(D)$ for $f \in B^1(D)$.

II. Regularity of holomorphic functions (a)

Let $f \in B^1(D)$, $\overline{\partial} f = 0$.

BMK-Formula:

$$f(z)=\int_{\partial D}f_b(\zeta)K_0(\zeta,z)\quad \text{ f. a. a. }z\in D.$$

$$\Rightarrow f\in C^\infty(D).$$

III. Regularity of holomorphic functions (b)

Let $G \subset \mathbb{C}^n$ open, $f \in L^1_{loc}(G)$, $\overline{\partial} f = 0$. Then: $f \in B^1(B_{\epsilon}(p))$ f. a. a. $B_{\epsilon}(p) \subset \subset G$ $\Rightarrow f \in C^{\infty}(G)$.

Proof: Let $p \in G$ and $\delta > 0$ such that

$$B_{\delta}(p) \subset\subset G$$
.

Then there exists $\{f^j\}_{j=1}^{\infty} \subset C^{\infty}(B_{\delta}(p))$ such that

$$f^j \to f \text{ in } L^1(B_\delta(p)),$$

 $\overline{\partial} f^j \to 0 = \overline{\partial} f \text{ in } L^1_{0.1}(B_\delta(p)).$

Fubini $\Rightarrow f^j|_{\partial B_{\epsilon}(p)}$ converges in $L^1(\partial B_{\epsilon}(p))$ for almost all $0 < \epsilon < \delta$.

$$\Rightarrow f \in B^1(B_{\epsilon}(p))$$
 f. a. a. $0 < \epsilon < \delta$.

The last step follows with II.