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A class of second-order systems Motivation and Framework
Example

Second-order systems: Framework

z(t)+ Apz(t) + Dz(t) = Bpu(t), t=>0,
2(0) = 2z, 2z(0)=wo,
y(t) = Byz(1)

@ Ay : D(Ay) C H— His selfadjoint with (Agx, x) > 7| x|/
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Second-order systems: Framework

z(t)+ Apz(t) + Dz(t) = Bpu(t), t=>0,
2(0) = 2z, 2z(0)=wo,
y(t) = Byz(1)

@ Ay : D(Ay) C H— His selfadjoint with (Agx, x) > 7| x|/

. a1z,

Hija = D(AY%) with [|x][1 /2 == | A ?xIl, H_qp = H% "
Ao can be extended to an operator: H; o — H_1 2

© D€ L(H 2, H_1,2) with Ay "/2DA; /% € £(H) selfadjoint
and non-negative.

@ By e ,C((Cm, H,1/2).

© 33>0: (D2,2)0_, ,xH,, > BIB;2|?, ¥z € Hye.
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A class of second-order systems Motivation and Framework
Example

Second-order systems

2(t) = Aoz(t) + Dz(t) = Bou(t)
2(0) =2,  2(0)=wo
y(t) = Byz(t)

is equivalent to

x(t) = Ax(t) + Bu(t) J

y(t) = Cx(1)
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Second-order systems

2(0) =2,  2(0)=wp
y(t) = Byz(t)

is equivalent to

x(t) = Ax(t) + Bu(t)
y(t) = Cx(1 J

2(t) = Aoz(t) + Dz(t) = Bou(t) J

A:(_?qo _’D>, B:(g()), c=(B; 0)
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Second-order systems

x(t) = Ax(t) + Bu(t)
y(1) = Cx(1) J
-AZD(A)CH1/2><H—>H1/2><H

-BZ(Cm—>H~|/2><H,1/2
'CZH1/2><H—>Cm

A:<_3\O _’D>, B:<§0>, c= (B 0)

D(A):{<VZV> €H1/2><H1/2|A02+DW€H}
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Second-order systems

x(t) = Ax(t) + Bu(t)
y(1) = Cx(1) J
-AZD(A)CH1/2><H—>H1/2><H

-BZ(Cm—>H~|/2><H,1/2
'CZH1/2><H—>Cm

A:<_3\O _’D>, B:<§0>, c= (B 0)

D(A):{<VZV> €H1/2><H1/2|A02+DW€H}

Th.[BI'88, U89, CLL98, HS’03, TW’03]:
A generates a Cp-semigroup of contractions on Hy » x H.
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Topics of this Talk

Determine

spectrum of A,

@ essential spectrum,

@ intervals with no accumulation of non-real spectrum,
@ no spectrum on /R

@ Example and Minimum Phase
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Motivation and Framework
Example

A class of second-order systems

Spectrum of the operator A

First result
Th.[TW03]:

{0} UCo C p(A),

0 I
A<—Ao —D>

p(A)

£\2
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Motivation and Framework
Example

A class of second-order systems

Spectrum of the operator A

First result
Th.[TW03]:

{0} UCo C p(A),

0 I
A<—Ao —D>

p(A)

. (1 0 1.0
=0 2)Al ),

o(A) =o(A).

hence

£\2

Question: Spectrum of A arbitrary in the closed left half plane? J
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Example

Spectrum of A arbitrary?

Answer: YES. )

Th.:
For each ¢ > 0 there exist an uniformly positive operator A, and
a operator D such that o(A) = {s € C_ | |s| > ¢}.

p(A)

A

Therefore: We have to impose additionally conditions. |
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Example

In detail:

Let H = L?(0, o) and let (gj) C R with (g;) = Q. Set

ax):=gq if j—-1<x<j, jeN,

o0 pe ifj—1<x<jand |qg|>e¢,
X) == L .
1y - ifji-1<x<jand |g]<e.

Define a,(x) := a(x)? + d(x)?, x € [0, 00).

(Aof)(x) = ao(x)f(x), x€]0,00),
(Df)(x) = 2d(x)f(x), x€[0,00),fec Hjpp,
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Example

Spectrum of the operator A

Th.[BI'88, CLL'98, HS'03, TW'03]:
Assume (Dz,z) > f3||z|[?, “Dislarge.” Then

ol

: p(A)
{AeC|ReA> —g,lm/\géO} c o(A).

£\2
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A class of second-order systems Motivation and Framework
Example

Spectrum of the operator A

Th.:
Assume (Dz,z)> 7]|z||'f,1/2 > v||z||2, “Dis very large”
Then

Then there exists a < 0:

o(A) C (—o00,a] U {\|ReX < a, (Im)\)? < —29Re X — (Re \)?}

p(A)

~
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Spectrum and essential spectrum of the operator A

Th.:
Set
aq 1= 1. mln Uess(A_1 D)
2|45l °
Then
—ay
Uess(A) C (—O0,0) U {)\ eC | Re \ < —(1/,1}.
Non-real spectrum does not accumulate to 50 p(A)
?
(—a1,0) oo
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Spectrum and essential spectrum of the operator A

Th.:
Assume A; " is compact Then

Tess(A) = (A | AT € 0es(—A; ' D)}

0(A) = 0ess(A) U 0pnorm(A)
, , , . p(A)
oess(A) is not an accumulation point of 0 |
o(A) N (C\R) . ®
[ ]
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Spectrum and essential spectrum of the operator A

Th. [CLL98]:
Assume A; " is compact and
(Dz,z) > 0 for any eigenvector z of Ay. Then

Tess(A) = N | A1 € geis(—A; ' D)}

(A) = Tess(A) U 0pmorm(A) ’
oess(A) is not an accumulation point of e °% P(A) |
a(A) N (C\R) ° o0 |

ag(A)NIR =0 .
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Example

Euler-Bernoulli beam equation: Kelvin-Voigt damping

thin film of piezoelectric polymer

e —
u(t)= voltage

£=0 ¢=1
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Example

Euler-Bernoulli beam equation: Kelvin-Voigt damping

thin film of piezoelectric polymer

S
u(t)= voltage
£=0 £=1
wi (€, ) EWeeee (€, 1) + CaWeeeer(§: 1) = 0
W(O t) = EW££(1 t)+ Cdegt“ t) = U(t)
W&(O, t) 0, W&g(" : t) + CdW§£§t( , t) =0
y(t) = we(1,8)

E, Cy4 are positive constants, ¢ € (0,1)and t > 0

Jacob, Trunk
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Euler-Bernoulli beam equation: Kelvin-Voigt damping

Wit(€, 1) + EWeeee (€, 1) + CaWeeeer(§,1) = 0
w(0,t) =0, Ewe(1,t)+ Caweer(1,1) = u(t)
we(0,1) =0, Eweee(1,1) + CaWeeer(1,8) = 0
y(1) (1,1

can be written as

2(t) + Aoz(t) + Dz(t) = Bou(t),  z(0) =z,  2(0) = wp
y(t) = Byz(1) J

with: Ag := Ed§4, D=%A, By=0d(1),

z(t) € H = L2(0,1).
2(1)(€) = w(&. 1
e e . I
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Euler-Bernoulli beam equation: Kelvin-Voigt damping

Ag = EC;";, D=S%A, By=0d(1),
D(Ao) = {w € H*(0,1) | w(0)=w'(0)=w"(1)=w"(1)=0}.

(Dz,z) = % (Agz,2) = CdeHz , “Dis very large”

Ap has compact resovent

oess(A) = {—E/Cq}

o(A)\R consists of at
most finitely many isolated
normal eigenvalues
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Minimum-phase systems Minimum-phase systems

Transfer function of the second-order system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

A:(_tl)40 _’D>, B:(§0>, c=(8 0
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Transfer function of the second-order system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

A:(_tl)40 _’D>, B:(§0>, c=(8 0

The transfer function of the system (A, B, C) is given by

G(s) = B} (21 +sD+ Ay) ' By, s € p(A).

€L(H_1/2,Hy/2)
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Transfer function of the second-order system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

A:(_tl)40 _’D>, B:(§0>, c=(8 0

The transfer function of the system (A, B, C) is given by

G(s) = B} (21 +sD+ Ay) ' By, s € p(A).

€L(H_1/2,Hy/2)

G € H>®(Cqy; C™ ™)
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When is a system minimum-phase?

Transfer function of the second order system

G(s) = By(s?1+sD+ A)) 'By, s€Cy
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Transfer function
Minimum-phase systems Minimum-phase systems

When is a system minimum-phase?

Transfer function of the second order system

G(s) = By(s?1+sD+ A)) 'By, s€Cy

| A\

Definition

System (A, B, C) is minimum-phase
=

G € H>(Cp,C™ ™M) and

(GO | T € HE(CorCm)} -

H?(Cp; C™) is the Hardy space on Cy

Jacob, Trunk



Transfer function
Minimum-phase systems Minimum-phase systems

Why is miminum-phase important?

Infinite-dimensional systems

The minimum-phase property is important for

@ Pl-controller and high-gain control
Logemann and Owens 1987, Logemann and Zwart 1992,
Nikitin and Nikitina 1999, Kobayashi 2001, 2001, 2002,...

@ Sensitivity minimization

It is important to know which systems are minimum-phase

Jacob, Trunk
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Transfer function
Minimum-phase systems Minimum-phase systems

Checkable condition for minimum-phase

Let G € H>(Cp; C™*™M).

Sufficient condition

Assume

@ s"G(s) / 0as s — oo for some n

@ G can be extended analytically over the imaginary axis.
Then

G minimum-phase <= det G has no zeros in Cy

Jacob, Trunk



Transfer function
Minimum-phase systems Minimum-phase systems

Minimum-phase behaviour: Second order system

Transfer function of the second order system

G(s) = By(s®1+sD+ A)) 'By, seCy

Main result 1

If
@ B is injective,

@ (Dz,z) > j3||z|| for any z € Hj for some 3 > 0.

then
G is minimum-phase and det G has no zeros on /R.

A\
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Transfer function
Minimum-phase systems Minimum-phase systems

Minimum-phase behaviour: Second order system

Transfer function of the second order system

G(s) = By(s®1+sD+ A)) 'By, seCy

Main result 1
If
@ B is injective,
@ (Dz,z) > j3||z|| for any z € Hj for some 3 > 0.

then

G is minimum-phase and det G has no zeros on /R.

A\

Transfer function of the Euler-Bernoulli beam is
minimum-phase.

Jacob, Trunk
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Minimum-phase behaviour: Second order system

Transfer function of the second order system

G(s) = By(s?1+sD+ A)) 'By, seCy

4

Main result 2

If
@ B is injective,

o A;'is compact,
@ (Dz,z) > 0 for any eigenvector z of Ay.

then
G is minimum-phase and det G has no zeros on /R.
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Thank you
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