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States of one Electron and Photons

The Hilbert Space H is the space of sequences

ψ = (ψ(0), ψ(1), . . .),
∞∑

n=0

‖ψ(n)‖2 <∞

ψ(0) = ψ(0)(x) one electron and zero photons

ψ(n) = ψ(n)(x , k1, λ1, . . . , kn, λn) one electron and n photons

where kn ∈ R3 is the wave-vector (momentum) of the n-th
photons and λn ∈ {1,2} denotes its polarization.

(ψ(0),0,0, . . .) = zero-photon state

(0, . . . , ψ(n),0, . . .) = n − photon-state

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED



Hamiltonian of the Hydrogen Atom

The Hamilton operator H : D(H) ⊂ H → H is given by

H = (−i∇x + α3/2A)2 − Z
|x |

+ Hf

=
(
−∆− Z

|x |︸ ︷︷ ︸
Hel

)
+ Hf + α3/2Wα,

where D(H) = D(−∆ + Hf ), x ∈ R3 the position of the electron,
α > 0 fein-structure constant (α = e2/~c ' 1/137),

Hf : field energy,

A = (A1,A2,A3) : quantized vector potential
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Field Energy and Vector-Potential

Field energy . Identify (0, . . . , ψ(n),0 . . .) with ψ(n). Then

Hfψ
(0) = 0

Hfψ
(n)(x , k1, . . . , kn) =

n∑
j=1

|kj |ψ(n)(x , k1, . . . , kn).

Quant. vector potential. Aj = aj + a∗j , j = 1,2,3, where aj and
a∗j act like shift-operators:

ajψ = (ψ̃(0), ψ̃(1), ψ̃(2), . . .) annihilation operator

↖ ↖ ↖
ψ = (ψ(0), ψ(1), ψ(2), ψ(3), . . .)

↘ ↘ ↘
a∗j ψ = (0, ψ̄(1), ψ̄(2), ψ̄(3) . . .) creation operator
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Spectrum of H: α = 0.

σ(Hel)

0E1 E2 E3

σ(Hf ) 0

Eigenwert

σ(Hel + Hf ) 0E1 E2 E3

Eigenwerte

Eigenvectors: (Hel + Hf )(ψ
Sch
n ,0, . . .) = En(ψ

Sch
n ,0, . . .).

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED



Spectrum of H: α = 0.

σ(Hel)

0E1 E2 E3

σ(Hf ) 0

Eigenwert

σ(Hel + Hf ) 0E1 E2 E3

Eigenwerte

Eigenvectors: (Hel + Hf )(ψ
Sch
n ,0, . . .) = En(ψ

Sch
n ,0, . . .).

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED



Spectrum of H: α 6= 0.

Self-adjointness. H = H∗ on D(H) = D(−∆ + Hf ).
(α small : Kato-Rellich / α arbitrary : via construction von e−Ht

by stoch. methods)

Spectrum. σ(H) = [E ,∞), and if α� 1,

Σ = inf σ(HZ=0)E

eigenvalue ionization threshold
absolutely continuous

no info.

1

Huebner, Spohn / Bach, Fröhlich, Sigal / Skibsted / Dereziński, Jacksic / Lieb,

Loss, Griesemer,...
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Conjugate Operator Theory
Amrein, Boutet de Monvel, Georgescu / Sahbani

Assumptions. Let H and B be self-adjoint operators in a
Hilbert space H, and let U ⊂ R be open.

I H is locally of class C2(B) in U: The map

s 7→ e−iBsf (H)eiBsϕ

is twice continuously differentiable for all ϕ ∈ H and for all
f ∈ C∞

0 (U).

I Mourre estimate: For every λ ∈ U there exists a
neighborhood ∆ 3 λ, (∆̄ ⊂ U), and a number β > 0 such
that

E∆(H)[H, iB]E∆(H) ≥ βE∆(H).
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Conjugate Operator Theory

Theorem (Limiting absorption principle)
For all s > 1/2 and all ϕ,ψ ∈ H, the limit

lim
ε↓0
〈ϕ, 〈B〉−s(H − λ± iε)−1〈B〉−sψ〉

exists uniformly for λ in compact subsets of U (〈B〉 =
√

B2 + 1).
In particular, the spectrum of H is purely absolutely continuous
in U.
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The conjugate operator
Bach, Fröhlich, Sigal

B = second quantized dilation generator, that is,

B = dΓ(b), b =
1
2
(k · y + y · k)

where y := i∇k . Then

[Hf , iB] = Hf > 0 on [vacuum]⊥.

With interaction: H = H0 + α3/2Wα

[H, iB] = Hf + α3/2[Wα, iB]

≥ 1
2

Hf + O(α3)

No positive commutator below E + O(α3) !
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The conjugate operator
Hübner, Spohn / Skibsted / Georgescu, Gérard, Møller

B̂ = second quantized radial derivative, that is,

B̂ = dΓ(b̂), b̂ =
1
2
(k̂ · y + y · k̂)

where k̂ = k/|k |, y = i∇k . Then

[Hf , i B̂] = N ≥ 1 on [vacuum]⊥.

With interaction: H = H0 + α3/2Wα

[H, i B̂] = N + α3/2[Wα, i B̂]

≥ 1
2

N + O(α3)

B̂ is symmetric but not self-adjoint!
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New Mourre Estimate

Assumptions.

I e1 = infσ(Hel) is simple and isolated.

I α� 1.

Let e2 = infσ(Hel)\{e1} and egap = e2 − e1.

THEOREM

I The Hamiltonian H is locally of class C2(B) on the interval
(−∞,egap/3).

I If σ ≤ egap/2 and ∆ = [σ/3,2σ/3], then

E∆(H − E)[H, iB]E∆(H − E) ≥ σ

10
E∆(H − E).

In particular, the spectrum of H is purely absolutely continuous
in U = (E ,E + egap/3).
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Ingredients for proving the Mourre estimate

The IR-cutoff Hamiltonian. Let Hσ be the Hamiltonian H with
an infrared cutoff at |k | = σ. Then

Hσ = Hσ ⊗ 1 + 1⊗ Hf ,σ

w.r.to H = Hσ ⊗Fσ, where Fσ is the bosonic Fock space over
L2(|k | ≤ σ,C2).

Key ingredient. Hσ has the gap (Eσ,Eσ + σ) in its spectrum
above Eσ = infσ(Hσ) = infσ(Hσ). It follows that

f∆(Hσ − Eσ) = Pσ ⊗ f∆(Hf ,σ)

for every function f∆ with support in (0, σ). Pσ = ground state
projection of Hσ.

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED



Ingredients for proving the Mourre estimate

The IR-cutoff Hamiltonian. Let Hσ be the Hamiltonian H with
an infrared cutoff at |k | = σ. Then

Hσ = Hσ ⊗ 1 + 1⊗ Hf ,σ

w.r.to H = Hσ ⊗Fσ, where Fσ is the bosonic Fock space over
L2(|k | ≤ σ,C2).

Key ingredient. Hσ has the gap (Eσ,Eσ + σ) in its spectrum
above Eσ = infσ(Hσ) = infσ(Hσ). It follows that

f∆(Hσ − Eσ) = Pσ ⊗ f∆(Hf ,σ)

for every function f∆ with support in (0, σ). Pσ = ground state
projection of Hσ.

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED



Strategy for proving the Mourre estimate

Let f∆ be a smoothed characteristic function of the interval
[σ/3,2σ/3].

Step 1.

f∆(Hσ − Eσ)[H, iB]f∆(Hσ − Eσ) ≥ σ

8
f∆(Hσ − Eσ)2.

Step 2.

‖f∆(H − E)− f∆(Hσ − Eσ)‖ = O(α3/2σ).

Steps 1 and 2 prove the Theorem for α� 1.
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Prove of Step 1

We split B = Bσ + Bσ, according to 1 = χ(|k | ≤ σ) + χ(|k | ≥ σ).
Then

f∆(Hσ − Eσ)[H, iBσ]f∆(Hσ − Eσ) = 0.

as a consequence of a Virial Theorem, while

f∆(Hσ − Eσ)[H, iBσ]f∆(Hσ − Eσ) ≥ σ

8
f∆(Hσ − Eσ)2.

by straightforward estimates using f∆(Hσ −Eσ) = Pσ ⊗ f∆(Hf ,σ).
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Second Approach using Renormalization
(so far only for QED in dipole approximation)
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Feshbach-Schur Transform

Let P2 = P = P∗, P̄ = 1− P, and HP̄ = P̄HP̄. If

H−1
P̄

� P̄H, exists,

then, with respect to H = PH⊕ PH,

H =

(
1 PHP̄H−1

P̄
0 1

)(
FP(H) 0

0 HP̄

)(
1 0

H−1
P̄

P̄HP 1

)
,

where
FP(H) = PHP − PHP̄H−1

P̄
P̄HP.

Hence, if (HP̄ − z)−1 � P̄H exists, then

LAP for FP(H − z) ⇒ LAP for (H − z).
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Renormalization procedure

Step 1. Choose
P = Pel ⊗ χ(Hf ≤ 1),

Pel = ground state projection of Hel. Since rank(Pel)) = 1,

H(0)(z) := FP(H − z) on Hred = χ(Hf ≤ 1)F .

Step 2. Let P = χ(Hf ≤ ρ) where ρ < 1, and set

H(1)(z) :=
1
ρ
ΓρFP(H(0)(z))Γ∗ρ︸ ︷︷ ︸

Rρ(H(0)(z))

on Hred. Here Γρ : χ(Hf ≤ ρ)F → χ(Hf ≤ 1)F .
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Iterating the RG-Transform

Let H(n)(z) = Rn
ρ(H

(0)(z)). Then

H(n)(z) = T (n)(Hf , z)︸ ︷︷ ︸
function of Hf

+ E (n)(z)︸ ︷︷ ︸
〈H(n)(z)〉

Ω

+ W (n)(z)︸ ︷︷ ︸
→0, (n→∞)

.

Mourre est. and LAP for H(n)(z) and Re(z) ∈ ∆n ⊂ (E ,∞).
∆n is determined by

I existence of H(n)(z) (bound on ∆n from above)

I positivity of the Mourre constant (bound on ∆n from below)

For g � 1 one can achieve that

∞⋃
n=0

∆n = (E ,E + egap/18).
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Hydrogen Atom and Scalar Bosons

Model.
H := Hel ⊗ 1 + 1⊗ Hf + gφ(Gx),

φ(Gx) :=

∫
d3k
|k |1/2

(
κ(k)eik ·xa(k) + κ(k)e−ik ·xa(k)∗

)
.

Assumptions.
I e1 = infσ(Hel) is simple and isolated.
I There exists µ > 0 such that

|κ(k)| = O(|k |µ), (k → 0).

THEOREM
If g � 1, then for λ ∈ (E ,E + egap/18) and s ∈ (1/2,1)

〈B〉−s(H − λ± i0)−1〈B〉−s

exists and is Hölder-continuous of degree (s − 1/2).
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