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1 – Random tilings by rhombi, dominoes and
rhombohedra

finite set of prototiles (or tiles)

covering of a compact region (e.g. of Euclidean space)

no gaps or overlaps

Examples:

polygon polygon torus polyhedron
rhombi dominoes rhombi rhombohedra
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Tilings by rhombic tiles – Entropy and shape

D → d tilings:

d-dimensional euclidean space

D edge orientations(D
d

)
rhombic prototiles

Physical symmetries: octagonal (4→ 2), decagonal (5→ 2),
icosahedral (6→ 3)

Questions:
1 How many tilings of a given region?

Large size limit: S = limN→∞
log (# tilings)

N
2 What is the typical “shape” of a tiling?

The entropy per tile S depends on tile fractions
and boundary conditions
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Example: hexagonal (3→ 2) tilings

Equal tile fractions (“diagonal” case): n1 = n2 = n3 = 1
3

Periodic (or free) boundary conditions (torus):
S = 2

π

∫ π/3
0 log(2 cos x) dx = 0.323 . . . (Wiannier 1950)

Polygonal boundary conditions:
S = 3

2 log 3− 2 log 2 = 0.261 . . . (Elser 1985)

Analytically solved models (periodic boundaries; entropy maxima)

squares-triangles (12-fold symmetry):
S = 0.120 . . . (per vertex; Widom; Kalugin, ’93,’94)

rectangles-triangles (8-fold symmetry):
S = 0.119 . . . (per area; de Gier, Nienhuis, ’96)

rectangles-triangles (10-fold symmetry):
S = 0.175 . . . (per vertex; de Gier, Nienhuis, ’98)
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Arctic phenomenon
Example: hexagonal (3→ 2) tilings

frozen regions near the boundary

gradient of entropy

macroscopic effect on typical
tilings (typical “shape”)

macroscopic heterogeneity

1 What is the shape of the “arctic curve”?
2 What are the tile statistics inside the arctic curve?
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2 – Variational principle
N. Destainville, R. Mosseri, F. Bailly, J. Stat. Phys. (1997)
N. Destainville, J. Phys. A. (1998)
H. Cohn, R. Kenyon, J. Propp, J. Amer. Math. Soc. (2001)

By contrast:

Local patch of tiling
1� δR � L→∞
locally homogeneous

local tile fractions n1, n2, n3

local entropy per tile
σ(n1, n2, n3): free-boundary
entropy per area

Coarse-graining (or continuous limit): 3 regular functions

n = (n1(x , y), n2(x , y), n3(x , y)) (such that n1 + n2 + n3 = 1)
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Height-function or directed-membrane representation

Height function: φ̂ : ∆ ⊂ R2 → R

φ̂ facetted

Boundary conditions

Coarse-graining when L→∞

φ smooth
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Coarse-graining ≡ rescaling of factor 1/L

Tile side = 1/L→ 0 when L→∞
Only large scale (macroscopic) fluctuations remain

One-to-one correspondance ∇φ↔ tile fractions n1, n2, n3

σ(n1, n2, n3) = σ(∇φ): free-boundary entropy per area

Entropy functional: Nφ = Number of N-tile facetted
membranes φ̂ “close” to φ after rescaling

s[φ] = lim
N→∞

log(Nφ)

N

s[φ] accounts for the microscopic degrees of freedom

s[φ] =
1

V (∆)

∫
∆

σ(∇φ) dxdy

Functional integral:
Nfixed(N) ≈

∑
φ∈ΦNφ =

∫
ΦDφ exp(Ns[φ])

S(N) = log(Nfixed(N))/N
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Maximization of s[φ]

Assume that:

s[φ] has a unique maximum φmax ∈ Φ

s[φ] is regular (quadratic) near φmax

⇒ Saddle-point argument: limN→∞ S(N) = s[φmax ]

The statistical ensemble is dominated by states “close” to φmax

at the large size limit

relates (formally) the fixed-boundary entropy S to the
free-boundary one σ

the knowledge of φmax provides the tile statistics at each
point (x , y)

BUT: REQUIRES THE KNOWLEDGE OF σ(∇φ). . .
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3 – Dimension 2:
hexagonal (3→ 2) tilings

σ(∇φ = (E1, E2)) is known (Wannier, 1950)

outside the arctic circle: φmax affine: periodic tiling

inside the circle:

E1 =
3

π
√

2
[cotan−1f (x , y) + cotan−1f (−x , y)]−

√
2

E2 =

√
3

π
√

2
[cotan−1f (x , y)− cotan−1f (−x , y)]

f (x , y) =
1

2
√

3

8/
√

3xy − 8/3y2 + 2√
1− 4/3(x2 + y2)

Non-diagonal tilings L1 6= L2 6= L3: circle → ellipse.
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Strain-free fixed boundaries: corrugated hexagon

S[φ] is maximized by the constant function φmax = 0.
Homogeneous tiling, no frozen corners: S = σ(∇φ = 0) = Sfree

Check: exact enumeration at finite L ≤ 150 by a
determinental method (Gessel, Viennot, ’85)

Sfit = 0.32309 and Sfree = 0.32307

Nicolas Destainville, DMV, 09/18/06 Arctic phenomena in random tilings with fixed boundaries



Other examples

Dominoes in the Aztec Diamond
[Henry Cohn, Noam Elkies,

Jim Propp, 1996]

circle

Rhombi in a truncated hexagon
[Richard Kenyon and Andrei Okounkov,

arXiv:math-ph/0507007]

cardioid

⇒ connection with algebraic geometry
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4 – Dimension 3: 4→ 3 tilings
in a rhombic dodecahedron: Numerical exploration

4 rhombohedral
prototiles:

boundary: rhombic
dedecahedron of side L

Direct observation
[Linde, Moore, Nordhal,
2001]

Arctic surface:
octahedron

8 pyramidal frozen regions removed

Nicolas Destainville, DMV, 09/18/06 Arctic phenomena in random tilings with fixed boundaries



Confirmation: Entropy calculations
[Widom, Mosseri, ND, Bailly, 2002]

S“free′′ ' 0.214
Sfixed ' 0.145

}
ratio ' 1.48± 0.03

Variational principle: 3/2 if and only if
(assuming uniqueness of φmax ):

corrugated
octahedron:
S = Sfree

1 tiling frozen outside the octahedron
2 tiling homogeneous inside the octahedron

Consequence : in 3D, the relationship between fixed- and
free-boundary tilings is heighly simplified

Fixed-boundary properties can be much more easily
transposed to free-boundary tilings of physical interest

Conjecture : in dimension 3 and above, arctic frontiers are
polyhedra.
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Open problem: octagonal symmetry and beyond

φ 6= φmax

frozen outer crown

3→ 2 crown: effective D = D′ = 3

4→ 2 central region
[figure from Matthew Blum]

PROBLEM: σ(∇φ) unknown. . .
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